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Chapter 1

Introduction

1.1 Background
Vehicles play a key role in modern transportation systems and are indispensable in our daily
life. Market research predicts a continuous growth of ownership rate of vehicles in the coming
years, especially in developing countries. However, as a vehicle penetration rate increases,
various social issues arise. Traffic accidents are one of the typical issues. It is said that 93%
of traffic accidents are caused by human failure in the United States of America [1]. In Japan,
it is reported that more than half of traffic fatalities are caused by violating the responsibility
of safe driving, which deeply relates to human failure [2]. Moreover, it also says that more
than half of victims are senior citizens. World Health Organization (WHO) also publishes
key facts about road injuries [3]. The following items show important facts.

• Road traffic crashes cost most countries 3% of their gross domestic product.

• 93% of the world’s fatalities on the roads occur in low- and middle-income countries,
even though these countries have approximately 60% of the world’s vehicles.

• Road traffic injuries are the leading cause of death for children and young adults aged
5-29 years.

It also mentions risk factors such as high-speed driving, driving under alcohol or other psy-
choactive substances, distracted driving, which is mainly due to drivers. To summarize these
statistics and facts, it shows that human failure during driving often leads to traffic fatalities
and economic loss. Lack of public transport for senior citizens in a rural area is also a typi-
cal social problem. In Japan, the service frequency of public transport gets halved after the
elapse of 30 years [4]. Since a lack of drivers causes this problem, it is a severe problem in
an aging society. Considering these facts, automated vehicles are expected to make car traffic
safer because they are free from human failure and do not need human drivers in any area.

Current works in Japan are automated driving trials that are performed to realize level
2 and 3 automated driving defined by Society of Automotive Engineers (SAE) [5]. For ex-
ample, Honda Motor company develops level 3 automated driving vehicles. This vehicle
switches to automated driving when there are traffic jams on a highway. Another example
is level 2 automated driving buses in Ibaraki prefecture. These automated driving buses are
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Figure 1.1: The concept of cooperative perception. Although the red oncoming vehicle
is invisible from the green ego vehicle due to the blue blocking vehicle, co-
operative perception between the ego vehicle and blocking vehicle changes it
visible.

proposed to solve a lack of transportation in rural areas and are programmed to drive along
a fixed path. In the United States of America, United States Department Of Transportation
(USDOT) establishes a consistent approach to shaping policy for automated driving vehicles,
based on the following six principles [6]. The six principles are prioritizing safety, remaining
technology neutral, modernizing regulations, encouraging a consistent regulatory and oper-
ational environment, preparing actively for automation, and protecting and enhancing the
freedoms enjoyed by Americans. Several National Highway Traffic Safety Administration
(NHTSA) safety standards for motor vehicles assume a human occupant such as seating ar-
rangements and the use of steering wheels, brakes, and accelerator pedals. However, some
level 4 and 5 automated driving systems may be designed to be entirely controlled by the sys-
tem and may not be equipped with human-machine interfaces such as brakes, which does not
assume a human driver. Therefore, NHTSA starts to reconsider its current standards. USDOT
also focuses on Vehicle-to-everything (V2X) communications because it will be an important
complementary technology. Although V2X communications are expected, USDOT shows a
cautious stance that V2X communications cannot be a precondition to the development of
automated driving vehicles.

To realize the high level of automated driving, the concept called connected car society is
planned. It is designed to connect vehicles to networks so that new services will be started and
more advanced automated driving will be realized. The new services can be classified into
four groups such as safety, car life support, agent, and infotainment. Among these services,
this thesis focused on the cooperative or collective perception that is one of the applications
of the safety service to improve the safety of automated driving. Cooperative perception
is a technology that a vehicle can use sensor data obtained from other vehicles or Road

4



Side Units (RSUs) through wireless communications as shown in Fig. 1.1. The effect of
cooperative perception comes from obtaining sensor data of other perspectives so that the
receiving vehicle can see through blind spots. In other words, since dynamic maps that are
used for navigation and avoiding obstacles of automated driving are made from sensor data,
cooperative perception can be regarded as integrating dynamic maps, which will lead to a
higher quality of automated driving.

There are two ways to realize cooperative perception that are sharing processed or raw
sensor data. Processed sensor data includes information about recognized objects such as
category and location. The main advantage of sharing processed sensor data is that complex
processes such as object recognition can be performed in application servers and high perfor-
mance of wireless communications is not required. On the other hand, when raw sensor data
is shared, the receiving vehicle performs a recognition process in its system so that recogni-
tion results are free from errors due to the sender. Moreover, the receiving vehicle can use
the sensor data without information loss. In order to guarantee safe automated driving by co-
operative perception, it is important to clarify the shared amount of processed or raw sensor
data rate for safe automated driving. For example, in [7], it publishes the requirements for
sharing both processed and raw sensor data. On the other hand, in [8], it does not consider
sharing raw sensor data due to the necessity of a large data rate.

1.2 Related works
This section summarizes the related works about V2X communications for cooperative per-
ception and the details of each work are introduced in the corresponding section. The related
works are classified into three categories. The first category is the derivation of the require-
ments for cooperative perception applications. These works analyze the requirements for the
cooperative perception, or collective perception, applications through simulation or calcula-
tion [7, 8, 9, 10, 11, 12]. Their analysis of the requirements is based on sharing processed or
raw sensor data, and the calculation is based on the sum of the output of installed automotive
sensors. Since sharing processed sensor data is appropriate for the current V2X communi-
cations, the analysis based on sharing processed sensor data is discussed under a specific
format. On the other hand, the analysis based on sharing raw sensor data is not as abundant
as sharing processed sensor data.

The second category is the analysis through the demonstration of cooperative perception
sharing processed sensor data. These works perform cooperative perception with processed
sensor data and analyze the communication performance and the recognition results [13,
14, 15, 16]. The third category is the analysis through the demonstration of cooperative
perception sharing raw sensor data. These works analyze the communication performance
during the demonstration of sharing raw sensor data [17, 18, 19]. However, the works of the
second and the third category do not discuss the relation between safety and communication
performance.
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Figure 1.2: The structure and the brief contributions of this thesis.

1.3 Thesis contributions
Since the requirements for cooperative perception applications are needed, this thesis tackles
the derivation of the requirements for safe automated driving with cooperative perception.
It attempts to derive the requirements by comprehensive analysis that is not performed by
the current researches and shows the requirements under fundamental driving scenarios. The
contribution of this paper consists of two aspects [20, 21]. The first aspect is the derivation of
the sensor data rate required for safe automated driving. This derivation is based on consider-
ing the minimum required braking to alleviate traffic congestion and the recognition process.
There are some works that analyze the requirements for cooperative perception or safe driv-
ing, but their discussions are closed in one discipline such as wireless communication or au-
tomotive control. This thesis analyzes the requirements under multidiscipline such as vehicle
behavior, recognition process, and wireless communications to derive the realistic require-
ments. Moreover, the derivation is divided into cases where cooperative perception is used
and not used. The format of how to send sensor data in cooperative perception is assumed to
send raw sensor data. Although sharing raw sensor data requires much larger communication
resources than sharing processed sensor data, sharing raw sensor data is necessary to develop
level 4 and 5 automated driving vehicles. The necessities come from liability reasons at car
accidents, distributed verification of local and remote sensor data, and generating accurate
maps, which cannot be achieved by sharing processed sensor data. Therefore, our derived
requirements are not only realistic but also useful to realize high-level automated driving.

The second aspect is the discussion of the ability of millimeter-wave communications for
safe automated driving. Since performing cooperative perception by sharing raw sensor data
requires a large number of communication resources, millimeter-wave communications that
have larger channel capacity than the conventional V2X communications are expected to have
a great synergy with sharing raw sensor data. In order to prove this expectation, this thesis
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compares the safe automated driving realized by the conventional and the millimeter-wave
V2X communications, and the results show the potential of millimeter-wave V2X communi-
cations.

1.4 Thesis structure
The rest of this paper is organized as shown in Fig. 1.2. Chapter 2 introduces related tech-
nologies such as dynamic maps and cooperative perception and shows related works about
the requirements for cooperative perception. Moreover, it shows the current V2X communi-
cations and the next generation of V2X communications that are necessary to realize cooper-
ative perception. It also introduces the current idea about safe driving and selects scenarios
to analyze safe automated driving. Chapter 3 and 4 derive the required sensor data rate for
safe automated driving and discuss the realized safe automated driving by the conventional
and the millimeter-wave V2X communications. Chapter 5 shows the demonstration of co-
operative perception using millimeter-wave Vehicle-to-Infrastructure (V2I) communications.
Chapter 6 concludes this paper.
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Chapter 2

V2X communications to ensure safe
automated driving by cooperative
perception

2.1 Taxonomy of driving automation
Before starting the discussion and the analysis, this section introduces the category of driv-
ing automation. The category of driving automation can be roughly classified into driving
support and automated driving. Dynamic Driving Task (DDT) and Operational Design Do-
main (ODD) are key factors to explain the difference between driving support and automated
driving. DDT describes all of the real-time operational and tactical functions required to op-
erate a vehicle in on-road traffic. In other words, operational functions include basic vehicle
motion control and tactical functions include planning and execution for event/object avoid-
ance. ODD describes operating conditions under which a given driving automation system is
designed to function, including, for example, environmental, geographical, and time-of-day
restrictions. Fig. 2.1 shows the definition of each level of automated driving, and it is based
on the following five points [5].

• Whether the driving automation system performs either the longitudinal or the lateral
vehicle motion control subtask of DDT.

• Whether the driving automation system performs both the longitudinal and the lateral
vehicle motion control subtasks of the DDT simultaneously.

• Whether the driving automation system also performs the OEDR subtask of the DDT.

• Whether the driving automation system also performs DDT fallback.

• Whether the driving automation system is limited by an ODD.

From level 3, driving automation is regarded as automated driving.
From more than level 2, the driving automation system mainly controls the entire DDT,

but the driver is expected to take over the DDT in emergency cases at level 3. Moreover, dif-
ferent conditions are imposed on ODD among automated driving levels. Automated driving
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Figure 2.1: The definition of each level of automated driving [5].

levels other than level 5 limit ODD, and level 5 performs driving automation systems in all
driver-manageable on-road operating situations. In this paper, more than level 3 is assumed
in a discussion.

2.2 Dynamic maps
As human drivers use map applications or car navigation to access destinations, automated
driving vehicles need similar functions to transport passengers or loads. Dynamic maps are
key factors to navigate automated driving vehicles to destinations. Fig. 2.2 shows the struc-
ture of dynamic maps. Dynamic maps consist of four layers that are separated by transition
time as follows.

• Highly dynamic data layer
It takes one second to change the state of data, e.g. surrounding vehicles and pedestri-
ans information, traffic light information.

• Transient dynamic data layer
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Figure 2.2: The information included in dynamic maps [22].

It takes about one minute to change the state of data, e.g. accident information, traffic
jam information, narrow-area weather information.

• Transient static data layer
It takes about one hour to change the state of data, e.g. traffic regulation information,
wide-area weather information.

• Permanent static data layer
It takes about one month to change the state of data, e.g. buildings, lane information,
road information.

In [23], local dynamic map (LDM) is discussed to cooperate with Intelligent Transport
Systems (ITS). The main idea of LDM comes from maintaining common information re-
quired in different applications. Common information is relevant to the safe and successful
operation of ITS applications, which includes, for example, moving objects such as surround-
ing vehicles and stationary objects such as traffic road signs. LDM is located in an ITS station
and is made by collecting sensor data from different sources. Fig. 2.3 shows the examples
of data sources. In LDM, data describing real-world objects is categorized into four different
types as same as the beforementioned four data layers.

2.3 Automotive sensors
In order to generate dynamic maps, automotive sensors are indispensable. Since dynamic
maps are used not only for navigation but also for the perception of the surrounding envi-
ronment and the localization of the surrounding objects, automotive sensors in automated
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Figure 2.3: Relationship between LDM and its information sources [23].

driving play a more critical role than in human driving. This section will introduce what kind
of automotive sensors are used in automated driving vehicles to generate dynamic maps.
Sensors can be classified into proprioceptive sensors, or internal state sensors, and extero-
ceptive sensors, or external state sensors [24]. Proprioceptive sensors capture the dynamical
state and measure the internal values of a dynamic system such as angular rate, wheel load.
Inertia measurement units, gyroscopes, and global navigation satellite system receivers are
examples of proprioceptive sensors. Exteroceptive sensors sense and acquire the information
of the surrounding environment such as distance, light intensity. Camera, Radio Detection
and Ranging (Radar), and Light Detection and Ranging (LiDAR) are examples of exterocep-
tive sensors. Multiple sensors are usually combined to obtain adequate information for safe
driving. The following paragraphs introduce major automotive sensors.

Cameras are one of the most popular automotive sensors to perceive the surrounding
environment. Cameras perceive the surrounding environment by detecting lights emitted
from surrounding objects and provide images of the surrounding environment. Categories of
cameras can be classified into monocular cameras, stereo cameras, or binocular cameras, and
fisheye cameras. In order to support automated driving, both monocular cameras and stereo
cameras can be equipped on automated driving vehicles. The main reason why both of the
cameras are used comes from obtaining depth information. Conventional monocular cameras
provide only RGB information, but some applications or advanced monocular cameras can
provide depth information by using complex algorithms [25]. Stereo cameras, or binocular
cameras, measure depth by capturing images from different image sensors. Fisheye cameras
can capture more wide range than stereo cameras so that only four fisheye cameras can cover
360◦ view of the surrounding environment. Although sensor data obtained by fisheye cameras
has strong radial distortion, it is shown that fisheye cameras can also help automated driving
to detect objects [26]. Examples are shown in Fig. 2.4.
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(a) Intel RealSense Depth camera D455 (b) Multi function monocular camera - MFC500
sold by Continental Automotive corporation.

(c) 180 degree fisheye lens car camera sold by
Wskyfook

Figure 2.4: Examples of cameras.

LiDAR sensors are originally used in the mapping of aeronautical and aerospace terrain,
but now LiDAR sensors are also used for perception in Advanced Driver Assistance System
(ADAS). LiDAR sensors perform remote sensing by emitting lasers to the surrounding envi-
ronment and detecting the reflected lasers. The wavelength of lasers is a key factor of LiDAR
sensors. Near-Infrared (NIR) wavelengths, e.g. 905 nm, and Short Wave Infrared (SWIR)
wavelengths, e.g. 1550 nm, are widely used by manufacturers ranging from known automo-
tive Tier-1s to startups. Sensitivity to solar radiation, eye safety, environmental conditions,
and cost are mainly discussed between different wavelengths as follows [27].

• Since there is about three times higher the amount of solar irradiance at 905 nm than at
1550 nm, NIR has to contend with more noise that can interfere with the sensor.

• NIR light can pass through the cornea and reach the retina in the human eye so that
high power laser at 905 nm is not available from the viewpoint of eye safety. SWIR
light is mostly absorbed within the cornea, and as a result, is able to be exposed at
higher levels.

• When poor environmental conditions like rain or fog are introduced, the water absorp-
tion properties of SWIR light cause its performance to degrade more rapidly than a
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(a) Velodyne LiDAR sensor VLS-128 that is
mechanical LiDAR sensor.

(b) Ibeo LUX 4L that is solid state LiDAR sensor

Figure 2.5: Examples of different structure LiDAR sensors.

Figure 2.6: Advanced Radar Sensor - ARS441 sold by Continental Automotive corpora-
tion that uses 76-77 GHz.

NIR-based system. However, NIR still gets the effect of snow and fog [28].

• The cost of LiDAR sensors using SWIR system will be 10 to 100 times higher than
using NIR system due to using new hybrid semiconductor technology.

The structure of LiDAR can be categorized into mechanical LiDAR sensor or solid-state
LiDAR sensor as shown in Fig. 2.5. The mechanical LiDAR sensors use high-grade optics
and rotary lenses driven by an electric motor to direct the lasers and capture the reflected
lasers. On the other hand, solid-state LiDAR sensors do not use rotating lenses but use a
multiplicity of micro-structured waveguides to direct the lasers. Therefore, solid-state LiDAR
sensors can avoid mechanical failure. Although solid-state LiDAR sensors have robustness
and reliability and is generally lower cost than mechanical LiDAR sensors, their horizontal
field of view is more narrow than mechanical LiDAR sensors.

Radar sensors measure the targets of speed and relative position by radiating electromag-
netic waves and using Doppler property for signal processing. Current automotive radar sen-
sors operate mainly in the 77-81 GHz band and secondly in the 24 GHz band as an example
is shown in Fig. 2.6. Since the 77-81 GHz band is defined by International Telecommunica-
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Figure 2.7: Services expected in connected car society [4].

tion Union-Radiocommunication sector (ITU-R), this band will be used for automotive radar
sensors in the future. Since the propagation of electromagnetic waves is robust to adverse
weather conditions and independent of environmental illumination, radar sensors can run at
a day or a night or in foggy, snowy, or cloudy conditions.

2.4 Cooperative perception
Since using only one type of automotive sensor does not provide an automated driving ve-
hicle with enough information, multiple automotive sensors are usually installed. However,
there is a limitation for own automotive sensors to perceive the surrounding environment in
every case. For example, buildings and vehicles can easily block the sensing of automotive
sensors and make blind spots from the automated driving vehicle. In order to realize safe
automated driving, automated driving vehicles must recognize the surrounding environment
as few blind spots as possible. Cooperative perception is one of the connected car services
and is expected to improve the driving quality. Connected cars indicate the group of cars that
are connected via wireless communications as introduced in the next section. Fig. 2.7 shows
the services in the connected car society. As shown, the services can be classified into safety,
car life support, infotainment, and agent services. Cooperative perception, or collective per-
ception, is the technology that shares sensor data obtained from different perspectives via
wireless communications. In other words, automated driving vehicles receiving cooperative
perception services can visualize blind spots.

