T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	ギャップブレースを有する鉄骨架構のブレース稼働に伴う影響 その 3 実験結果と付加応力の評価
Title(English)	Impact of brace operation on steel frames with gap braces Part3 Evaluation of experimental results and additional stress
著者(和文)	高橋周吾, 佐藤大樹, 矢野将斗志, Alex Shegay, 笠井和彦
Authors(English)	Shugo Takahashi, Daiki Sato, Masatoshi Yano, Aleksey Vadimovich Shegay, Kazuhiko Kasai
出典 / Citation	
Citation(English)	, , , pp. 289-292
発行日 / Pub. date	2022, 3

ギャップブレースを有する鉄骨架構のブレース稼働に伴う影響

その3 実験結果と付加応力の評価

11

IJ

構造一振動

変形制御機構 ギャップブレース 付加応力 静的載荷実験 主応力分布

1. はじめに

本報その3 では、本報その1 における実験概要・計測 概要や本報その2 における計測の妥当性の検証を踏まえ て、本機構の挙動やブレース稼働に伴う影響について考 察を行う.

2. 荷重 – 層間変形角関係

Fig.1 に荷重-層間変形角関係を示す. QF は主架構せん 断力, OB はブレース軸力の水平成分(以降, ブレースせ ん断力 (その $1^{4.4 \text{ m}}$)) を示しており, $Q_F \ge Q_B$ の和として システムせん断力 Os が算出される. B60 試験体に着目す ると $Q_J = \pm 400 \text{ kN}$ サイクル (Fig.1(a)) では、ブレースは 稼働せず主架構は弾性挙動を示す. この時のシステム剛 性 K_sは 51 kN/mm である.次いで $O_J = \pm 600$ kN サイクル (Fig.1(b)) では、ギャップ間隔 (*Δu* = 7.5 mm) と概ね等 しい層間変形 7.3 mm (層間変形角 R = 1/132) 時にブレー スが稼働することで、Ksが 108 kN/mm まで上昇すること を確認できる.この時,主架構剛性 K_Fはブレース稼働と ともに低下し、それに伴い QF は頭打ちになる.また、本 サイクル最大荷重時における層間変形角 R は 1/108 であ る. $Q_J = \pm 800 \text{ kN}$ サイクル (Fig.1(c)) においても 600 kN サイクル同様の傾向を示すが、ブレース材に降伏が生じ 始めることからブレース剛性 K_B および K_s に非線形性が 生じる.また、本サイクル最大荷重時における層間変形角 Rは 1/93である. 最後に $Q_J = \pm 1000$ kN サイクル (Fig.1(d)) においては、最大荷重時に圧縮側ブレースに座屈が生じ ることに伴い、Qs は頭打ちになりシステムが最大耐力を 迎える. さらに、ブレースによる変形制御効果が得られな くなり,架構の変形が急激に増大する.続いて,B80試験 体に着目すると、本試験体においても B60 試験体と同様 の傾向を示し、層間変形がギャップ間隔に達したタイミ ングで Ksが上昇する. ただし, B80 試験体においては QJ = ±1000 kN サイクルまでブレースは概ね弾性的挙動を示

正会員 〇 高橋周吾*1 正会員 佐藤大樹*2

Impact of brace operation on steel frames with gap braces Part3 Evaluation of experimental results and additional stress

す.よって、本実験の最大荷重時まで変形制御効果が得られ、この時の層間変形角 R は 1/84 である.続いて、Fig.2 に荷重増大に伴うせん断力分担率を示す.Fig.2 よりブレース稼働前はジャッキ荷重増大に伴い主架構せん断力 QF は増加するが、ブレース稼働後は、ブレースが荷重を負担することで QF の増大を抑え、特に B80 試験体においては QJ=±800 kN 以降で QF が低下する傾向を確認できる.これは、B80 ではブレースが最大荷重時まで概ね弾性的挙動を示し、層間変形が増大してもブレースが十分に荷重を負担するためであると考えられる.以上より、本機構が硬化型復元力特性を有し、ブレース稼働により変形が制御され、QF が抑えられることを確認した.

3.1 ブレース稼働前後での応力伝達

本機構は、ブレース稼働に伴い急激に応力状態が変化 する. そこで本節では, ブレース稼働前後での応力伝達の 変化について考察する. Fig.3(a), (b)に正載荷ブレース稼 働前後での主応力分布をそれぞれ示す. 主応力分布は試 験体に貼付した三軸歪ゲージより算出し、本検討では歪 ゲージが使用鋼材の降伏歪以下であることを確認できた *Q*_J = +400 kN, +600 kN 載荷時における分布を示す.ブレ ース稼働前 *O*₁=+400 kN 載荷時(Fig.3 (a)) に着目すると, 上梁ウェブには材軸斜め方向に主応力が分布している. これは上梁の曲げ変形に伴い生じたものであり、この影 響はビームヘッジにまで及んでいると考えられる.また, ガセットプレートにおいては、左側ガセットプレートで は圧縮、右側ガセットプレートでは引張の主応力が分布 しており,これは載荷に伴い架構に変形が生じたためで あると考えられる. 続いて, ブレース稼働後 Q」=+600 kN 載荷時(Fig.3(b))に着目すると、上梁ウェブにおいては、 最小主応力分布の方向が材軸方向へとシフトし, 部分的 に主応力の大きさの増減を確認できる. これはブレース せん断力が上梁へと伝達され、上梁軸力が増大したこと