There are two ways to realize cooperative perception, i.e., sharing processed or raw sen-
sor data. Processed sensor data include information about the category and the location of
the recognized objects. The main advantage of sharing processed sensor data is that complex
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Figure 2.8: ETSI CPM format [8].

processes can be performed in a large number of computing resources and the high perfor-
mance of wireless communications is not required. In [13], Shan et al. performed cooperative
perception with an intelligent RSU in the real urban traffic environment that has an intersec-
tion. The intelligent RSU is equipped with a camera and a LiDAR sensor and the detection
result is sent to vehicles in a European Telecommunications Standards Institute (ETSI) Col-
lective Perception Message (CPM) format as shown in Fig. 2.8. The receiving vehicle not
only receives the location of the shared perceived objects but also the uncertainty bounds
of the objects. In [14], Tsukada et al. developed and conducted a roadside perception unit
for automated driving. The developed cooperative perception sends Cooperative Awareness
Messages (CAMs) encoded into CPMs to vehicles and the receiving vehicles know the loca-
tion of the shared perceived objects. In [15], Dhawankar et al. proposed a framework for a
cooperative platoon of autonomous vehicles. The cooperative platoon is controlled by shar-
ing periodic safety information such as traffic information under a channel estimation model
for V2I communication using IEEE 802.11p. The numerical results show that the purposed
framework improves cooperative platoon driving. In [16], S. Kim et al. developed a coopera-
tive system that provides camera and LiDAR sensor data and showed that the driving path of
overtaking gets improved. The authors discussed the trade-off between communication delay
and position error and showed that the average position error at 100 km/h can still be used
for control purposes. However, communication delay becomes significantly uncertain, as the
size of data increases.

On the other hand, when raw sensor data are shared, the receiving vehicle performs
a recognition process in its system so that recognition results are free from errors due to
the sender. However, in order to support sharing raw sensor data, large amounts of com-
munication resources must be prepared to deal with the total sensor bandwidth from 3 to
40 Gbps [31]. Although sharing raw sensor data indeed gives a heavy channel load, it is
necessary to guarantee distributed verification, which will be useful in emergency cases such
as an infrastructure system error. Moreover, sharing raw sensor data can contribute to liabil-
ity problems in the case of accidents and improving the accuracy of object localization [9].
In [24], it discusses sharing raw and processed sensor data from the viewpoint of sensor fu-
sion. High-level fusion, which shares the results of detection and tracking algorithm carried
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out by each sensor, can be realized under lower complexity and requires few communica-
tion resources. However, the process will cut off a part of the information in the raw sensor
data. On the other hand, low-level fusion, which shares raw sensor data, can retain sensor
information so that it has the potential to improve localization. Moreover, it can reduce the
latency caused by the process and help to improve the performance of time-critical appli-
cations. However, it requires large amounts of computational resources and communication
resources and needs precise calibration among sensors to fuse their data.

Realizing cooperative perception by sending raw sensor data has also been studied. In [17],
raw LiDAR sensor data were exchanged through 60 GHz wireless communication, which
was one of the millimeter-wave communications. The main characteristics of this work are
that only point cloud data representing dynamic objects are shared in order to reduce redun-
dant information sharing and the system is implemented. In the end, the authors compared
transmitting full point cloud data and only dynamic objects from the viewpoint of through-
put and latency. The results of experiments show that sharing full point cloud data is not
realistic under IEEE 802.11ad communications. However, 700–900 Mbps was measured in
the lab, which shows the potential of millimeter-wave communications. In [18, 19], a proof-
of-concept of cooperative perception using millimeter-wave communications was shown by
sharing raw LiDAR sensor data. At the measurement part, the authors showed that approxi-
mately 900 Mbps was achieved.

In order to guarantee safe automated driving by cooperative perception, the shared amount
of processed or raw sensor data and the rate of sharing required by safe automated driving
must be clarified. For example, in [7], the authors published the requirements for sharing
both processed and raw sensor data. On the other hand, in [8], sharing raw sensor data was
not considered due to the necessity of a large data rate.

The requirements for cooperative perception are actively studied by many groups. The
3rd Generation Partnership Project (3GPP) has published V2X service requirements which
include use cases for low-level to high-level automated driving [7]. In the case of extended
sensor services that are similar to cooperative perception services, 1 Gbps is required for high-
level automated driving to prevent imminent collisions. Moreover, in the case of collective
perception under raw sensor data transmission, 1 Gbps is required to visualize an all-around
view [9]. On the other hand, 5G Automotive Association (5GAA), which develops end-to-
end solutions for future mobility and transportation services, defines multiple groups based on
3GPP works, and presents requirements in multiple use cases for C-V2X (cellular-V2X) [10,
11, 12]. For example, cooperative perception corresponds to a use case of high-definition
sensor data sharing that belongs to the group of autonomous driving. However, in high-
definition sensor sharing, a specific data rate is not required.

By using millimeter-wave communications for sharing raw sensor data that provide large
amounts of communication resources, one of the challenges in sharing raw sensor data can
be solved. Therefore, the combination of sharing raw sensor data and millimeter-wave com-
munications has a great synergy that can share raw sensor data without information loss and
waiting time for the process.

In order to derive how much data rate is actually required to realize safe automated driv-
ing by sharing raw sensor data, this thesis analyzed the minimum required data rate for safe
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automated driving. In [32], the overtaking scenario at a two-lane road is assumed and the
required data rate is quantitatively derived by considering the recognition process based on
using feature points. In [33], a safe crossing scenario at an intersection is assumed. However,
using edge points for recognition is too primitive so that it is not used in practical recogni-
tion processes.

2.5 ITS and connected cars
The definition of ITS is a general term of new road traffic systems that regard people, vehicles,
and roads as unified systems and aim to improve safety, transport efficiency, and comforta-
bility of road traffic [34]. Electric Toll Collection (ETC), Vehicle Information and Commu-
nication System (VICS), Adaptive Cruise Control (ACC), and Cooperative ACC (CACC) are
current underlying technologies of ITS. The following bullet points briefly introduce these
technologies.

• ETC, or ETC2.0, enables vehicles installed with a dedicated onboard unit to drive
through a toll gate without having to stop. It uses a 5.8 GHz band to communicate with
onboard units. In advanced ETC, which is ETC 2.0, it starts to provide new services
such as safe driving assistance and traffic congestion information. The installation of
ETC decreases the frequency of traffic congestion at toll gates in a year from 3974
times to 60 times and also decreases the amount of CO2 emissions from 531 kt to 314
kt [35].

• VICS provides traffic regulation information and traffic congestion information through
car navigation systems. It makes a profit six times as much as the installation cost of
VICS [36].

• ACC and CACC are implemented to alleviate traffic congestion at road sags where
more than half of traffic congestion occurs. In the case of CACC, it measures the
surrounding environment not only by own sensors but also by obtained sensor data
from surrounding vehicles.

Since the target of the current ITS is human-driven vehicles, future ITS that can support
automated driving vehicles should be redesigned. In [37], cross-discipline cooperation of
data, social issues about mobility, mobility services for diverse lifestyles, and environmental
issues are mainly highlighted for future ITS. The vision of future ITS is set by the scale
of a city such as rural areas, suburbs where private cars are mainly used for transfer, and
urban areas where public transports are mainly used for transfer. High traffic efficiency, good
balance of energy demand and supply, and high availability of services are set in common as
goals among these three areas.

In order to achieve these goals, a Cyber-Physical System (CPS) is expected. CPS is a sys-
tem that utilizes the synergy of a large amount and a wide variety of information collected by
diverse sensors, which is performed in physical space, and a large scale of data processing that
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yields new values, which is performed in cyber space. Since many obstacles block the mea-
surement of sensors, in the case of adopting CPS to automated driving vehicles, surrounding
information collected by own sensors cannot show the full potential of cyber space. There-
fore, using sensor information obtained from different objects such as vehicles is planned to
provide enough information for safe automated driving and yield new services. This concept
is called connected cars. In this system, wireless communications play a role to send differ-
ent sensor information. When vehicles communicate with each other, cooperative perception
and CACC are major services that are mainly related to safety services as beforementioned.
On the other hand, when vehicles communicate with infrastructures, traffic alert systems and
driving monitoring are major services.

The required characteristics of wireless communications are different among ITS services
and depend on coverage and data type. The following bullet points briefly summarize the
characteristics.

• Coverage

– Narrow area communications are mainly used in safety services. V2V and V2I
communications are examples of narrow area communications, and exchanging
highly dynamic data for updating dynamic maps is one of the services.

– Wide area communications can be used in diverse services, and LTE and 5G are
expected for this communications so that it can provide almost constant connec-
tion. Transient dynamic data, transient static data, and permanent static data are
exchanged via this communication.

– Spot communications are the communications that can access in specific areas.
ETC2.0 is the expected system that provides spot communications. This commu-
nication can be used for services that broadcast traffic information in a specific
area.

• Data type

– A large amount of data that is exchanged at a high frequency, e.g. probe informa-
tion, is used in safety services and car life support services.

– Large data such as video is used in car life support services and infotainment
services.

2.6 V2X communications
In order to meet different required characteristics of wireless communications, Dedicated
Short Range Communications (DSRC) and cellular communications are listed as candidates.
In the following subsections, the characteristics of the candidates are introduced.
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Table 2.1: The standards of major DSRC [38].

Region Japan Europe North America

Standard

ARIB STD-T55
ARIB STD-T75
ARIB STD-T88
ARIB STD-T110
etc.

ETSI EN 302 571
ETSI EN 302 665
ETSI EN 302 636-6-1
etc.

ASTM E2158-01
IEEE 1609.0
IEEE 802.11-2012
etc.

Band
755.5–764.5 MHz
5770–5850 MHz

5470–5725 MHz
5795–5815 MHz
5855–5925 MHz

902–928 MHz
5850–5925 MHz

Application
Toll collection
Road conditions
Emergent disaster

Safety applications
Traffic telematics
Future ITS applica-
tions

Toll collection
Road safety
Vehicle traffic opti-
mization applications

2.6.1 DSRC
DSRC refers to a wireless technology that enables vehicles and ITS to exchange information
via short-range communication. DSRC is utilized for many automotive applications and ITS
applications such as toll collection and collision prevention. However, the reserved radio
spectrum bands are different in the world as shown in Table. 2.1, which leads to incompati-
bility.

As shown in the table, DSRC plays an active role in the traffic environment so that many
social issues are improved, and many collaborative efforts are made to improve the technol-
ogy. However, DSRC still suffers from some limitations. The first limitation is its communi-
cation range. Since DSRC only works in small areas, it is difficult to provide constant Internet
access during driving as cellular communications. If vehicles drive at a high velocity, the pe-
riod of DSRC area becomes short so that this problem gets severe. One way to solve this
problem is installing additional DSRC points and enabling multihop communications. In this
case, it has to have the ability of highly dynamic network topology because the network path
for a driving vehicle changes according to its located DSRC area. However, this function will
deteriorate the latency of DSRC.

The second limitation is the scalability that is caused by Carrier Sense Multiple Access
/ Collision Avoidance (CSMA/CA) technique, which is the main contention-based Medium
Access Control (MAC) scheme. In a high-density vehicle scenario or a high network load
scenario, the performance of DSRC is significantly degraded due to a high transmission colli-
sion rate. In [39], the performance of Institute of Electrical and Electronics Engineers (IEEE)
802.11p is estimated by packet delivery ratio. The results show that when the value of packet

19



(a) The basic procedure of CSMA/CA.

(b) A hidden terminal problem in CSMA/CA.

(c) A exposed terminal problem in CSMA/CA.

Figure 2.9: The basic procedure and the problems of CSMA/CA.

per second (pps) changes from 10 pps to 50 pps among 120 vehicles/km, the performance of
packet delivery ratio gets significantly degraded due to high load.

Moreover, CSMA/CA systems have problems due to their procedure. Fig. 2.9a shows
the basic procedure of CSMA/CA that describes a listen-before-talk mechanism. Fig. 2.9b
and Fig. 2.9c show the typical problems caused in CSMA/CA systems. Firstly, Fig. 2.9b
shows hidden terminal problems. These problems are mainly due to incomplete listening that
is caused by obstacles so that transmission collisions are caused. Next, Fig. 2.9c shows ex-
posed terminal problems. On the contrary to the cause of hidden terminal problems, exposed
terminal problems are caused during a normal listening phase. In other words, the UE mis-
understands that another UE is talking with the same AP despite another UE’s talking with a
different AP.

2.6.2 C-V2X
C-V2X communications are regulated by the 3rd Generation Partnership Project (3GPP).
Supporting V2X applications starts from Rel. 14. The main problems of using cellular in-
frastructure are that vehicles cannot always establish a connection with cellular infrastructure.
In order to solve these problems, C-V2X newly defines direct V2X communication modes
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Figure 2.10: Two types of air interfaces.

that use sidelink channels over the PC5 interface [41]. Since C-V2X operates in both in-
coverage and out-coverage, two types of air interfaces such as LTE-Uu interfaces and PC5
interfaces are developed as shown in Fig. 2.10 [42].

The LTE-Uu is the traditional air interface between an evolved Node Base station (eNB)
and a User Equipment (UE). Using the LTE Uu interface, a UE can transmit a packet to
the eNB in the uplink. In the case of downlink, the same or a different eNB can transmit
this packet to a far away UE either using unicast downlink or enhanced Multimedia Broad-
cast Multicast Service (eMBMS). From this downlink function, the LTE Uu interface has
the ability to increase the dissemination range, which is the result of utilizing the cellu-
lar core network. Another advantage to use the LTE Uu interface is that the eNB can use
semi-persistent scheduling for UEs. Semi-persistent scheduling can reduce the scheduling
overhead associated with uplink transmissions.

The PC5 air interface enables direct communications between UEs without passing through
eNBs. Transmitted packets via the PC5 interface consist of not only the data component
but also the sidelink control information. Using the PC5 interface, there are two modes for
sidelink transmissions. In C-V2X sidelink mode 3, allocation of resources for sidelink trans-
missions is performed by the eNB. When the UE is in the coverage of the eNB, this mode is
available, and some functions that can be used in the LTE Uu interface such as semi-persistent
scheduling are also available. In C-V2X sidelink mode 4, it is available at outside eNB cov-
erage. UEs reserve resources autonomously by using the resource reservation algorithm.

From the viewpoint of the performance of C-V2X, since C-V2X sidelink mode 3 can use
resources efficiently by a central controller, the performance gets more gradually degraded
than DSRC according to increasing vehicle density in a large awareness range [43, 44]. More-
over, in [39], it shows that the performance of C-V2X sidelink mode 4 is superior to DSRC
in terms of a higher link budget. Although the degradation speed of C-V2X is lower than
DSRC, increasing vehicle density still makes a great impact on the performance of C-V2X.
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In order to solve this problem, redundant transmissions are also analyzed. The results show
that the performance is improved under low loads while the performance gets degraded un-
der high loads. In [45], the authors perform the experiment and compare the communication
performance of IEEE 802.11p and LTE-V and show that a RSU that transfers V2V messages
improves the communication performance.

2.6.3 IEEE 802.11bd
Since advanced PHY and MAC techniques are developed after the publication of IEEE
802.11p, the new evolved standard of IEEE 802.11p is expected for vehicular technology,
which is called IEEE 802.11bd. The primary design objectives of this new standard are
shown as follows [41, 46].

• At least one mode achieves twice the MAC throughput of 802.11p with relative veloc-
ities up to 500 km/h.

• At least one mode achieves twice the communication range of IEEE 802.11p.

• At least one form has vehicle positioning in affiliation with V2X communications.

The mechanisms of IEEE 802.11bd are renewed from IEEE 802.11p to support vehicular
applications. The first new mechanism is midambles. Since relative Doppler spread gives ef-
fect to the communication performance under the 802.11 PHY layer at typical vehicle speeds,
midambles are proposed to solve the trade-off between multi-path fading and relative Doppler
spread. The form and the function of midambles are similar to preambles except for the loca-
tion of midambles in the frame. In a fast fading channel, the channel estimation in preambles
is only valid to the initial data components. Midambles are located between data components
to track the channel state so that the probability of errors will be reduced.

Another way to increase reliability under a fast fading channel is a retransmission of one
or more packets. This function can be used for both IEEE 802.11p and IEEE 802.11bd.
Moreover, Dual Carrier Modulation (DCM) is also another way to reduce errors. DCM uses
sufficiently far-apart sub-carriers that can achieve frequency diversity and sends the same
symbols twice through the sub-carriers, which can improve block-error-rate performance.
However, the modulation scheme must be doubled to maintain the throughput in no DCM.

In [47], it estimates the performance of IEEE 802.11bd under several factors such as
urban, rural, and highway environments and Line-of-Sight (LoS) and NLoS. The first results
show that Packet Error Rate (PER) among all scenarios is too high to support ultra-reliability.
The second results show that midambles improve the PER performance in the worst scenario.

Other remarkable characteristics are the utilization of millimeter-wave frequency bands
and the support of vehicle positioning. Although millimeter-wave communications have
smaller coverage than cellular communications due to their propagation characteristics, millimeter-
wave communications can achieve high throughput with low order modulation and coding
scheme. Therefore, millimeter-wave frequency bands are effective in vehicular applications
that require very high throughput in small distances such as video streaming and downloading
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high-resolution dynamic maps. In the case of vehicle positioning, next generation positioning
that is provided by IEEE 802.11ax is adopted.

2.6.4 NR-V2X
As beforementioned, C-V2X has still challenges and needs evolution to support advanced
vehicular applications. NR-V2X is designed to support advanced vehicular applications that
require severe requirements, and it does not aim to replace C-V2X but aims to support C-
V2X [41]. Therefore, the coexistence of C-V2X and NR-V2X are planned and NR-V2X
is expected to support both advanced vehicular applications and basic safety applications to
provide unified support in the future.

NR-V2X will support many applications that require different requirements about latency,
reliability, and throughput. Moreover, the number of receivers is also different among ap-
plications. Therefore, NR-V2X introduce two new communication types that are unicast
and groupcast. As IEEE 802.11bd plans to use millimeter-wave communications for ad-
vanced vehicular applications, NR-V2X also considers using millimeter-wave communica-
tions. Other objectives in NR-V2X include enhanced sidelink design, Uu interface enhance-
ments, RAT/Interface selection, and QoS management.

In NR-V2X, new mechanisms are introduced to support advanced vehicular applications.
The first new mechanism is mini-slot scheduling that will be used for latency-critical mes-
sages. This mini-slot scheduling enables UEs to start their transmission from any of the 14
Orthogonal Frequency Division Multiplexing (OFDM) symbols in a subframe. Moreover,
combining multiple slots, which is called multi-slot, is introduced to support exchanging
large size packets.

In [47], it estimates the performance of NR-V2X compares its performance with IEEE
802.11bd. The first results show that NR-V2X performs equally well among different scenar-
ios. The reason for this performance is that NR-V2X can provide dynamic configurations of
Demodulation Reference Signals (DMRSs) according to the channel state.

In order to implement NR-V2X, it has to solve challenges. Since NR-V2X is not back-
ward compatible with C-V2X, the coexistence of C-V2X and NR-V2X is the major problem.
This incompatibility comes from the difference in subcarrier spacing. C-V2X operates at
15 kHz and cannot decode messages using 30 and 60 kHz spacing. Therefore, C-V2X and
NR-V2X will use different channels for coexistence, and two approaches are considered. The
advantages and the challenges of the two approaches are shown as follows [48].

• Frequency Division Multiplexing (FDM)

– The advantages of this approach are that tight time synchronization between C-
V2X.

– The drawbacks are that, if the assigned channels are not sufficiently far apart,
interference will occur at reception. Moreover, if the two communication sys-
tems use the same band, the total power radiated by the vehicle may be restricted
by regulatory limits so that the required Quality of Service (QoS) may not be
achieved.
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• Time Division Multiplexing (TDM)

– In TDM approach, the maximum permissible power can be used by both tech-
nologies. Moreover, there is no leakage across channels.

– TDM approach is not appropriate to latency-critical use cases due to waiting for
the assigned slot.

2.7 Overview about safety
This section introduces the current approaches toward safe automated driving. Firstly, qual-
itative discussion about safety is shown before starting the quantitative discussion. In [52],
safety is discussed from the viewpoint of operation approval and a safety target. The basis of
operation approval should meet the following RAMS to ensure safe and reliable transporta-
tion to passengers and identify that companies comply with the rules and the regulations from
those that are unable to do.

• Reliability is the ability of product or system to perform a specific function and can be
broken up into two parts, design reliability or operational reliability.

• Availability is the ability of a system to be kept in a fully functioning state.

• Maintainabilitiy is determined by the ease with which the product or system can be
repaired or maintained.

• Safety is the requirement not to harm people, the environment, or any other assets
during the life cycle of a system.

Although some accidents are caused by the failure of automated driving features such as
the Tesla crash, it is said that automated driving vehicles are 1.5 times safer than traditional
human driving vehicles. Considering this fact, many societies have different philosophies
on safety targets. In [53], European countries discuss risk assessment for transport safety,
and one of the discussions focuses on rail transport that is a more highly controlled transport
than road transport. Since automated driving vehicles will be installed with highly controlled
systems, the risk assessment for rail transport will be a good reference. It is obvious that
there is no generally accepted criterion for deciding what railway safety measures are needed.
However, there is a widespread view that current safety performance is reasonably good. The
following items show general principles to measure safety.

• Globalement Au Moins Équivalent (GAME)
The basic concept of GAME is that any change to a system must leave it at least as
safe as it was beforehand. It is a formal adoption of the present level of safety as a
benchmark and is an absolute criterion. France, Germany, and Norway explicitly adopt
the GAME principle.
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• As Low As Reasonably Practicable (ALARP)
This is a legal requirement in the United Kingdom. It involves some trade-off between
the costs and benefits of safety measures, though the terms of that trade-off remain
subject to debate.

• Minimum Endogenous Mortality (MEM)
Its basic concept is that the risk of death to individuals shall be less than a specified
limit. This is also an absolute criterion. Germany and the UK adopt it, though the
UK limit does not bind in practice, because it is higher than the risks that are actually
encountered.

In [54], it shows a framework or guideline for the safety of automated driving systems
for all companies in the automotive and mobility world to contribute to the industry-wide
standardization. Moreover, it aims to develop guidance to tackle the risks introduced by au-
tomated driving vehicles. Its discussion starts from the positive risk balance. In other words,
it is true that automated driving vehicles still have challenges to realize no traffic accidents,
but they have a great potential to reduce the traffic accident rate, which is a great motivation
to develop automated driving vehicles [55]. Its goal is to present a generic approach for tack-
ling the risks introduced by automated driving vehicles. The generic approach is based on the
twelve principles that are made by a collection of publications and recommendations from
mainly public authorities or consumer associations. The principles consist of safe operation,
operational design domain, vehicle operator-initiated handover, security, user responsibil-
ity, vehicle-initiated handover, interdependency between the vehicle operator and Automated
Driving System (ADS), safety assessment, data recording, passive safety, behavior in traffic,
and safe layer. This basis is supported by safety by design and Verification & Validation
(V&V). Safety by design aims to describe how to combine safety of the intended functional-
ity, functional safety, and cybersecurity to create a dependable system. V&V focuses on the
main steps that are essential for the safe deployment and continued operation of SAE L3 or
higher automated driving systems.

In [56], Japan Mobile Manufacturers Association Inc. (JAMA) has summarized the best
practice on safety argumentation structuring, safety evaluation, and safety assessment meth-
ods needed to enable logical completeness, practicability, and transparency of autonomous
driving safety on limited access highways. Firstly, it refers to the United Nations Economic
Commission for Europe (UNECE) WP29 document [57]. In this document, safety vision is
regarded as ”Automated vehicles shall not cause any non-tolerable risk meaning that auto-
mated vehicle systems, under their operational domain, shall not cause any traffic accidents
resulting in injury or death that are reasonably foreseeable and preventable”. Fig. 2.11 shows
a matrix of the contextualized safety philosophy of WP29 document based on foreseeability
and preventability and the following itemizations. This work also follows this safety vision
and focuses on the validation of system safety under foreseeable and preventable cases.

• foreseeable and preventable
It accounts for all scenarios for which an accident is foreseeable and preventable and
no accidents are acceptable.
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Figure 2.11: Safety approach in context with foreseeability and preventability matrix [56].

• foreseeable and unpreventable
The situations that fall under this category are situations for which mitigation is the
only option.

• unforeseeable and preventable
It depicts the traffic situations that cannot be foreseen but that can be prevented. The
cases that fall under this category form the basis for learning and serve as a precedent
for future generation automated driving system developments.

• unforeseeable and unpreventable
In these situations, resilience support in the form of legalities, the division of responsi-
bilities, health support, insurance, and other such areas need to be the focus of attention.

The method to evaluate safety starts from defining quantified ranges of reasonable foresee-
ability and preventability for each assumed scenario. The preventability of an automated
driving system refers to the collision avoidance performance that is equal to or better than
the performance achieved by a competent and careful human driver. On the other hand,
foreseeability is based on physics principles and extreme violation of traffic rules by an ego-
vehicle driver and other drivers. After calculating the quantified ranges for each scenario,
it additionally considers perception disturbance and vehicle stability disturbance. Perception
disturbances are considered to avoid collisions in any of the traffic disturbance scenarios. The
examples of perception disturbance are that a vehicle fails to detect existing objects, which
is a false negative, and objects are falsely detected under no existing objects, which is a false
positive. Vehicle stability disturbances are also considered to ensure that automated driving
vehicles can stabilize themselves without halting driving under vehicle disturbances such as
wet roads, frozen roads, and a gust of wind.
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2.8 Scenario selection
This section discusses the safety of automated driving in this paper, but traffic environments
depend on many factors such as road shape, the location of vehicles, and the distribution of
velocity. Therefore, the discussion starts by specifying road shape. From [49], it summarizes
the type and the location of traffic fatalities that occur between vehicles in Japan as shown
in Fig. 2.12 and Fig. 2.13. The summarized statistics show that head-on collisions account
for half of the traffic accidents on single roads. On the other hand, collisions and accidents
at turning right account for more than half of the traffic accidents on intersections. More-
over, the total number of traffic accidents at intersections and at single roads are nearly the
same number. From [50], it shows statistics about traffic fatalities that occur at unsignalized
and signalized intersections in the United States of America. The sum of traffic fatalities
at unsignalized and signalized intersections is about one-third of the total traffic fatalities in
2018. In detail, the total number of traffic accidents at unsignalized intersections is about
twice as much as the total number of traffic accidents at signalized intersections. From [51],
43% of all road injuries occur at intersections in European Union (EU) 27. Summarizing all
of the statistics of traffic accidents, target locations for the analysis of safe automated driving
are set to single roads and unsignalized intersections.

After selecting the type of traffic accidents, the behaviors of automated driving vehicles
have to be also assumed in the assumed traffic accidents. In [58], ADS is discussed to de-
scribe the identification of ADS features for level 3-5 ADS. The motivation of this analysis
comes from identifying ODDs and Object and Event Detection and Responses (OEDRs),
developing preliminary tests and/or evaluation methods, and assessing Fail-Safe (FS) and
Fail-Operational (FO) mechanisms. Achieving these objectives helps to consider validation
and verification approaches for ADS. A functional system architecture for ADS features was
informed by SAE. The behaviors of automated driving vehicles are one of the ADS features
and can be classified by the duration of the behavior as follows.

• Strategic/Mission Level ( 10+ sec)

– Route planning

– Follow driving laws

• Tactical Level ( 1-10 sec)

– Maneuver planning, e.g., lane following, merging, etc.

– Object and event response execution, e.g., cut-in by another vehicle

• Operational Level ( 0.01-0.1 sec)

– Split-second adjustments to lateral and longitudinal control

Since the strategic/mission-level behaviors are not part of dynamic driving tasks, it summa-
rizes tactical and operational behaviors that relate to ADS driving control. In the summarized
list, maneuvers of overtaking and passing through an intersection are included. Therefore,
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Figure 2.12: Traffic fatalities in Japan classified by road shapes [49]. The red line shows
the transition of the number of traffic fatalities at urban intersections, the
pink line shows the transition at rural single roads, the gree line shows the
transition at urban single roads, and the blue line shows the transition at
rural intersections.

Figure 2.13: Traffic fatalities in Japan classified by accident types [49]. The red, pink,
purple, blue, green, and brown lines show the transition of the number of
traffic fatalities about vehicles and pedestrians accidents, one-car accidents,
sudden meeting accidents.
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this analysis focused on two scenarios of overtaking at a two-lane road and passing through
an unsignalized intersection, where traffic accidents often occur.
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Chapter 3

Required and achievable data rate for
V2V in overtaking scenario

In this chapter, analysis of safety in the overtaking scenario is performed and cooperative per-
ception is considered for improving safety. Cooperative perception is performed by sending
raw sensor data. The analysis derives the requirements of sensor data rate for safe overtaking
with and without cooperative perception. As introduced in chapter 3, the analysis of safe
automated driving is discussed mainly in an automotive domain such as vehicle dynamics.
This analysis and the following analysis of the intersection scenario consider not only vehicle
dynamics but also recognition processes, which will lead to realistic requirements.

3.1 Scenario description
An overtaking scenario on a two-lane road is illustrated in Fig. 3.1. Since it takes a long time
to transit from human driving vehicles to automated driving vehicles, this scenario focuses on
a transition period that both automated vehicles and human driving vehicles drive on the road,
which limits cooperative control. The driving scenario is that the green ego vehicle tries to
overtake the blue leading vehicle while the red vehicle comes from the oncoming lane. The
type of vehicles in this scenario is that the green ego vehicle and the blue leading vehicle
are automated driving vehicles and the red oncoming vehicle is a human driving vehicle.
Since frequent acceleration and deceleration do not occur on a straight road, the ego and the
oncoming vehicles run with the same velocity V for simplicity. When the green ego vehicle
tries to overtake, the blue leading vehicle drives slow enough for simplicity. Other factors
in this scenario are also important. The conditions of other factors are summarized in the
following bullets.

• The probability of the failure of automotive sensors and vehicle components is not
considered. This assumption leads to no discussion about redundant structure.

• The delay of the recognition process that includes the perception by the LiDAR sensor
and transmission of sensor data is regarded as negligible.

• The state of the weather is assumed to be dry and sunny weather and no wind. This
assumption simplifies vehicle behavior, the performance of wireless communications,
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Figure 3.1: Illustration of the ego vehicle equipped with a 3D LiDAR sensor trying to
execute overtaking on a two-lane road. The yellow (blue) region is the sens-
ing region of the ego (blocking) vehicle. The red vehicle is coming from the
oncoming lane.

and the perception by the LiDAR sensors. For example, when the road surface is wet or
frozen due to snow or rain or sudden gust occurs, the ego vehicle may lose its control
due to sliding. Snow and rain also have an effect on wireless communications and
degrade their performance, especially on millimeter-wave communications [59]. Since
remaining water caused by rain or melting snow leads to missing returned lasers, dry
weather ensures a normal measurement of the LiDAR sensor.

It is necessary to select automotive sensors that are used for the recognition process.
There are 2D and 3D object detection methods in the current detection methods. 2D object
detection is good at detecting the categories and the bounding boxes of objects, but it is not
good at providing depth information. On the other hand, 3D object detection can provide
spatial information that is essential for navigation and avoiding obstacles, but it needs to
estimate more parameters than 2D object detection. Since this analysis considers driving
paths and avoiding obstacles, 3D object detection methods are required. Current methods for
3D object detection mainly use cameras and LiDAR sensors and are divided into image-based
methods, point cloud-based methods, and multimodal fusion-based methods. As introduced
in the automotive sensors section, cameras can provide texture information and are cheap, but
they are not good at providing depth information and are sensitive to weather conditions such
as very high and low luminosity, rain, and snow. LiDAR sensors can provide accurate 3D
spatial information and are robust to weather conditions, but the information is nonuniform
and sparse at a far place. Moreover, although the price of LiDAR sensors gets cheaper, their
price is still more expensive than cameras. Considering these characteristics, cameras and
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LiDAR sensors have complementary relations so that using both cameras and LiDAR sensors
will be indispensable to ensure safe automated driving. However, multimodal fusion-based
methods are less mature than image-based methods and point cloud-based methods.

These three object detection methods have advantages and disadvantages due to their
sensors [60, 61]. Image-based methods can be classified by whether depth information also
is used or not. 3D object detection based on RGB information starts to detect 2D candidates
and estimate 3D space localization and size. Since it does not use depth information, there
is a limitation to the accuracy of 3D localization. On the other hand, current sensors such
as Microsoft Kinect can provide RGBD information, but large computation resources are
required.

Point cloud-based methods can be classified into projection base, volumetric representa-
tions, and point-nets. The following bullets explain the characteristics of each method.

• Projection-based methods utilize object detection in 2D images that is mature tech-
nologies in the computer vision community. These methods project 3D points into 2D
images to utilize 2D object detection methods. However, all information in 3D points
cannot be included in the 2D images so that the accuracy of object detection gets low,
but a real-time detection can be achieved.

• Volumetric methods assume that all objects and all scenes are represented in a voxel
representation. One advantage of these methods is that sharp information can be ex-
plicitly encoded. However, most of the voxel is empty so that computational efficiency
gets degraded and 3D data of the voxels requires large computational resources.

• Point-nets methods attempt to input raw point cloud to traditional feed-forward deep
neural networks. Raw data is used to avoid information loss through preprocesses that
are performed in projection-based methods and volumetric methods. However, there is
a gap between object classification and detection.

Multimodal fusion-based methods are proposed to utilize both texture information and
depth information. Texture information is useful for discrimination in object detection and
classification and can provide a means of detecting far objects, but it is not good at estimating
3D spatial values. Depth information can accurately estimate 3D localization and size, but the
density of point clouds gets sparse at a far place and the ability of object discrimination is not
as good as texture information. Considering both characteristics of texture information and
depth information, multimodal fusion-based methods can compensate for each disadvantage.
Multimodal fusion-based methods can be classified into early fusion, late fusion, and deep
fusion. Early and late fusion differ in the order of combining the sensor data and detection
process, and deep fusion is the method of utilizing neural networks for multimodal fusion.
Although multimodal fusion-based methods estimate 3D spatial values better than image-
based methods, the accuracy of 3D spatial values still depends on the density of LiDAR
sensor data.