やブレースがビームヘッジに接触することで上梁に曲げ

戻しが生じ、局所的に曲げ変形が小さくなったためと考 えられる.また、載荷ジャッキ側とは反対の上梁ウェブ (右側上梁ウェブ)においては上梁の曲げ変形の影響の みを受け、ブレース稼働による影響はほとんど生じない ことを確認できる.ブレースヘッドにおいては、ブレース 稼働に伴い主応力が分布することを確認できる.ガセッ トプレートにおいては、ブレース稼働前に生じていた主 応力が架構の変形増大に伴い増大する.加えて、ブレース が軸力を負担することに伴い、ブレース軸方向と同方向 にも主応力が生じることを確認できる.

3.2 スチフナに生じる軸力

Fig.4 にスチフナ概要を示す. ブレースが稼働した際, 上梁にはビームヘッジを介して軸力およびモーメントが 付加される. この時, ビームヘッジ上部に位置する上梁の 局部座屈を防止するため, 鉛直方向スチフナを設けてい る. スチフナには厚さ 9mm の SN490 材を用いており, ビ ームヘッジの左右端部上の上梁に隅肉溶接で接合してい る. 本節では, 歪計測結果より算出されるスチフナに生じ る軸力 N_{stf} について考察を行う. ブレース稼働時, ビーム ヘッジにブレースせん断力 Q_B が作用することで, スチフ ナには転倒モーメントによる軸力 N_{fm} が生じる. スチフナ 間の距離を L_{BH} =217 mm, ブレースせん断力 Q_B が作用す る高さをビームヘッジ高さの H_{BH} = 40 mm となる位置と して検討を行う (式(1)). なお, ブレースせん断力 Q_B が 作用する高さ H_{BH} については 5 章で後述する.

$$N_{fm} = \frac{H_{BH}}{L_{BH}} \cdot Q_B \tag{1}$$

Fig.5 に N_{fm} と N_{stf} の結果を示す.本結果より,転倒モー メントにより生じる軸力 N_{fm} が上梁スチフナに生じる軸 カ N_{stf} の 75% ~ 90%程度と大部分を占めていることがわ かる.さらに,スチフナにおける降伏軸力 N_y =541.7 N/mm² とスチフナに生じる軸力を比較すると,スチフナに生じ る軸力は最大で降伏軸力の 0.16 倍と十分に小さく,現設 計で十分に安全であることが分かる.

3.3 ビームヘッジ内の負担せん断力の検討

Fig.6 にビームヘッジにおける応力伝達を示す. ブレー スが稼働すると、上梁から伝達される軸力の一部がビー ムヘッジを経由してブレースへと流れる. そこで本節で は、ビームヘッジにおける力の流れについて考察する. ビ ームヘッジは下フランジとウェブで構成されており、下 フランジに生じる軸力 Nbhf とウェブに生じるせん断力 Qbhw によってビームヘッジの応力伝達がなされる. この 時の荷重はブレースせん断力 QBと等しい. ビームヘッジ 下フランジに生じる軸力 Nbhf は歪計測結果より算出され、 Nbhfの水平成分を下フランジにおける負担せん断力 Qbhf と する. また、ビームヘッジのウェブには、ブレースせん断 力 QB と下フランジにおける負担せん断力 Qbhf の差分のせ ん断力 Qbhw が生じる(以下、式(2),(3)).

$$Q_{bhf} = N_{bhf} \cdot \cos\theta_{BH} \tag{2}$$

$$Q_{bhw} = Q_B - Q_{bhf} \tag{3}$$

ここで、 $heta_{BH}$ はビームヘッジ下フランジの角度 (= 30°) を示す.

Fig.7 に最大荷重時のビームヘッジに生じるせん断力結 果を示す. $Q_J = \pm 400 \text{ kN}$ サイクル時にブレースは稼働し ないため,ビームヘッジにおいてもせん断力は生じない. 続いて,ブレースが稼働する $Q_J = \pm 600 \text{ kN}$ サイクル以降

の結果に着目すると、ビームヘッジ下フランジにおいて はジャッキ荷重が増大しても負担せん断力 *Q*_{bhf}が 120 kN 程度と概ね一定であることが分かる.そのため、ジャッキ 荷重増大に伴いブレースせん断力 *Q*_Bが増加すると、ビー ムヘッジのウェブにおける負担せん断力 *Q*_{bhw}が相対的に 大きくなることが分かる.