Since the ego vehicle needs the accurate distance between the vehicles in this scenario,
point cloud-based methods are adopted. The reason why this analysis chooses not multi-
modal fusion-based methods but point cloud-based methods is not only for simplifying the
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recognition process but also comes from three aspects. The first aspect relates to the sensor
information that the ego vehicle prioritizes. As beforementioned, the ego vehicle needs ac-
curate 3D spatial values for the decision-making of path planning. Moreover, the ego vehicle
does not have to detect many types of objects but has to detect only vehicles in this scenario
so that advanced performance of object classification is not required. The second aspect is the
robustness to weather conditions. In [63], the effect of weather conditions on image-based
methods and point cloud-based methods is analyzed. The results show that the percentage of
recognition accuracy in image-based methods is more affected than point cloud-based meth-
ods even if the threshold for the recognition is configured as ±10 m. Although the weather in
this scenario is fixed to be dry and sunny weather as beforementioned, robustness to weather
conditions will be useful at extending the environment of the scenario. The third aspect is
the amount of output data rate. The output data rate of LiDAR sensors is dominant among
automotive sensors, which has a great effect on the required performance of wireless com-
munications for cooperative perception. For example, Velodyne LiDAR VLS-128 requires a
1 Gbps Ethernet connection.

In human driving, overtaking at a high velocity is very dangerous especially on a road
without a lane separator for the oncoming traffic like on a highway. The basic behavior of
overtaking in human driving is to slow down, make space behind the leading vehicle, obtain a
clear view of traffic to observe the curvature of the road, and move closer to the center of the
neighbor lane. Once the road ahead is considered safe for overtaking, the driver accelerates
and starts the maneuver. However, there can be miss judgments because the leading vehicle
prevents the ego vehicle from seeing the oncoming vehicle directly. On the other hand,
automated vehicles with cooperative perception can obtain traffic information beyond the
limitations of a view from a driver seat, which leads to less acceleration and deceleration and
drive more safely than human driving vehicles. Considering many level 4 automated vehicles
are equipped with the feature of lane centering, it is assumed that all vehicles run on the
center of the road [58]. Using this lane centering function, this analysis assumes that beam
alignment used in the V2V communication for cooperative perception is ideally performed.
The problem is that many beams from the LiDAR sensor are blocked by the leading vehicle.
From this point, the blue leading vehicle is called the blocking vehicle. Since the ego vehicle
and the blocking vehicle are automated driving vehicles, the ego vehicle can communicate
with the blocking vehicle, and compensate for blind spots by cooperative perception.

When cooperative perception is performed, important points about automotive sensors
are not only the selection of the types of automotive sensors but also how to send sensor data.
This analysis chooses sharing not processed sensor but raw sensor data in order to achieve
the benefit of no loss information and no need of the verification of correct result that sharing
processed sensor data cannot provide. Although reshaping raw sensor data is not utilized
for cooperative perception or V2X communications in the current research, it is a key factor
to reduce the amount of sharing raw sensor data. To the best of the author’s knowledge,
semantic segmentation, resampling, and non-linear sampling can be used for reshaping raw
sensor data. The following bullets explain the characteristics of each method.

• Semantic segmentation is a process that separates point cloud into object groups such
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as car and road. In [64, 65], authors performed semantic segmentation for automated
driving. They show that the accuracy of their proposed segmentation is better than
conventional methods. Although there is a trade-off relation between accuracy and
processing time, their methods can be performed in real-time computation with high
accuracy. However, all segmentation method does not well segment objects other than
cars and roads.

• Resampling is a method that selects only feature points from a measured point cloud. In
[66], it proposed a method that mainly extracts feature points. However, as the amount
of point cloud increases, its processing time linearly increases.

• Non-linear sampling is a measurement method that a LiDAR sensor samples points
non-linearly. For example, Velodyne VLS-128-AP and Velodyne VLP-32C can per-
form non-linear sampling. This sampling tackles the problem that the density of point
cloud becomes sparse at a far place. However, the density of point cloud at a near place
becomes sparser than linear sampling.

The above methods are expected to reduce the amount of sharing point cloud with high
accuracy of recognition, but there are several problems. Semantic segmentation and resam-
pling can specify an important part of raw sensor data such as an object group and feature
points. However, adding a new process before a transmission makes discussion complicated,
which has to consider processing time and the effect on the recognition process. On the other
hand, non-linear sampling needs help to perceive a near place, which may result in a larger or
equal sensor data rate of high-resolution linear sampling Considering this trade-off relation,
sharing the whole raw sensor data is chosen in order to avoid this complicated discussion.

3.2 Vehicle behavior
In this section, a condition for safe overtaking is discussed from the viewpoint of vehicle
behavior. In [67], it is said that preventable accidents that can be predicted rationally must
not be caused in ODD of automated vehicles. Moreover, in [57], it also says that automated
driving vehicles should prevent foreseeable and preventable accidents under their ODD as
beforementioned. From these rules, collision with the oncoming vehicle that can be predicted
by LiDAR sensors should be prevented in this overtaking scenario. To achieve this goal from
the viewpoint of vehicle behavior, firstly, this analysis focused on overtaking movement and
braking. The braking movement is considered for an emergency case where the ego vehicle
and the oncoming vehicle have to brake during the overtaking to prevent the collision. The
overtaking movement is considered to check whether the ego vehicle ensures a driving path
for safe overtaking or not. This movement ensures no collision with the blocking and the
oncoming vehicles during the overtaking. The following paragraphs explain the details.

To ensure no collision in an emergency case, a braking model is defined .

lbrake =
V2

2 × g × (µbrake + s) × 3.62. (3.1)
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Eq. 3.1 is a braking distance calculated from a vehicle velocity. V is velocity (km/h), g is
acceleration due to gravity (9.81 m/s2)、µbrake is mean coefficient of friction, s is roadway
grade. The friction values are obtained from measurements on a wet, but clean road surface.
the coefficient of friction is not constant in that it increases during braking as velocity de-
creases. Therefore, a mean value is applied for the given velocity. Moreover, the coefficient
of friction is also dependent on whether the road is curved or straight. Considering the ex-
pense of determining the coefficient of friction, a calculation method of braking distance is
changed to the traditional calculation method based on behavioral recordings and measure-
ments from braking trials. From a large-scale measurement program, the following method
is adopted for calculating braking distance along a level road [68].

d0 = 0.039 ×
V2

a
(3.2)

where V is velocity (km/h), a is deceleration (m/s2). Generally, this braking distance can be
classified into the emergency type and comfortable type by changing deceleration. When a
driver notices an unexpected object on a road, emergency braking occurs with a deceleration
of more than 4.5 m/s2. In usual cases, almost all drivers execute braking with a decelera-
tion of more than 3.4 m/s2. This deceleration enables a driver to keep the vehicle in a lane
without losing control when braking on a wet roadway. Therefore, 3.4 m/s2 is regarded as
being a comfortable rate of deceleration. Since comfortable braking is desirable to provide
comfortable driving in automated vehicles, the braking model is described by substituting
a = 3.4m/s2 in Eq. 4.3.

The reaction time from noticing the oncoming vehicle to braking the ego vehicle is also an
important factor in the braking model. When drivers expected to apply their brakes, several
works showed that the median reaction time was 0.66 sec with 10% using 1.5 sec or longer,
0.64 sec as the average reaction time with 5% using 1 sec or longer, and the values of brake
reaction time ranged from 0.4 to 1.7 sec [69, 70, 71, 72]. On the other hand, when drivers did
not expect their brakes, the response times got increased by 1 sec or more [70]. However, in
automated driving vehicles, electronic control units can control in milliseconds. Therefore,
the brake reaction time is regarded as negligible in this scenario. For simplicity, The braking
model of the oncoming vehicle is assumed to be the same braking model. Since both the ego
vehicle and the oncoming vehicle have to avoid the collision in this scenario, the required
braking distance becomes 2d0.

Ensure the braking distance is not enough to overtake the blocking vehicle because the
space for the driving path of overtaking is not considered. Therefore, a driving path for
overtaking is defined. The driving path is shown in Fig. 3.2 as a black arrow. This driving
path is designed to avoid the collision with the blocking vehicle so that the ego vehicle has to
turn two times. For example, if we wanted to describe this driving path very simply, it can be
described by four quadrants. However, this curve design does not consider vehicle dynamics
and the following paragraphs introduce the design of the driving path.
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Figure 3.2: The driving path of overtaking and the two types of curves for approximation.

x(t) =

∫
t

0
cos

Aθ2

2
dθ,

y(t) =

∫
t

0
sin

Aθ2

2
dθ.

(3.3)

The clothoid described as Eq. (3.3) is one of the curves which considers vehicle dynamics and
is appropriate for curving driving paths, where A is the clothoid parameter. The clothoid is
defined as a trajectory that meets RL = A2, where R is a radius of curvature and L is the length
of the curve. Curvature κ of the clothoid at t can be calculated as κ = At. The reason why
the clothoid is appropriate is that the curvature of the clothoid reflects comfortable vehicle
handling. In general, when a vehicle enters into a curve, a driver has to turn a steering wheel
along the curve. If the curving driving path is generated as four quadrants, a vehicle entering
this driving path has to turn a steering wheel quickly. This is because there is a curvature gap
between a straight line and a quadrant, which is not friendly to drivers. On the other hand, if
a part of the clothoid from t = 0 is used as shown in Fig. 3.2, a driver does not have to turn
a steering wheel quickly because curvature at t = 0 is 0. Moreover, since κ increases linearly
from κ = 0 it is enough to turn at a constant rotation. For example, in Japan, if there is a sharp
curve, it is recommended to put the clothoid before the sharp curve [73].

Although the clothoid is appropriate to design curving driving paths in terms of linearly
increasing curvature, it is hard to handle analytically. Therefore, the sigmoid curve is used
to analyze the driving path easily in our simulation. The characteristics of the sigmoid curve
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Figure 3.3: The parameters x0, B, R in the sigmoid curve under a = 5 and the location
of the minimum curvature radius.

are that it is easier to configure and compute than the clothoid [74].

y(x) =
B

1 + e−ax. (3.4)

The function of the sigmoid curve and its parameters B, a are shown in Eq. (3.4). The way
to construct the driving path with the sigmoid curve is shown in Fig. 3.2. In other words, the
driving path consists of two sigmoid curves that are mirror symmetry.

In order to configure the sigmoid curve, it is necessary to determine B, a, x0 parameters.
The parameter B depends on road width. In this driving path, the ego vehicle is assumed to
move from the center of the lane to the center of the neighbor lane by using the function of
lane centering, and returns to the first lane. From this assumption, B is equal to the width
of a single lane. The parameter a determines the curvature of the sigmoid curve. In order
to determine a, this analysis considers a slip and constructs the sigmoid curve that does not
cause slip at a minimum curvature radius that is the sharpest point in the curve as shown in
Fig. 3.3. The judgment of the slip is based on the following formula.

mv2

R
⋚ µmg

 slip:
mv2

R
> µmg

safe: otherwise
(3.5)
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Figure 3.4: The examples of two driving paths where the duration to complete the over-
taking is 5 sec.

where m is the mass of a vehicle, v is the velocity of a vehicle, R is a curvature radius at a
point where a vehicle places, µ is a coefficient of static friction and g is gravity acceleration.
Since it is assumed that the ego vehicle drives along the path at a constant velocity v, the
minimum curvature radius that does not make the ego vehicle slipping is Rmin = v2/µg from
Eq. (3.5). The final parameter x0 in Fig. 3.3 determines the length of the sigmoid curve. The
length is determined by the duration to complete the overtaking that is set in advance. Fig. 3.4
shows the examples of the 5 sec driving path at 20 km/h and 50 km/h. From the figure, it is
shown that when vehicle velocity gets low, the slope of the driving path gets steep. This can
be explained by the definition of Rmin. In other words, a vehicle driving at a low velocity can
turn sharply without the slip.

To compare with the distance required by the braking, it is necessary to derive the distance
required for the overtaking driving path. Since the oncoming vehicle drives on the neighbor
lane, the ego vehicle has to finish overtaking by the time when the oncoming vehicle arrived
at the collision point. Fig. 3.5 shows both driving paths from the start point to the collision
point, where V is the velocity of the vehicle, to is the duration to complete the overtaking and
x0 is shown in Fig. 3.3. In this collision discussion, the vehicles are regarded as points. The
collision occurs when the ego vehicle moves to the center of the neighbor lane to overtake the
blocking vehicle. Since the driving path is a mirror symmetry curve, when the ego vehicle
arrives at the center of the neighbor lane, the oncoming vehicle moves for to/2. Therefore,
the distance required for the overtaking driving path becomes Vto/2 + 2x0.

The above discussion leads to combining the distance required for the driving path and
the comfortable braking. Fig. 3.6 shows the distance required for the comfortable braking and
for the three driving path cases. It is shown that the driving path requires a larger distance
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Figure 3.5: The distance that the ego and the oncoming vehicle have moved by the colli-
sion of both vehicles.

Figure 3.6: The distance required for the driving path and the comfortable braking.
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than the comfortable braking distance at a low velocity, and it is reversed at a high velocity.
Therefore, considering the driving path is important especially at the low velocity. Namely,
the required distance dreq can be formulated as follows.

dreq = max

2 × 0.039 ×
V2

3.4
,

Vto

2
+ 2x0

 . (3.6)

3.3 Recognition process and derivation of required sensor
data rate

This section shows the details of the recognition process and the required sensor data rate
by integrating the vehicle behavior and recognition process. In general, object recognition
can be classified into two cases. One is specific object recognition. This recognition tries to
classify an object into a specific object. The other is general object recognition. In contrast
to the former recognition, this recognition tries to classify an object into a generic object.
Since there are only vehicles in the assumed scenario, specific object recognition is adopted,
and the recognition target is called the target vehicle. In this case, the ego vehicle wants to
prevent collision with the oncoming vehicle so that the oncoming vehicle becomes the target
vehicle. The recognition part consists of three phases. The first phase is the simulation of
LiDAR sensor data in the virtual environment, and clustering point cloud about the target
vehicle. The second phase is the extraction of feature points from the clustered points. The
final phase is the decision of recognition. The following paragraphs explain the details of
each phase.

In the first phase, regarding lasers from a LiDAR sensor as geometric optics, ray-tracing
simulation of LiDAR sensor data is adopted. In order to implement ray tracing easily, objects
such as vehicles, buildings, and roads consist of triangle meshes. From this setting, a point
p on a triangle mesh can be described with three-position vectors p1, p2 and p3 and two
parameters u, v as the following formula.

p = (1 − u − v)p1 + up2 + vp3. (3.7)

Furthermore, the point p can be also described by a normalized direction vector d departing
from the laser source O to p.

p = O + td. (3.8)

The direction of d is determined by the departure angle from the LiDAR sensor. Since the
laser propagates three-dimension space, the departure angle can be described by azimuth
angle ϕ and elevation angle θ.

d =

cos ϕ cos θ
sin ϕ cos θ

sin θ

 (3.9)
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Figure 3.7: A point on a triangle mesh and the relation of position vec-
tors and a direction vector.

The relation of these vectors are shown in Fig. 3.7.
When a point is on the mesh, parameter u and v have to meet 0 ≤ u, v ≤ 1 and 0 ≤

u+ v ≤ 1. On the other hand, parameter t has to meet 0 ≤ t. In order to confirm whether these
conditions are met or not, these parameters are solved by combining Eq. (3.7) and Eq. (3.8)
and adopting Cramer’s rule.

(1 − u − v)p1 + up2 + vp3 = O + td,[
−d p2 − p1 p3 − p1

]  t
u
v

 = O − p1. (3.10)

Replacing p2 − p1 with p21, p3 − p1 with p31, and O − p1 with p01, parameters t, u, v can be
solved by adopting Cramer’s rule to Eq. (3.10). t

u
v

 = 1∣∣∣−d p21 p31

∣∣∣

∣∣∣p01 p21 p31

∣∣∣∣∣∣−d p01 p31

∣∣∣∣∣∣−d p21 p01

∣∣∣
 (3.11)

where |·| is the determinant of a matrix.
As mentioned above, before extracting the feature points only from the target vehicle

points for recognition, clustering is needed to remove irrelevant points. In this simple ray
tracing algorithm, the function of linking the hit object to the laser is implemented. As a
result, the LiDAR sensor in our simulation knows which object the laser is reflected from so
that it is possible to select the points of the target vehicle and perform clustering easily.

In the second phase, feature points from the clustered points are extracted . When we
want to describe features of point cloud data, or LiDAR sensor data, a feature descriptor is
often used. Signature of Histogram of OrienTation (SHOT) and Point Feature Histogram
(PFH) are the typical feature descriptors. These descriptors use a histogram to describe fea-
tures around a point. In general, the calculation time of a feature descriptor depends on the
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(a) Simulation with the target vehicle. (b) Simulation with all objects

Figure 3.8: The two configurations for the recognition score.

(a) The edge points extracted from the
model points.

(b) The white points show the LoS edge
points, and the red points show the points
emitted on the target vehicle with cooperative
perception.

Figure 3.9: Examples of point cloud used in the recognition process.

dimension of the descriptor. In order to avoid this complicated discussion, edge points that
are a basic feature are used. Extracting edge points is performed by Principal Component
Analysis (PCA) [75]. This PCA method is faster to extract edge points and more robust to
noise than using Gauss map. The key point of this process is that edge points are extracted
by the eigenvalues of a covariance matrix. The quantity made of the eigenvalues is called
surface curvature, and it is calculated for each point. When the surface curvature exceeds a
threshold, the point is regarded as an edge point. The threshold is tuned by observing the
distribution of surface curvature.

The final phase is the decision of recognition. This simulation adopted model-based
recognition. This recognition method is a matching problem between scene and model points.
Scene points are obtained from the output of the LiDAR sensor. On the other hand, model
points are prepared in advance and have enough points to describe the target vehicle and
extract feature points. The process of this recognition consists of calculating feature points of
the model and scene points and searching the correspondence of the feature points between
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the model and scene points. If there are corresponding points, clustering with regard to
corresponding points is performed.

Two points are simplified through this model-based recognition process. The first point is
using not the entire scene points but the points clustered from the scene points. This extraction
is performed in the first phase of ray tracing and this leads to ideal input data for recognizing
the target vehicle. The second point is the decision way of recognition. A recognition score
S is defined as a ratio of the number of the edge points shown in Eq. (3.12). Nget and NLOS

are the number of edge points calculated from the two configurations as shown in Fig. 3.8.

S =
Nget

NLOS
. (3.12)

The difference between these configurations is that the right configuration includes all
objects, but the left configuration only includes the target vehicle as shown in Fig. 3.8. In the
Fig. 3.8a case, the sensing range of the LiDAR sensor on the ego vehicle is described by the
green range. This environment enables the ego vehicle to sense the target vehicle with Line-
of-Sight (LoS). In Fig. 3.8b case, there are two LiDAR sensors. One is on the ego vehicle,
but, on the contrary to the former case, the blue vehicle blocks the sensing as shown by the
yellow range. The other is on the blue blocking vehicle that senses with LoS as same as the
former case. The edge points obtained in Fig. 3.8a case are regarded as the maximum number
of edge points of the target vehicle that the ego vehicle can obtain. On the other hand, the
edge points in Fig. 3.8b can be obtained in two ways, that is using cooperative perception or
not. Using cooperative perception, the edge points calculation is based on the yellow and blue
sensing range while, without cooperative perception, it is only based on the yellow sensing
range. Fig. 3.9a shows the entire edge points in the model points. Fig. 3.9b shows two points.
One is the white edge points obtained under Fig. 3.8a configuration, and the other is the red
points obtained under Fig. 3.8b configuration using cooperative perception. Since the red
points are also obtained from a LoS place, the red and white points distribution is similar.

Counting the number of edge points is different between the two configurations. NLOS in
Eq. (3.12) is the number of the LoS edge points obtained in the Fig. 3.8a case. In detail, firstly,
the LoS edge points of the model points are calculated by PCA edge extraction and voxelized.
The resolution of the voxelization is based on an error range of a LiDAR sensor. Secondly,
the edge points are moved and aligned with the target vehicle. Finally, the voxelized edge
points that are LoS from the ego vehicle are extracted, and these points are called voxelized
LoS edge points. On the other hand, the first process for Nget is the simulation of the LiDAR
sensor data under the Fig. 3.8b configuration. Since this recognition focused on how much
scene points have information about voxelized LoS edge points, it extracted a part of these
edge points that match with the model points. As a result, Nget is the total number of the
voxelized LoS edge points that are near to the scene points. After the calculation of NLOS and
Nget, the ratio and threshold are compared, and, when the ratio is more than the threshold, it
is defined that the ego vehicle recognizes the target vehicle.

The vehicle movement part derived the required distance dreq to avoid a collision. Fur-
thermore, the recognition process gives a judgment that the ego vehicle recognizes the tar-
get vehicle at a given distance. Therefore, the combination of the required distance dreq in
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Eq. (3.6) and the recognition process derives the required sensor data rate Rreq to avoid the
collision as follows.

{rϕ, rθ} = arg min
{rϕ, rθ}

S (rϕ, rθ | dreq, dbe) > 0.9, (3.13)

Rreq =


Aϕ

rϕ

 + 1

 × 
Aθ

rθ

 + 1

 × Fscan × Dsymbol, (3.14)

where S is the recognition score in Eq. (3.12), Aϕ and Aθ are the scanning range in the azimuth
and the elevation angle (degree), rϕ, rθ are the resolution of the azimuth and the elevation
angle (degree), Fscan is scan frequency (Hz) of the LiDAR sensor, and Dsymbol is the amount
of information per one laser point (bits). Note that the required sensor data rate depends
on the velocity V of the ego vehicle and the distance dbe. Finally, the realized maximum
overtaking velocity is derived by obtaining the minimum outage capacity that exceeds the
required sensor data rate, which will be introduced in the simulation section.

Fig. 3.10 shows the required sensor data rate with the two options such as cooperative
perception and driving path. The solid (dotted) line with square markers shows the mini-
mum required sensor data rate to overtake with (not) using cooperative perception and not
considering the driving path. The solid (dotted) line with circle markers considers the driv-
ing path with (without) cooperative perception. From the figure, firstly, it is shown that all
required sensor data rates rapidly increase. This rapid increase is due to the laser density,
or the resolution of the LiDAR sensor, which gets rapidly sparse at a far place. This means
that the required resolution of the LiDAR sensor gets exponentially increased as the target
vehicle goes far. In the case of no cooperative perception, since the blocking vehicle inter-
rupts the sensing, a much higher resolution is required so that the required sensor data rate
increases further rapidly. Secondly, there is a difference in the curves between considering
the driving path or not. This reflects the result of 5 sec overtaking shown in Fig. 3.6 so that
no difference is seen at more than 60 km/h. Fig. 3.11 shows the required sensor data rate with
dbe = 5, 10, 15 m and 5 sec overtaking. In the case of using cooperative perception, as dbe

gets larges, the required sensor data rate gets small at a fixed velocity. When dbe is large, the
blocking vehicle gets near to the target vehicle. This allows the blocking vehicle to recognize
the target vehicle with a low-resolution LiDAR sensor. On the other hand, the required sensor
data rate in no cooperative perception depends on two factors, which leads to a complicated
result. One is the distance doe. When doe is large with the presence of the blocking vehicle, it
is easy for a high-resolution LiDAR sensor on the ego vehicle to see the shape of the whole
target vehicle under a small sensing range, which obviously has a limit for the recognition.
The other is distance dbe. As the blocking vehicle gets near to the ego vehicle, the blocking
vehicle blocks a large part of the range that sees the target vehicle. When the target vehicle
is very close to the ego vehicle, the ego vehicle can see the target vehicle with LoS. Since the
LiDAR sensor is on the roof, a large part of the blocking vehicle does not block the sensing
in the case of a very near location. From Fig. 3.11, the required sensor data rate gets high
from dbe = 15 m to dbe = 10 m, but it gets low from dbe = 10 m to dbe = 5 m. This result
tells us that sensing with no cooperative perception on a two-lane road heavily depends on
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Figure 3.10: The required sensor data rate with the options of cooperative perception and
driving path when the distance between the ego vehicle and the blocking
vehicle is 5 m.

Figure 3.11: The required sensor data rate with the options of cooperative perception and
5 sec overtaking when the distance between the ego vehicle and the blocking
vehicle is 5, 10, and 15 m.
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Figure 3.12: The required sensor data rate with the options of linear and non-linear spac-
ing LiDAR sensor at dbe = 10 m.

many factors such as the size and the location of vehicles, which will make the requirements
complicated. On the other hand, sensing with cooperative perception simply depends on dbe.

Fig. 3.12 shows the required sensor data rate using two different LiDAR sensors. One is a
linear spacing LiDAR sensor and the other is a non-linear spacing LiDAR sensor. In the case
of linear spacing, the LiDAR sensor has an equally spaced elevation angle resolution such as
Velodyne VLP-16. On the other hand, a non-linear spacing LiDAR sensor such as Velodyne
VLP-32 has a dense and sparse spacing part. This analysis fixed the number of lasers between
the two LiDAR sensors. The details of non-linear spacing are shown in Table. 3.1. The figure
shows that a non-linear spacing LiDAR sensor has a better ability to recognize a far object.
However, notice that non-linear spacing provides sparse information about a near object.

3.4 Millimeter-wave V2V communications with height di-
versity

Since cooperative perception needs wireless communication, this section discusses Vehicle-
to-Vehicle (V2V) communications. Firstly, V2V channel models for both conventional and
millimeter-wave communications under moving vehicles are introduced. In [76] and [77], the
authors measured 5 and 60 GHz and performed modeling of the measured data. As a result, it
is shown that the two-ray ground reflection model is suited for the V2V channel. Therefore,
the two-ray ground reflection model is adopted as a large-scale path loss model in the sim-
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Figure 3.13: V2V two-ray ground reflection channel model.

ulation as shown in Fig. 3.13. The additional characteristics of this model are that vibrating
of both transmitter and receiver due to vehicle movement have an effect on a small scale fad-
ing [77]. To avoid the fading in the driving environment, in [78], it is shown that, when one
vehicle with multiple receivers is chasing the other vehicle with a transmitter, diversity gain is
maximized by a vertically displaced antenna rather than a horizontally displaced antenna. In
[79], the authors analyzed the outage capacity under the 60 GHz two-rays ground reflection
model that follows the Rayleigh and the Rice distribution. They derived theoretically that
height diversity provides large improvements rather than horizontal space diversity. In [80],
the author derived that the antenna space for height diversity should be more than 10 cm.
Considering these works, this analysis assumed height diversity at the receiver and discussed
how much height diversity improves the outage capacity. Since 99.99% reliability is required
in the cooperative perception, the improvement is estimated by 0.01% outage capacity [9].
Moreover, the best antenna space is derived to improve the outage capacity among 5, 30,
and 60 GHz. The reason why 30 GHz and 60 GHz are chosen is due to allocated frequency
bands for millimeter-wave communications. 27, 37, 39, 60, 70, 80, and 90 GHz bands are
candidates for millimeter-wave communications. Although the 60 GHz band has oxygen ab-
sorption that severely limits communication range, the 60 GHz band is attractive in terms of
a global unlicensed band among these bands [81]. On the other hand, 28 GHz is allocated for
5G and 28 GHz is approximated as 30 GHz for simplicity.

Firstly, the basic characteristics of this channel model are analyzed . As described above,
this channel model can be separated into the effect of two-ray ground reflection and antenna
vibration. The received power Pr under the two-rays ground reflection is formulated as fol-
lows.

Pr =
Pt

L(rd)

∣∣∣∣∣∣ √Gd

(
λ

4πrd

)
+

√
Gr

(
λ

4πrr

)
Γe−j{k(rd−rr)}

∣∣∣∣∣∣2, (3.15)

where rd =

√
d2

be + (hr − ht)2,

rr =

√
d2

be + (hr + ht)2,

where Pt is transmission power, Gd and Gr are the antenna gains for direct and reflected wave,
rd and rr are the optical path length for direct and reflected waves, L(rd) is the absorption
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Figure 3.14: The channel capacity under the two-ray ground reflection model with and
without the antenna vibration and the 0.01% outage capacity with and with-
out height diversity at 60 GHz.

factor at 60 GHz by oxygen as 15 dB/km, λ is wavelength, k is 2π/λ, Γ is the complex
reflection coefficient. When the antenna vibration caused by the motor on the vehicle is
adopted to this channel model, it changes rd and rr. In [77], the authors modeled this antenna
vibration by Gaussian distribution Nr

(
0, σ2

0

)
where σ0 is 0.0319 m. This vibration causes

a shift of all fading points, and all receiving places have a possibility to encounter strong
fading. To avoid strong fading, height diversity that uses selection diversity is adopted. In
this case, the receivers vibrate by the same motor so that they follow the same distribution as
Eq. (3.16) and (3.17).

htv = ht + δt where δt ∼ Nt

(
0, σ2

0

)
. (3.16)

hrv1 = hr1 + δr

hrv2 = hr2 + δr
where δr ∼ Nr

(
0, σ2

0

)
. (3.17)

Finally, the 0.01% outage capacity Cout is calculated under the height diversity.

P(c(hr) < Cout(hr)) = 0.01%, (3.18)
where c = W log (1 + Pr/N) .

W is bandwidth and N is the total received power of noise.
Fig. 3.14 shows the above discussion in the case of 60 GHz. The black solid line shows

the basic characteristic of the two-ray ground reflection model that there is no vibration. The
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blue dotted and dashed lines show the moment of vibrating to 3σ and −3σ. The lines show
that the strong fading points are shifted to the left and the right. The red dotted line shows
the 0.01% outage capacity under no height diversity, and shows that the fading occurs at an
arbitrary V2V distance. In particular, there are sharp drops at 18 and 35 m and there is a sharp
rise at 84 m. These sharp changes are due to antenna vibration. For example, the fading point
at 57 m moves ±21 m and at 28 m moves ±10 m in the case of ±3σ vibration. Considering
that a shift of ±3σ happens at around 99.7% and the shift in 0.01% outage capacity is larger
than the shift of ±3σ, the sharp drop and rise are a reasonable result. The red solid line
shows the outage capacity with height diversity. Although it is improved from no diversity,
the outage capacity gradually changes up and down. The main reason for this change is that
there are some places where both receivers encounter strong fading.

To improve this outage capacity with height diversity, it is necessary to solve the changing
up and down of the outage capacity. The following analysis consists of two parts. The first
analysis focuses on the best receiving antenna space for the second receiving antenna. In
this analysis, carrier frequency, inter-vehicle distance, the height of a transmitting antenna,
and the height of the first receiving antenna are given. The second analysis focuses on the
relation between a communication range and the number of receiving antennas. This analysis
firstly focuses on the difference of the phase difference between the direct wave path and the
reflected wave path. When the height diversity works well, this phase difference is around π
as the following formula.

2π
λ
{(rd2 − rr2) − (rd1 − rr1)} ≡ π (mod 2π), (3.19)

where rd1 (rd2), rr1 (rr2) are the length of the direct and reflected paths from the transmitter
whose height is htv to the lower (upper) receiver whose height is hrv1 (hrv2) in Eq. (3.17).
Using the approximation of

√
1 + x ≈ 1 + x/2 (1 ≫ |x|), Eq. (3.19) can be described as

follows.

2π
λ
{(rd2 − rr2) − (rd1 − rr1)}

≈ −
4π
dλ

htv (hrv2 − hrv1)

= −
4π
dλ

(ht + δt) (hr2 − hr1) (= Φ(δt)) , (3.20)

where d is the inter-vehicle distance. From the above approximation, it is shown that variables
in the difference are only δt. This difference is expressed asΦ(δt). When there is no vibration,
which is δ = 0, the solutions hn of Eq. (3.20) are described as follows.

hn = hr2n − hr1n such that Φ(0 | hn) = −
4π
dλ

(ht + 0)hn = (2n + 1)π. (3.21)

To choose the best solution hbest
n among the solutions hn, it is necessary to estimateΦ where δt

ranges from −3σ0 to 3σ0, which falls within around 99.7%. This is because, recalling that the
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goal is to solve the changing up and down of the outage capacity due to the antenna vibration,
it is necessary to select one solution that the phase difference Φ does not change more than
±π/2 with a large possibility. Since Φ(0 | hn) − Φ(−3σ0 | hn) and Φ(3σ0 | hn) − Φ(0 | hn) are
same, the hbest

n is chosen by solving Φ(0 | hn) − Φ(−3σ0 | hn).
The second analysis is about the communication range. In the first analysis, the best

receiving antenna space under the fixed inter-vehicle distance has been analyzed. However, it
is not realistic to equip receiving antennas for each inter-vehicle distance, which will require
too many antennas. In order to solve this problem, the second analysis derived the range of
the inter-vehicle distance where the height diversity works well and minimized the number of
receiving antennas. Under the hbest

n , the valid communication range R is defined as the range
that the difference of Φ is from 115◦ to 245◦ as follows. The reason of choosing this range
comes from (1 + cos(±65◦)) = 1/2.

Rmin =
4π

2π180+65
360 λ

hthbest
n

=
144
49λ

hthbest
n . (3.22)

Rmax =
4π

2π180−65
360 λ

hthbest
n

=
144
23λ

hthbest
n . (3.23)

From Eq. (3.22) and (3.23), it shows that, as the antenna space hbest
n gets large, the minimum

and maximum effective communication distance get large. Furthermore, as the wavelength λ
gets short, these distances get also large.

For example, Fig. 3.15 plots the several cases of the 0.01% outage capacity at 60 GHz.
The black line shows the outage capacity without height diversity. The red and blue lines
show the outage capacity with 10 and 20 cm antenna space. The red and blue two-headed
arrows show the effective communication range in the case of 10 and 20 cm antenna space.
Fig. 3.15 shows that the outage capacity in the effective range is better than the outside.
Although there are several solutions to Eq. (3.19) at 10 cm antenna space in d < 22 m and at
20 cm antenna space in d < 48 m, rapid fluctuation of the difference of the phase difference
degrades the outage capacity. On the other hand, since the difference gets stable at more
than π in d > 48 m at 10 cm antenna space and in d > 95 m at 20 cm antenna space, the
improvement from no height diversity gradually decreases.

The above analysis concludes that the antenna space determines short-range or long-range
communication. The statistics show that the average speed on highways is about 70 km/h
and on prefectural roads is about 30 km/h [82]. Moreover, the two-second rule is adopted
to decide the average V2V distance. This rule derives an average distance on prefectural
roads which is 17 m, and on highways which is 39 m. Based on these average distances,
this thesis proposed two additional receivers for height diversity that support the above two
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Figure 3.15: The 0.01% outage capacity with height diversity under ht1, hr1 = 0.38 m,
hr2 = 0.48 m and hr2 = 0.58 m, and without diversity at 60 GHz.