4. 上梁における付加軸力の検討

ブレース稼働時,載荷ジャッキ側の上梁断面には軸力 が付加される.付加軸力の値はブレース負担せん断力 Q_B と等しく,その値はブレース材の断面サイズによって異 なる(Fig.1, 2). B80 試験体の場合は,1000 kN サイクル においてもブレース材に座屈は生じず,ブレース材の軸 力が最大荷重時まで単調増加する.正載荷最大荷重時に 上梁に付加される軸力は530 kN に達する.一方,B60 試 験体の場合は,1000 kN サイクル時にブレース材に座屈が 生じるため,付加軸力の値はB80 試験体よりも小さい. しかし,ブレース材座屈により架構の変形が急激に進行 することで,上梁端部に大きな局部座屈が生じる.実設計 においては,これらの現象を踏まえ,適切な上梁の補強や ブレース材断面の決定が求められる.

5. 上梁における付加モーメントの検討

Fig.8 に正載荷時における上梁に生じる付加モーメントの算出方法を示す. ブレースが稼働すると, 上梁ビームヘッジ取り付け箇所にブレースせん断力 Q_Bとビームヘッジ腕の長さ H_{bh} の積で算出される付加モーメント M_{BH} が 生じ, 上梁におけるモーメント分布は不連続となる(以下, 式(4)).

$M_{BH} = Q_B \cdot H_{bh} \tag{4}$

本章では、ビームヘッジにおける付加モーメント M_{BH} を適切に評価するために、実験結果をもとに合理的なビ ームヘッジ取り付け位置 L_{bh} と腕の長さ H_{bh} となる位置 の検討を行う.本検討では、ビームヘッジ取り付け位置 L_{bh} をビームヘッジ端部から L/3、L/2 となるような点 (Fig.8 中 1~5 の位置)、腕の長さ H_{bh} を上梁下フランジ とビームヘッジ接合部高さから H/3、H/2 となるような点 (Fig.8 中 A~E の位置) とし、計 25 箇所で検討を行う. 正載荷時においては、ビームヘッジ接合部の上梁左側モ ーメント M_{Gu}^{L} と M_{BH} の和 M_{BH}^{L} と、上梁右側モーメント M_{Gu}^{R} を比較する.本検討では、 M_{BH}^{L} と M_{Gu}^{R} の結果に決定 係数 R^{2} を用いた評価を行う. R^{2} が1 に近いほど誤差が小 さいことを意味する(以下、式(5)~(7)).

$$M_{BH}^{L}(i) = M_{Gu}^{L}(i) + M_{BH}(i)$$
(5)

$$\alpha(i) = M_{BH}^L(i) - M_{Gu}^R(i) \tag{6}$$

$$\mathbf{R}^{2} = 1 - \left(\frac{\sum_{k=1}^{n} (\alpha(i))^{2}}{\sum_{i=1}^{n} \left(M_{BH}^{L}(i) - \overline{\alpha}(i)\right)^{2}}\right) \qquad \qquad * i = \text{step} \qquad (7)$$

また,負載荷時も正載荷時同様に検討を行う. Fig.9 に R²結果を示す. Fig.9 より正載荷時,負載荷時ともに検討 箇所 B3 の位置で相対二乗誤差が最小となることが分か る.この位置は、ビームヘッジ取り付け位置 L_{bh}に着目す ると、ビームヘッジ接合部の中心に位置する.また、ビー ムヘッジ腕の長さ H_{bh}に着目すると、ビームヘッジ高さ Hの 1/3 となり、三角形の形状をしているビームヘッジの 重心に位置する高さとなることが分かる.

6. まとめ

本報その3 では、ギャップブレース試験体における静 的載荷実験を行った結果として、実験時の挙動の報告、ブ レース稼働による応力状態の変化、付加応力の評価を行 った. 謝辞

本研究は東京工業大学と(株)竹中工務店との共同研究であり、一部 は JST 産学共創プラットフォーム共同研究推進プログラム (JPMJOP1723)によるものです.ここに記して感謝の意を表します.

Graduate Student, Tokyo Institute of Technology *1

Associate Prof, FIRST, Tokyo Institute of Technology, Dr.Eng. *2 Assistant Prof, FIRST, Tokyo Institute of Technology, Dr.Eng. *3

Specially Appointed Prof., IIR, Tokyo Institute of Technology, Ph.D. *4

*1 学生会員 東京工業大学 大学院生

*2 東京工業大学 未来産業技術研究所 准教授・博士(工学)

*3 東京工業大学 未来産業技術研究所 助教・Ph.D.

*4 東京工業大学 科学技術創成研究院 特任教授・Ph.D.