Figure 3.16: The 0.01% outage capacity with height diversity for 5, 30 and 60 GHz.
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(a) Block diagram of safe
overtaking.

(b) Algorithm of safe overtaking.

Figure 3.17: Description of the whole process in the simulation.

values, which means that there are three receivers. At 60 GHz, the first receiver is set at 5
cm space whose effective range is from 11 m to 24 m, and the second receiver is set at 12 cm
space whose effective range is from 27 m to 57 m. In the case of 30 GHz, 10 cm and 24 cm of
space are necessary. Finally, in the case of 5 GHz, 60 cm and 144 cm of space are necessary.
Fig. 3.16 shows the outage capacity at 5, 30, and 60 GHz with height diversity. Note that 5,
30, and 60 GHz use three receivers as proposed in the above discussion. The figure shows
that all outage capacities have no sharp drop, and decrease linearly.

3.5 Performance of millimeter-wave V2V communications
to support safe overtaking

To estimate the amount of the minimum required sensor data for the safe overtaking, the sim-
ulation is performed. The required sensor data rate is derived with each dbe and doe. Fig. 3.17a
shows the process flow of the simulation and Fig. 3.17b shows the algorithm. Firstly, the out-
put of the LiDAR sensors on the blocking vehicle and the ego vehicle is simulated. When the
ego vehicle uses cooperative perception, it can use not only its sensor data but also the sensor
data of the blocking vehicle for the recognition process. The recognition process defines that,
if the recognition score described in Eq. (3.12) is more than 0.9, the ego vehicle recognizes
the oncoming vehicle. The recognition score is calculated under the prepared LiDAR sensor
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resolution sets of (rϕ, rθ). If the ego vehicle fails to recognize the oncoming vehicle, it be-
lieves that there are no vehicles on the oncoming lane. Since the ego vehicle does not know
exactly whether there are vehicles on the oncoming lane or not, this misunderstanding leads
to a collision. If the ego vehicle recognizes the oncoming vehicle, then it additionally checks
two factors. One is ensuring a comfortable braking distance for preventing a collision. The
other is ensuring the driving path for overtaking. In this simulation, the required time for
overtaking is set to 5 sec. If the ego vehicle does not pass either, it will stay on the lane. If it
passes, it can overtake the blocking vehicle.

Fig. 3.18, 3.19, and 3.20 show the simulation result of dbe = 5, 10, 15 m under the
parameters of Table. 3.1. The horizontal axis denotes the velocity of the ego vehicle, and
the vertical axis denotes the sensor data rate required for the safe overtaking and the outage
capacity of each carrier frequency. The black solid and dotted lines with markers show the
required sensor data rate with and without cooperative perception. Since the calculation time
grows drastically at more than 8 Gbps, extrapolation is used. The green, red, and blue solid
lines show the realized 0.01% outage data rate for each dbe at 5, 30, and 60 GHz. Fig. 3.21
shows the result of dbe = 10 m with using non-linear spacing LiDAR sensors.

Considering the realized data rate and the required sensor data rate using cooperative
perception, the figure shows that the maximum velocity for safe overtaking under dbe =

5, 10, 15 m at 60 GHz is 66, 64, 67 km/h, at 30 GHz is 51, 49, 54 km/h. Since the realized
data rate at 5 GHz is too small, the maximum velocity for safe overtaking is less than 20 km/h
in all cases. In all dbe cases, cooperative perception using 60 GHz constantly ensures around
65 km/h for safe overtaking. In the case of using non-linear spacing LiDAR sensors, when
5, 30, 60 GHz is used for cooperative perception, the ego vehicle can safely overtake 0, 9, 7
km/h faster than using linear spacing LiDAR sensors. Although non-linear spacing LiDAR
sensors improve the overtaking, the effect of providing sparse information about near objects
should be noticed, especially in other driving scenarios.

For the final discussion, these results are compared with the current requirements for
cooperative perception. In [7], 1 Gbps and 10 ms of max end-to-end latency are required
for a higher degree of automation to prevent an imminent collision by extended sensors,
or cooperative perception, which allows the maximum sensor data rate at 100 Mbps. On
the other hand, in [9], 1 Gbps and 3 ms of end-to-end latency are required for collective
perception of the environment, or cooperative perception, which allows the maximum sensor
data rate at 3 Mbps. In our analysis, even if an automated vehicle drives at around 30 km/h,
around 1 Gbps sensor data rate is required to realize safe automated driving by sharing raw
sensor data. From the above comparison, although only LiDAR sensors are considered for
recognition, it is shown that considering safety affects the requirements.

These results show that millimeter-wave communication has a big potential to contribute
to safe overtaking and smooth traffic. Although the actual data rate will be lower than these
outage data rates, millimeter-wave communication especially on 60 GHz has a large margin.
Therefore, these results conclude that millimeter-wave communication had an ability to per-
form the safe overtaking with high velocity, and, considering the actual data rate, 60 GHz
would be the promising frequency.
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Figure 3.18: Required data rate and 0.01% outage data rate realized by 5, 30 and 60 GHz
bands under dbe = 5 m.

Figure 3.19: Required data rate and 0.01% outage data rate realized by 5, 30 and 60 GHz
bands under dbe = 10 m.
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Figure 3.20: Required data rate and 0.01% outage data rate realized by 5, 30 and 60 GHz
bands under dbe = 15 m.

Figure 3.21: Required data rate using a non-linear spacing LiDAR sensor and 0.01%
outage data rate realized by 5, 30 and 60 GHz bands under dbe = 10 m.
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Table 3.1: Simulation Parameters

LiDAR Parameters

Parameter Value

Location Vehicle’s roof +20 cm
Range 200 m

Elevation Angle Range ±15◦

Elevation Angle Resolution (rϕ)
[0.2◦, 0.1◦, 0.08◦,
0.06◦, 0.04◦, 0.02◦]

Azimuth Angle Range 180◦

Azimuth Angle Resolution (rθ)
[0.2◦, 0.1◦, 0.08◦,
0.06◦, 0.04◦, 0.02◦]

Non Linear Spacing
dense spacing (−7.5◦-7.5◦)
sparse spacing (otherwise)

Return Mode Strongest
Scan Period 20 Hz

Data Size of One Point 16 bit (coordinate)
+ 12 bit (power)

V2V System Parameters in [5, 30, 60] GHz Bands

Parameter Value

Height of Tx(ht) 38 cm
Height of Rx1(hr1) 38 cm
Height of Rx2(hr2) [98, 48, 43] cm
Height of Rx3(hr3) [182, 62, 50] cm
Transmitted Power 10 dBm

Boresight Gain [4.3, 20, 26] dB
Antenna Aperture Size 2.6 cm × 2.6 cm

Polarization vertical
Vertical Antenna Vibration Model Gaussian(σ =3.2 cm)

Bandwidth [10, 500, 1000] MHz
Antenna Diversity selection diversity

Noise Figure 10 dB
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Chapter 4

Required and achievable data rate for
V2I in intersection scenario

In this chapter, analysis of safety in the intersection scenario is performed and cooperative
perception is considered for improving safety. As performed in the overtaking scenario,
cooperative perception is based on sending raw sensor data. The overtaking scenario derives
the requirements of sensor data rate for safe passing through an intersection with and without
cooperative perception. This scenario analyzes safe automated driving from the viewpoint
of vehicle dynamics and recognition process as same as in the overtaking scenario. There
are two important factors in this scenario. The first factor is that the recognition process is
improved by adopting Clustered Viewpoint Feature Histogram (CVFH). The second factor is
that not only safety but also traffic efficiency is considered to alleviate traffic congestion.

4.1 Scenario description
Before introducing the intersection scenario, this section starts by showing the works relating
to signalized and unsignalized intersections and automated driving. In the case of automated
driving vehicles, intersection managers are basically planned to prevent traffic accidents. The
role of the intersection manager can be separated into several factors such as V2X interfaces,
conflict detection, and vehicle dynamics [83]. There are two architectures for V2X interfaces
that are centralized and decentralized approaches. The main advantage of decentralized ap-
proaches is that infrastructures are not required so that they can scale easily and be used in
uncrowded intersections. On the other hand, centralized approaches follow a server-client
scheme. Although the reliability of centralized approaches deeply depends on infrastruc-
tures, these approaches can reduce network overheads due to their centralized information.
In this analysis, an intersection manager is not considered explicitly, but a simple intersection
manager that handles the geographical location of the vehicle is assumed to establish a con-
nection of V2I communications, which can be implemented by centralized or decentralized
approaches. Therefore, the control of vehicle behavior such as velocity is performed by the
vehicle itself. For example, in the proof-of-concept, we adopted dynamic network manage-
ment based on the geographical location of a vehicle [18]. Since this analysis focuses on the
relation between the performance of wireless communications and safe automated driving,
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the same simple communication rule is assumed as the above work.
For vehicle behavior, vehicle dynamics and conflict detection are related to intersection

management. Models of vehicle dynamics can be classified into three models. The difference
among these models is the dimension of vehicle movement and whether the surrounding
environment such as road slope is considered or not. To detect conflict, or collision, grid
maps or predefined paths are basically used. In grid maps, the location of a vehicle in each
time step is expressed as a grid, and conflict or collision occurs when two vehicles occupy the
same grid at the same time. On the other hand, the expected paths are used to check conflict
in predefined paths. In this analysis, conflict decision is based on comparing the predefined
paths and vehicle dynamics on the path is described as a one-dimension model as follows.

ẋ = v,
v̇ = a,

where x and v are the longitudinal position and velocity of the vehicle and a is the acceleration
input to the vehicle. Considering that there are works about speed estimation based on only
LiDAR sensors, it is assumed that LiDAR sensors can obtain vehicle velocity [84].

The traffic environment at the intersection is also an important factor. This is because it
takes a long time to change all driving vehicles to automated driving vehicles. Therefore, a
hybrid environment that both human and automated driving vehicles exist at the intersection
should be considered. Related works about managing intersections under the mixture traffic
environment can be classified into signalized and unsignalized intersection models. In the
case of signalized intersections, basically traffic lights and the intersection manager cooperate
on preventing collision at the intersection. In [85], management of a signalized intersection
is analyzed and traffic lights at the intersection are controlled by a connected vehicle center.
The control is based on the information obtained from traffic detection devices such as radar
or LiDAR sensors on roadside units.

On the other hand, in [86, 87], decision making for automated driving at an unsignalized
intersection is analyzed by processing sensor data and the experiment of the decision mak-
ing is performed. In [87], the authors analyze a safe merging at an unsignalized intersection
by using probabilistic functions. Both works consider not only the mixture traffic environ-
ment but also the incomplete installation of V2X communications, that is, all vehicles cannot
necessarily use V2X communications.

Since our analysis focuses on the contribution to safe automated driving with V2I com-
munications, it is assumed that a RSU is set at the intersection and can always send sensor
data to the ego vehicle. Namely, the ego vehicle that starts to enter into the intersection can
always receive the cooperative perception service. Cooperative perception shares sensor data
obtained from different locations and perspectives in the driving environment so that blind
spots can be visualized. Using the received sensor data, the ego vehicle tries to pass through
an unsignalized intersection under the mixture traffic environment. However, there are no
managers that send cooperative control messages to automated driving vehicles.

From the above discussion, this analysis focuses on safe passing through an unsignalized
intersection under the presence of a human driving vehicle. Fig. 4.1 shows the assumed
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Ego
Vehicle

Target
Vehicle

C

(a) The location and the range of LiDAR sensors.

R

(b) The driving pattern of both ego and
target vehicle.

Figure 4.1: Overview of LiDAR sensors and the driving pattern at the unsignalized inter-
section.

intersection scenario. The green ego vehicle is an automated driving vehicle and the red
vehicle is a human driving vehicle. The goal of the ego vehicle is to pass safely through the
intersection. However, the red vehicle also tries to pass through the unsignalized intersection
at the same time, which will lead to a collision at the intersection. From this assumption, the
red vehicle becomes an important recognition target so that the red vehicle is called a target
vehicle. For simplicity, the velocity of both vehicles is assumed as constant velocity. Since
the target vehicle is a human driving vehicle and there are no intersection managers, the ego
vehicle has to recognize the target vehicle and decide whether the safe crossing is possible or
not by itself. The other conditions such as weather are the same as the overtaking scenario.
In order to accomplish this goal, a RSU is located at the intersection and can be used for
cooperative perception. Namely, the ego vehicle receives raw LiDAR sensor data from the
RSU and can use it for the recognition process with the sensor data obtained from the ego
vehicle. The reason why raw sensor data is chosen is the same as the overtaking scenario.
Since the ego vehicle can know the location of the RSU by dynamic maps, it is assumed
that the sensor data receiving from the RSU is automatically transformed into the ego vehicle
coordinate, which means that the RSU data can be used in the ego vehicle coordinate. When
the ego vehicle succeeds to recognize the target vehicle, one of the simplest responses is
always applying the brakes even if the collision does not occur at the intersection. However,
this simple response will lead to traffic congestion at the intersection. Therefore, the ego
vehicle should identify whether the collision will occur or not and apply the brakes in the
collision case, which can alleviate traffic congestion. Other conditions such as weather are
the same as the overtaking scenario.
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R

(a) The driving pattern that
the ego vehicle crosses first.

R

(b) The driving pattern that
both vehicles are about to
pass through the intersection.

R

(c) The driving pattern that
the target vehicle crosses first.

Figure 4.2: The classified three driving patterns.

4.2 Vehicle behavior in the intersection
In order to realize a safe and efficient crossing, the emergency cases where braking is neces-
sary to prevent the collision should be specified. Moreover, this analysis helps to determine
a required recognition range to prevent a traffic accident. Since driving at constant velocity
is assumed, it is possible to specify the collision cases by considering an arrival time and a
leaving time at the intersection that depend on the initial positions of the vehicles. Therefore,
the collision cases and the other cases are classified by these time parameters as shown in
Fig. 4.2. Fig. 4.2a (Fig. 4.2c) is the driving pattern that the ego (target) vehicle passes first
through the intersection. Te0 (Tt0) is the time for the ego (target) vehicle to arrive to the in-
tersection. Te1 (Tt1) is the time for the ego (target) vehicle to leave the intersection. In the
case of Fig. 4.2a (Fig. 4.2c), the relation of the time parameters is Te1 ≤ Tt0 (Tt1 ≤ Te0). On
the other hand, Fig. 4.2b is the driving pattern that the collision occurs and the relations of
the time parameters are Tt0 ≤ Te1 ∧ Te0 ≤ Tt1. From the above classification, braking is only
needed in the Fig. 4.2b case.

From the assumption of constant velocity driving, these time parameters can be described
by Ve, Vt, De, Dt and the relations of the time parameters in the collision cases can be
described as follows.

Dt

Vt
≤

De

Ve
+

2W

Ve
, (4.1)

De

Ve
≤

Dt

Vt
+

2W

Vt
, (4.2)

where W is the width of the road as shown in Fig. 4.1. Adopting comfortable braking to
stop in front of the intersection, the following relation is used for simplifying Eq. 4.1 and
Eq. 4.2 [68].
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Figure 4.3: The visualized three driving patterns at Vt = 80 km/h with comfortable
braking.

Dbrake
e = 0.039 ×

V2
e

3.4
. (4.3)

Using the simplified inequalities, the three driving patterns with comfortable braking un-
der Vt = 80 km/h can be visualized as shown in Fig. 4.3. Notice that De and Ve have the
relation of Eq. 4.3, which shown by Dbrake

e -axis and Ve-axis in the figure. Since De is related
to both braking distance and the performance of wireless communications, superscript is used
to show the main role of De in each analysis. Fig. 4.3 shows that the relation between the
driving patterns and the initial locations of the ego vehicle and the target vehicle under the
fixed velocity of the target vehicle. Namely, when the ego vehicle places at Dbrake

e and start to
drive at the corresponding Ve, the decision making of the ego vehicle depends on the location
and velocity of the target vehicle. When the initial location Dt gets very small (large) under
fixed Vt, the target vehicle (the ego vehicle) pass through the intersection first so that it does
not have to apply the brakes, which corresponds to the blue (red) area. On the other hand,
when the distance and the velocity parameters of the ego and the target vehicle meet Eq. 4.1
and Eq. 4.2, the collision occurs at the intersection, which corresponds to the white area.
Therefore, when the parameters of the ego and the target vehicle belong to the white area, the
ego vehicle has to perform comfortable braking to prevent the collision and stop in front of
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the intersection.
In order to perform the braking only at the collision cases, the ego vehicle has to recognize

the target vehicle not in all cases but in the collision cases. This means that at least the ego
vehicle has to recognize the target vehicle that is on the upper boundary of the white area.
Therefore, the required recognition range Dreq

t becomes the upper boundary of the white
area and it depends on De, Vt as shown in the figure. From the above discussion, Dreq

t for
comfortable braking is obtained by substituting Eq. 4.3 for Eq. 4.1 as follows.

Dreq
t = Vt

√
0.039De

3.4
+ 2W · Vt

√
0.039
3.4De

. (4.4)

As introduced before, a constant velocity is assumed in this scenario, but there are many types
of velocity scenarios of the ego vehicle such as driving with acceleration or deceleration. This
paragraph discusses this topic. When Ve, De, and Vt is given, driving with acceleration (decel-
eration) makes Te0 in Fig. 4.2b small (large) so that the required recognition range becomes
short (long). Although a short recognition range requires a smaller sensor data rate than a
long recognition range, entering into the intersection with acceleration is dangerous. On the
other hand, driving with deceleration is safer than acceleration, but the required recognition
range becomes large, which will get far from tight requirements. Since this analysis focuses
on not only safe automated driving but also tight requirements, it chooses driving at a con-
stant velocity that can be regarded as the average performance of driving with acceleration
and deceleration.

4.3 Object recognition using CVFH
Since the ego vehicle has to recognize the target vehicle to decide whether comfortable brak-
ing is needed or not, a recognition process in the ego vehicle is necessary. In general, there
are two ways to recognize an object, which is specific object recognition and general object
recognition as beforementioned. As shown in the overtaking scenario, specific object recog-
nition using edge points is performed to recognize a vehicle. Since the recognition target is
only a vehicle in this analysis as same as the overtaking scenario, specific object recognition
is adopted. However, a more practical feature point than an edge point is used for the recog-
nition, and this improvement will provide a tight data rate requirement. Feature descriptors
include information about the surrounding surface and meet three characteristics, that is, ro-
bustness to rigid transformations, robustness to noise, invariance to the density of point cloud
data. Since feature descriptors tell more information than edge points that tell only 3D coor-
dinate information, feature descriptors can recognize the object with fewer points. In general,
feature descriptors can be classified into local and global feature descriptors. Local feature
descriptors are computed for individual points in a clustered point cloud and tell local geom-
etry for each point. On the other hand, global feature descriptors are computed for a whole
clustered point cloud. This means that both global and local feature descriptors require a pre-
processing such as segmentation to a source point cloud. In this recognition process, CVFH
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Figure 4.4: The process flow of object recognition.

which is one of the global feature descriptors is adopted and CVFH functions implemented
in Point Cloud Library (PCL) are used [88]. The reason for this adoption is that CVFH is
robust to occlusions that often occur by vehicles or buildings [89].

A process flow of vehicle recognition is shown in Fig. 4.4. This object recognition process
consists of four processes and these processes are performed to both model and scene point
cloud data. Since model base recognition is adopted, the model point cloud data is prepared
for the object recognition process. In this recognition, the ego vehicle does not only recognize
whether the obtained point cloud data is a vehicle or not but also the direction of the vehicle.
The driving direction is specified for how the vehicle drives on a road and this check helps
to guarantee that the traffic environment matches with one of the classified driving patterns.
The model point cloud data is generated by sensing a 3D vehicle model and a rectangular
model under no obstacles in the assumed traffic environment. This data generation provides
the maximum information for each model from the ego vehicle under the fixed locations
of the vehicles. The rectangular model is prepared to check whether the ego vehicle has
enough point cloud data to recognize the object or not and avoid fortunate recognition. On
the other hand, the scene point cloud data is obtained by LiDAR sensors in the assumed traffic
environment.

The object recognition starts from preparing a clustered point cloud. In this analysis, all
points obtained by ray-trace simulation have a tag that tells which objects each point is on
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(a) Model data of the front of the rectangular. (b) Model data of the side of the rectangular.

(c) Model data of the front of the vehicle. (d) Model data of the left of the vehicle.

(e) Model data of the rear of the vehicle. (f) Model data of the right of the vehicle.

Figure 4.5: Examples of model point cloud data.

as same as the overtaking scenario. Collecting points on the target vehicle, ideal clustering
can be performed. The next process is the calculation of a normal vector for each point to
calculate CVFH. After preparing the clustered point cloud with normal vectors, keypoints
are extracted from the clustered point cloud. In PCL, keypoints are explained as points that
are stable, distinctive, and can be identified by using a well-defined detection criterion. The
main advantage of using keypoints is that selecting points from the clustered points reduces
the calculation time. Actually, instead of using keypoints modules, a voxel grid filter is often
used to just reduce the number of points for convenience. The extracted keypoints are used to
calculate CVFH and this calculation outputs histogram data. Finally, histograms calculated
from the scene and the model point cloud are compared and object and direction recognition
is performed by choosing the nearest histogram. Since a large part of sensor data is obtained
from the RSU, the histograms are made from the viewpoint of the RSU.
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wrong recog.correct recog.
Figure 4.6: Transition of chi-square distance calculated by comparing CVFH histograms.

In order to choose the nearest histogram, the quantity that describes the similarity among
histograms has to be defined. There are several ways to compare histograms such as using
correlation, chi-square distance, and intersection. Since chi-square distance is used to com-
pare histograms generated by feature descriptors in the examples of PCL, chi-square distance
is adopted as shown in the following equation.

dchi(H1,H2) =
∑

i

(H1(i) − H2(i))2

H1(i) + H2(i)
. (4.5)

The idea of chi-square distance comes from regarding the difference between small bins as
important.

There are six models prepared for recognizing the object and the direction by comparing
the histograms. The visualized parts of the target vehicle are defined from the viewpoint of
the ego vehicle. Fig. 4.5 shows examples of compared point cloud data. As shown in the
figures, there are two models of the rectangular model and four models of the vehicle model.
Firstly, the ego vehicle decides whether the object is the vehicle model or the rectangular
model. When the ego vehicle does not have enough data, it recognizes the point cloud as
the rectangular model. Secondly, the ego vehicle determines which direction the object faces
among the four directions. Since the rectangular has symmetries, there are only two models
for the rectangular model.

Fig. 4.6 shows examples of the transition of chi-square distance between the model his-
togram and the obtained histogram. The transition of chi-square distance without cooperative
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perception is omitted because the buildings block almost all lasers from the LiDAR sensor
on the ego vehicle to the target vehicle. In this scenario, when the ego vehicle recognizes
the obtained point cloud as the left side of the vehicle shown in Fig. 4.5d, the ego vehicle
recognizes the correct traffic environment, which will lead to the correct braking decision.
This is because all LiDAR sensor data is transformed into the ego vehicle coordinate as as-
sumed in this scenario and the left side of the target vehicle can be visualized from the ego
vehicle under the intersection with no obstacles. From the figure, when the ego vehicle uses
cooperative perception, it recognizes correctly the target vehicle in the range from Dt = 5
m to 32 m. Since the LiDAR sensor on the RSU does not see directly below the RSU, the
recognition range does not start from 0 m.

One way to define the recognition range drecog is to choose the maximum Dt where the ego
vehicle can recognize the target vehicle correctly. From Fig. 4.6, when the wrong recognition
range around 0 m is regarded as negligible, the maximum value is read as 32 m and the
recognition range becomes 32 m. Although the maximum Dt becomes the recognition range
drecog in this case, there are no guarantees that the ego vehicle can continuously recognize
the target vehicle in general under this drecog definition. Since the recognition range should
guarantee the correct result within the range, the recognition range drecog is defined as follows.

drecog(rϕ, rθ) = max d0(rϕ, rθ), (4.6)

s.t. ∀d < d0, arg min
m∈M

dchi

(
Hscene(rϕ, rθ), Hm | dmin

recog + d
)
= ml,

where ml describes the left side of the vehicle model that is the correct model as explained
before, rϕ, rθ are the LiDAR sensor resolutions of azimuth and elevation angle that are used
to calculate point cloud and histograms.

4.4 Derivation of required sensor data rate
In order to derive the required sensor data rate Rreq, it is important to know how LiDAR sen-
sors output sensor data. In this simulation, assumed LiDAR sensors scan the surrounding
environment by spinning lasers at a certain frequency. Therefore, scanning frequency, the
number of points per scan, and the data size of one point give the sensor data rate of the Li-
DAR sensor. Considering the mechanism of the assumed LiDAR sensor, the required sensor
data rate Rreq to prevent the collision is formulated as follows.

Rreq =


Aθ

r̂θ

 + 1

 × 
Aϕ

r̂ϕ

 + 1

 × Fscan × Dsymbol, (4.7)

where {r̂ϕ, r̂θ} = arg min
{rϕ, rθ}

drecog(rϕ, rθ) > Dt,

where Aϕ and Aθ are the scanning range in the azimuth and elevation angle (degree), Fscan is
scan frequency (Hz) of the LiDAR sensor, and Dsymbol is the amount of information per one
laser point (bits).
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Figure 4.7: The sensor data rate required for the ego vehicle placed at De to avoid a
collision with the target vehicle driving at Vt.

Summarizing the analysis until now, two relations are obtained. The first relation is be-
tween De and Dt, which tells the recognition range drecog required for the ego vehicle placed
at De to prevent the collision with the target vehicle driving at Vt. The second relation is
between drecog and the required sensor data rate Rreq, which tells the required sensor data rate
Rreq to realize the required recognition range drecog. Therefore, the sensor data rate required
for the ego vehicle placed at De can be obtained from the above two relations. However, in
order to obtain the required sensor data rate for each De, many resolution sets of LiDAR sen-
sors have to be calculated. Therefore, a fitting curve is used to calculate the required sensor
data rate for each De.

Fig. 4.7 shows the required sensor data rate to avoid a collision with the target vehicle
driving at Vt from the ego vehicle driving from De. From the figure, as the target vehicle
velocity Vt becomes high under a fixed De, the required sensor data rate gets rapidly high.
This is because the collision with the high-velocity target vehicle occurs in the case where the
target vehicle drives from a far place. This means that the ego vehicle needs high-resolution
LiDAR sensors to realize a long recognition range.

4.5 Millimeter-wave V2I communications
Since this analysis focuses on the relation between the performance of wireless communi-
cation and safe crossing, it compares the cooperative perception for safe crossing realized
by the conventional and the millimeter-wave V2I communications as same as the overtaking
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Figure 4.8: The two-ray ground reflection model with receiver vibrating.

scenario. The analysis is performed by comparing the sensor data rate and outage capac-
ity calculated by the assumed channel model. In general, there are deterministic path loss
models, statistical models, tapped delay line models, and geometry-based stochastic models
to describe channel models for the 5.9 GHz frequency band [90]. In [91], the authors used
two-ray ground reflection models to compare V2I measurements in the 5.9 GHz frequency
band. The results show that the model can properly represent the received power in LOS and
NLOS environments. In [92], the authors analyzed millimeter-wave V2I communications
and showed that two-ray channel models well represent millimeter-wave communications
with highly directional antennas. Considering the above works, V2I propagation model is
also assumed as a two-ray ground reflection model that is one of the deterministic path loss
models, which will reduce calculation time.

Fig. 4.8 shows the assumed V2I propagation model. In this model, the receiver on the
vehicle is vibrating due to a driving motor while the transmitter on the RSU is not vibrat-
ing [77]. Moreover, since automated driving vehicles can know the locations of RSUs by
dynamic maps, the ideal beam alignment is assumed.

The received power is formulated as follows.

Pr =
Pt

L(rd)

∣∣∣∣∣∣ √Gd

(
c

4π fcrd

)
+

√
Gr

(
c

4π fcrr

)
Γe−j{k(rd−rr)}

∣∣∣∣∣∣2, (4.8)

where Pt is transmission power, Gd and Gr are the antenna gains for direct and reflected wave,
rd and rr are the optical path length for direct and reflected waves, L(rd) is the absorption
factor at 60 GHz by oxygen as 15 dB/km, c is the speed of light, fc is a carrier frequency, k is
2π/λ, Γ is the complex reflection coefficient. Basic analysis about the effect of vibration on
fading and height diversity has been already performed in the overtaking scenario. Therefore,
this analysis focuses on the effect of height diversity in the case V2I communications.

Fig. 4.9 shows 0.01% outage capacities using height diversity and not using height diver-
sity and the average of channel capacity. Since the same parameters are used in the simula-
tion, the parameters used in this calculation are summarized in Table. 4.1. 0.01% is based
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Figure 4.9: 0.01% outage capacity with and without height diversity and the average ca-
pacity without height diversity.

on the requirements for the reliability of transmitting raw sensor data published by 3GPP [9].
The 0.01% outage capacity is calculated by the following formula.

P(c(hr | De, fc) < Cout(hr | De, fc)) = 0.01%, (4.9)

where the function P is the probability function about the capacity c of the V2I communi-
cation, and the capacity c stochastically changes due to the vibrating receiver hr under the
fixed De and the carrier frequency fc. From the figure, it is shown that height diversity cer-
tainly improves the outage capacity, but the increased amount of the outage capacity is not
drastically large.

This height diversity performance difference can be discussed from two aspects. The
first aspect is antenna vibration that cause dynamic change of phase difference. Since no
vibration at the receiver is assumed, a large phase difference between the direct path and
the reflected path rarely occurs so that the improvement gets small. The second aspect is
the beamwidth of the antenna. Since millimeter-wave communications have a large path
loss, its antenna needs strong directivity to realize long-range communications. In [77, 93],
narrow beamwidth such as 10 degrees is used for outdoor measurement of millimeter-wave
communications. On the other hand, the narrow beamwidth is also adopted in our analysis to
not only realize long-range communication but also utilize spatial diversity, or spatial channel
reuse, in dense traffic. Using such narrow beamwidth in V2I communication, the difference
in the angle of departure between the direct path and the reflected path becomes large so that
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Table 4.1: Simulation Parameters

LiDAR Parameters

Parameter Value

Location Vehicle’s roof +20 cm
Range 200 m

Elevation Angle Range −25◦～+15◦

Elevation Angle Resolution (rϕ)
[0.2◦, 0.1◦, 0.09◦,
0.08◦, 0.07◦, 0.06◦,
0.05◦, 0.04◦, 0.03◦, 0.02◦]

Azimuth Angle Range 360◦

Azimuth Angle Resolution (rθ)
[0.2◦, 0.1◦, 0.09◦,
0.08◦, 0.07◦, 0.06◦,
0.05◦, 0.04◦, 0.03◦, 0.02◦]

Return Mode Strongest
Scan Period 20 Hz

Data Size of One Point 16 bit (coordinate)
+ 12 bit (power)

V2I System Parameters in [5, 30, 60] GHz Bands

Parameter Value

Height of Tx(ht) 5.0 m
Height of Rx(hr) 1.8 m

Transmitted Power 10 dBm
Boresight Gain [4.3, 20, 26] dB

Antenna Aperture Size 2.6 cm × 2.6 cm
Polarization vertical

Vertical Antenna Vibration Model Gaussian(σ =3.2 cm)
Bandwidth [10, 500, 1000] MHz

Noise Figure 10 dB
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the reflected path does not depart from a high gain of the main lobe. Therefore, the effect
of the destructive interference becomes small due to the small power of the reflected wave.
However, the effect of the constructive interference also becomes small so that the outage
capacity does not rapidly decrease.

4.6 Theoretical speed limitation
From the above discussion, the safe crossing can be formulated as follows.

safe passing: Vt ≤ Vmax
t (Vsafe

e , fc),

where Vmax
t = max Vsafe

t (Vsafe
e , fc),

dangerous passing: otherwise,

where a pair of {Vsafe
e , Vsafe

t } is the velocity that ensures no collision at the intersection, and
Vmax

t is the maximum velocity of Vsafe
t under the given Vsafe

e . Vmax
t also depends on the carrier

frequency fc because it relates to the recognition range that becomes the basis of the safe
crossing. The details of {Vsafe

e , Vsafe
t } is shown as follows.

{Vsafe
e , Vsafe

t } s.t. Cout( fc, De(Vsafe
e )) > Rreq(De(Vsafe

e ), Vsafe
t , Dt).

From the assumption, {Vsafe
e , Vsafe

t } has to meet the relation that the outage capacity Cout is
higher than the required sensor data rate Rreq to prevent the collision by cooperative percep-
tion.

In this scenario, a single target vehicle is assumed so far, but multiple target vehicles
on the left and the right lanes should also be discussed. Therefore, this paragraph expands
to multiple target vehicles and discuss this scenario. Firstly, the criterion for safe crossing
should be formulated. The key factor is that the two inequalities for the passing through the
intersection in Eq. 4.1 and Eq. 4.2 only depend on the distance and velocity. Therefore, the
superposition of this criterion to all target vehicles ensures the safe crossing with no collision,
and it is formulated as follows.

safe passing: ∀V i
t ∈ Vt, s.t. V i

t ≤ Vmax
t (Vsafe

e , fc),
dangerous passing: otherwise,

where Vt is the set of velocity of all target vehicles, and V i
t is the velocity of the ith target.

From this formula, Vmax
t can be used as same as a single vehicle scenario, and Vmax

t is regarded
as the speed limitation for the safe crossing.

4.7 Performance of millimeter-wave V2I communications
to support safe crossing

To estimate the safe crossing realized by conventional V2I communications and millimeter-
wave communications, the simulation is performed. Fig. 4.10a and Fig. 4.10b show the
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(a) Block diagram of safe crossing. (b) Algorithm of safe crossing.

Figure 4.10: Description of the whole process in the simulation.

process flow of the simulation. Firstly, the parameters such as the resolution of the LiDAR
sensors, distance, and velocity are set. Then, the LiDAR sensor data obtained from the ego
vehicle and the RSU is simulated. Since this LiDAR sensor simulation is the same as the
overtaking scenario, it is omitted and the explanation is leaved to the overtaking scenario.
The LiDAR sensor model used in this simulation is based on Velodyne VLS-128 that is a
mechanical LiDAR sensor and can look downward deeper than upward. Since the RSU has
to sense downward mainly, this model is appropriate for the intersection scenario. After fin-
ishing the simulation of the obtained point cloud, the point cloud receiving from the RSU is
transformed into the ego vehicle coordinate as previously assumed. Moreover, considering
that LiDAR sensors can estimate the velocity of a vehicle, the ego vehicle can know the ve-
locity of the target vehicle. After this LiDAR sensor process, the outage capacity between
the RSU and the ego vehicle is calculated under De to check whether the ego vehicle can use
cooperative perception or not. To simplify the system, the ego vehicle can use cooperative
perception when the outage capacity is more than the LiDAR sensor data rate. When the ego
vehicle uses cooperative perception, it can use not only its sensor data but also the sensor
data of the RSU for the recognition process. Then, the recognition process based on CVFH
is performed. When the recognition result corresponds to the correct target vehicle, the ego
vehicle can decide whether comfortable braking is necessary to avoid the collision. Other-
wise, the ego vehicle believes that no vehicles enter into the intersection, which will lead to
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Figure 4.11: The contour plot shows the required sensor data rate at each Vt and the color
lines show the outage capacity realized by each carrier frequency.

the collision.
Fig. 4.11 shows the result of the simulation and Table 4.1 shows the parameters used in

this simulation. The x-axis describes De which relates to the braking distance and the outage
capacity of the V2I communication. The contour plot shows the required sensor data rate as
same as the plot in Fig. 4.7. The red, blue, and green lines show the realized outage capacity
using 60, 30, and 5 GHz V2I communication.

The safe velocity pair {Vsafe
e , Vsafe

t } realized by each carrier frequency belongs to the area
below each red, blue and green lines. The velocity values Ve, Vt are obtained by reading the
contour plot and De. As De gets large, the decrease of the outage capacity and the increase of
the required sensor data rate for each Vt are read from the figure. The decrease of the outage
capacity is due to getting far from the RSU, and the increase of the required sensor data rate
is due to the necessity of a long recognition range.

In order to estimate the ability of cooperative perception at each carrier frequency, this
analysis focuses on the maximum velocity pair that both Vsafe

e and Vmax
t are the same velocity

and get maximum at the carrier frequency, which is called the maximum safe velocity set
in this analysis. This estimation comes from reflecting two aspects. The first aspect is that
the ego vehicle should pass through the intersection as fast as possible to alleviate traffic
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congestion. The second aspect is that the ego vehicle also wants to prevent collision with
the high-velocity target vehicle. By this estimation, it is shown that passing through the
intersection at 62 (55) km/h requires 11 (5) Gbps which can be supported by 60 (30) GHz. On
the other hand, 5 GHz does not have the ability to send raw sensor data. This result concludes
that millimeter-wave V2I communications are needed to ensure safety at a realistic velocity
and have a better potential for safe driving than conventional V2I.

This paragraph also discusses the recognition performance difference between edge point
recognition used in the overtaking scenario and CVFH. In the case of edge point recognition,
since extracting edge points is performed by principal component analysis for each keypoint,
the complexity becomes O(nk), where n is the number of keypoints and k is the number of
neighbor points for each keypoint. On the other hand, CVFH is the combination of euclidean
clustering and VFH calculation so that its complexity is near toO(nk). However, CVFH has to
calculate euclidean clustering additionally and the preparation of model data is more complex
than edge points. Therefore, it is convenient to enable edge point recognition to realize the
same recognition ability as CVFH by tuning the threshold from the viewpoint of reducing
calculation time. When the threshold is changed from 0.9 to 0.8 (0.77), the maximum safe
velocity at 60 (30) GHz becomes the same result as CVFH.
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Chapter 5

Demonstration of cooperative perception

This chapter introduces the architecture of cooperative perception in the automated driving
trial field and show the demonstration of cooperative perception.

5.1 Architecture
Fig. 5.1 shows the automated driving trial field where we performed cooperative perception.
The demonstration is performed in the Tokyo Institute of Technology Ookayama campus
and there are 4 RSUs. Fig. 5.1b shows the installed hardware on the RSUs. The installed
hardware consists of USB cameras (Ailipu Technology ELP USBFHD05MT-DL36-J), 3D
LiDAR sensors (Velodyne VLP-16), and millimeter-wave antennas (Panasonic PE710-TE6).
Since measures against exposing 3D LiDAR sensors to rain are under discussion, the in-
stalled location of 3D LiDAR sensors in this demonstration is different from this figure. The
hardware on the ego vehicle consists of a 3D LiDAR sensor, a camera (Point Grey Grasshop-
per3), and a millimeter-wave antenna (Panasonic PE710-TE6) as shown in Fig. 5.2. A 3D
LiDAR sensor provided by Velodyne or Robosense can be installed on the ego vehicle, and a
Velodyne LiDAR sensor is used at this time.

Velodyne VLP-16 is one of the mechanical LiDAR sensors that spin a laser transmitter
and receive reflected lasers. The specification of the LiDAR sensor in this demonstration
is summarized in Table. 5.1. The parameter of return mode describes how to process the
reflected lasers. When a laser hits on multiple objects at one laser emission, multiple reflected
lasers return to the LiDAR sensor, which often occurs in the case of emitting lasers to a tree.
This parameter specifies the number of returned lasers and there are strongest return mode
and dual return mode. The strongest mode only records the strongest reflected power among
the reflected lasers. On the other hand, the dual return mode records the strongest and the
second strongest reflected power. Once the configuration of the LiDAR sensor is set, the
LiDAR sensor outputs data with the following packet structure. Velodyne LiDAR sensors
broadcast position packets and data packets. Since a global positioning system is not used
in this demonstration, only data packets are focused. 16 lasers are emitted for each azimuth
angle and it takes 55.296 µs to charge and reemit 16 lasers in the next azimuth angle. As
shown that the data of 16 lasers is saved in one block and there are 24 blocks in one packet, it
takes 1.33 ms to send on one packet so that packet rate becomes 754 packet/s. The azimuth
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(a) The overview of the automated driving trial
field.

(b) The installed sensors on the RSUs.

Figure 5.1: The automated driving trial fields and the RSUs.

Figure 5.2: The hardware installed on the ego vehicle.
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Table 5.1: Specification of the Velodyne LiDAR sensor.

Parameter Value

Laser range 100 m
Error ±3 cm

Elevation angle range −15◦～+15◦

Resolution of elevation angle 2◦

Azimuth angle range 360◦

Resolution of azimuth angle 0.1◦～0.4◦

Scanning frequency 10 Hz
Return mode strongest
Wavelength 903 nm

angle is explicitly recorded for every two groups of 16 lasers. The azimuth angle of the
second group is calculated by using the recorded angle and the next azimuth angle.

Fig. 5.4 shows the scenario of the driving path and the communication links in this demon-
stration. The yellow circles show the coverage of the LiDAR sensors, the red dotted lines
show the communication links. The ego vehicle starts from the near RSU3 in Fig 5.1a,
passes through the RSU1, and arrives at RSU4. Since the ego vehicle wants to know whether
there are obstacles on the driving path in advance, cooperative perception with the RSU1
and the RSU4 is performed. When the ego vehicle locates between the RSU3 and RSU1,
it receives LiDAR sensor data from the RSU1 and RSU4 to visualize blind spots as shown
in Fig. 5.4a. After the ego vehicle passer through the RSU1, it receives LiDAR sensor data
only from RSU4 because it does not need the information about a backward view as shown
in Fig. 5.4b.

In order to realize this scenario, we construct a network as shown in Fig. 5.5. The solid
lines show wired connections, the dotted lines show wireless connections, the green lines
show packet flows at the first phase of the driving phase, and the red lines show packet flows
at the second phase of the driving phase. As explained in the driving scenario, the ego vehicle
driving between the RSU3 and the RSU1 receives the LiDAR sensor data from the RSU1 and
RSU4. The gree lines from the two LiDAR sensors reflect this scenario. When the ego vehicle
is between the RSU1 and the RSU4, it receives the LiDAR sensor data only from the RSU4
as shown by the red lines. The Next Unit of Computing (NUC) that directly connects to the
LiDAR sensor in the RSU4 has to output the LiDAR sensor data from the two interfaces.
In order to achieve this function, Open Virtual Switch (OVS) is installed in the NUC and
duplicates the sensor data packets for multiple outputs.

After receiving multiple LiDAR sensor data, the ego vehicle has to enter the sensor data
into Robot Operating System (ROS) for automated driving applications such as perception
and navigation. Fig. 5.6 shows the interface between hardware and ROS applications. Basi-
cally, One LiDAR sensor needs one driver to use in ROS applications. When multiple LiDAR
sensors are set as the default configuration and are connected to one device, running the same
number of drivers is not enough. Using the default configuration leads to all data packets

77



Figure 5.3: The structure of packets from a Velodyne LiDAR sensor cited from VLP-16
user manual.

(a) The first phase of the driving path and
the communication links.

(b) The second phase of the driving path and
the communication links.

Figure 5.4: The driving scenario of cooperative perception.
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Figure 5.5: The network architecture used in the automated driving trial field.

Figure 5.6: The interface between hardware and ROS applications.
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with the same IP addresses and port numbers so that the drivers cannot identify each LiDAR
sensor. Therefore, OVS in each NUC changes the IP addresses and the port numbers of the
sensor data packets and the combination of the IP address and the port number is unique to
each LiDAR sensor. On the other hand, the drivers specify the IP address and the port number
by receiving reconfigure messages.

5.2 Results
Fig. 5.7 and Fig. 5.8 show the obtained sensor data in the ego vehicle and established con-
nections. The ego vehicle has the color points and the infrastructures have green points. The
white dotted lines show the established connections in each scene. Fig. 5.7 shows the scene
where the ego vehicle approaches the RSU1. In this phase, the RSU4 sends its sensor data to
the RSU1, and the RSU1 sends both its and obtained sensor data to the ego vehicle as shown
in the white dotted lines. Fig. 5.8 shows the scene where the ego vehicle passes through the
RSU1 and approaches the RSU4.

We measured the established connections in these scenes by using iperf3. The measure-
ment is performed between the WiGig interfaces. When the ego vehicle starts to establish the
connection, the ego vehicle has to turn right to approach the goal. This movement makes the
received signal strength weak due to the strong directivity of the millimeter-wave antenna.
Therefore, the average capacity during communicating with the RSU1 is from 1.8 Gbps to
2.1 Gbps. On the other hand, when the ego vehicle communicates with the RSU4, the direc-
tion to the RSU4 is stable so that the average capacity is about 2.1 Gbps. Considering that
a Velodyne LiDAR sensor sends the sensor data at 754 packet/s × 1200 bytes ≃ 7.2 Mbps,
these capacities can send the sensor data within about 10 msec delay even if the RSU sends
two sensor data, which can support automated driving systems processing at 100Hz.

Since the simulation has derived the required sensor data rate at the intersection in Fig. 4.11,
it is possible to derive the driving speed that ensures safe automated driving. In Tokyo In-
stitute of Technology campus Ookayama campus, it does not allow to drive at more than 20
km/h so that the driving speed of the ego vehicle is set to 20 km/h. The combination of the
throughput measurement at 60 GHz and the fixed driving speed of the ego vehicle derives
the maximum velocity of the target vehicle that the ego vehicle can avoid. Fig. 5.9 shows
the areas that become targets of deriving the maximum velocity. This separation is based on
which antenna the ego vehicle communicates with. From the Fig. 4.11, the ego vehicle can
drive safely at 42-45 km/h (45 km/h) in the area1 (area2). This discussion shows that the ego
vehicle can avoid a collision with a vehicle that exceeds about 25 km/h from the rule.
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Figure 5.7: The scene where the ego vehicles drives between the RSU3 and the RSU1.

Figure 5.8: The scene where the ego vehicles drives between the RSU1 and the RSU4.
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Figure 5.9: The areas separated by the established connections.
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Chapter 6

Conclusion

This chapter concludes this thesis and presents future prospects. Chapter 2 shows the tech-
nologies that are used for cooperative perception. Moreover, the current status of cooperative
perception for safe automated driving and the works about the requirements are also intro-
duced. It shows that cooperative perception using processed sensor data is mainly analyzed
due to using the current V2X communications as wireless interfaces. Although the works
about cooperative perception using raw sensor data are less than using processed sensor data,
its necessity is widely understood so that its use case is included in cooperative perception.
The concept and the framework of safe automated driving are also introduced and they show
that safety is mainly discussed from the viewpoint of vehicle control.

Chapters 3 and 4 tackle the goal of this thesis and derive the sensor data rate required
for safe automated driving and the realized safe automated driving for each V2X commu-
nication system. The key points of this analysis are that both the vehicle behavior and the
recognition process are comprehensively considered to derive realistic requirements, which
is not achieved in the current research. Based on the traffic fatalities on two-lane roads that
often occur and the expected vehicle behavior, chapter 3 particularly analyzes the overtaking
scenario. This analysis fixes weather conditions and assumes no delay among the processes
and no failure of automotive sensors and vehicle components. Since cooperative perception
can be performed by sending raw sensor data from the blocking vehicle to the ego vehicle,
whether the ego vehicle uses cooperative perception or not has an effect on the recognition
process and the requirements. Firstly, the results show that, as the velocity becomes higher,
the required sensor data rate increases drastically. In detail, the effect of considering the driv-
ing path becomes dominant at low velocity, and the comfortable braking becomes dominant at
high velocity. Secondly, cooperative perception realized by the conventional and millimeter-
wave communications is discussed. Techniques of cooperative perception using 30 and 60
GHz millimeter-wave communications make it possible to safely overtake at around 50 and
65 km/h under dbe = 10 m due to the availability of sharing large sensor information. The
derived requirements and the comparison will help to utilize cooperative perception using
millimeter-wave communications in terms of improving safety and reducing the cost of in-
stalling automotive sensors on automated driving vehicles. Moreover, it will help to design
the specification of V2X communication that considers how fast automated driving vehicles
want to drive.

Chapter 4 changes the focus to intersections. From the statistics of traffic fatalities, pass-
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ing through an unsignalized intersection is selected. This analysis also fixes weather condi-
tions and assumes no delay among the processes and no failure of automotive sensors and
vehicle components as the overtaking scenario. As vehicle behavior and recognition process
are considered in the overtaking scenario, both factors are also considered in this scenario.
Moreover, this scenario considers an additional factor that the ego vehicle decides whether
braking has to be performed or not to reduce unnecessary braking and alleviate traffic con-
gestion at the intersection. Firstly, the results show that as the velocity Vt becomes higher, the
required sensor data rate also increases drastically under using CVFH. Secondly, it is shown
that cooperative perception realized by 30 and 60 GHz millimeter-wave communications can
support the safe crossing at 55 and 62 km/h while it is hard for the conventional 5 GHz com-
munications to support sharing raw sensor data to realize the safe crossing. These results
conclude that, considering the outage capacity, using 60 GHz for cooperative perception is
a promising way to perform safe automated driving. These results will help to give great
motivation to install millimeter-wave V2I communications to intersections so that automated
driving vehicles do not have to drive too carefully and can improve safety.

Chapter 5 shows the demonstration of cooperative perception using millimeter-wave V2I
communications. The vehicle drives through the RSU and receives multiple LiDAR sensor
data via V2I millimeter-wave communications. Once the vehicle establishes a connection,
obstacles in blind spots can be recognized by the vehicle. The combination with the results
of chapter 4 shows that the vehicle that follows the rule can avoid a collision with a vehicle
that exceeds 20 km/h from the maximum allowed velocity. These results will help to utilize
millimeter-wave communications for avoiding collisions, which is hard for conventional V2X
communications to do.

The end of this chapter discusses the extension to different scenarios and future works
as future perspectives and finishes the thesis. Although these simulations assume very fun-
damental scenarios, they can be utilized for different foreseeable and preventable scenarios,
and this topic is discussed from the macro perspective. The different cases can be divided
into extending the traffic environment and considering more realistic conditions. In the case
of extending traffic environment, since most traffic roads consist of intersections and straight
roads and the above chapters analyze the driving scenarios that often cause traffic fatalities,
these results can be used to estimate the required sensor data in a macro driving scenario.
Realistic conditions relate to many disciplines such as wireless communications, traffic envi-
ronment, vehicle behavior, and recognition process. Since our results are based on very basic
scenarios, it is possible to compare these results and the results that consider more realistic
conditions. This comparison will give us which condition is critical to the required sensor
data rate and tell the priority of conditions. The cases other than foreseeable and preventable
cases may need processes of other disciplines. The following bullets explain each case.

• Foreseeable and unpreventable cases
These cases relate to a compromise to safety. Excessive safety will lead to a high charge
to users and a high cost to manufacturers, and excessive safety is not equal to no traffic
fatalities. Therefore, insurance for automated driving will be added to the simulations

• Unforeseeable and preventable cases
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These cases have to be changed to foreseeable cases at the next time. Therefore, learn-
ing systems have to be added.

• Unforeseeable and unpreventable cases
These cases are hard for automated driving vehicles to prevent traffic accidents by
themselves. Therefore, these cases will also additionally consider insurance for auto-
mated driving vehicles.

Future works that should be prioritized from the micro perspective consist of two works.
The first work is the sophistication of the requirements by considering the results of outdoor
experiments. Using recognition packages in outdoor experiments will help to improve the
derived requirements and can show the improvement of recognition rate due to cooperative
perception. The second work relates to the wireless communication part. For example, the
delay of transmitting sensor data is not considered for simplicity in this analysis, and multiple
connections are not considered in the intersection scenario. A large delay will lead to a
misalignment of the point clouds so that the recognition rate will get degraded. Multiple
connections to a RSU will lead to allocating fewer radio resources to the ego vehicle than our
intersection. These two works will help to get close to a realistic environment.
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