T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)	
Title(English)	Numerical Modeling Methods for Full-Scale Viscoelastic Dampers subjected to Long-Duration Loading considering Heat Generation and Transfer
著者(和文)	デイブ モンテリャノ オサビル
Author(English)	Dave Montellano Osabel
出典(和文)	学位:博士(学術), 学位授与機関:東京工業大学, 報告番号:甲第11859号, 授与年月日:2022年3月26日, 学位の種別:課程博士, 審査員:佐藤 大樹,元結 正次郎,吉敷 祥一,淺輪 貴史,大風 翼
Citation(English)	Degree:Doctor (Academic), Conferring organization: Tokyo Institute of Technology, Report number:甲第11859号, Conferred date:2022/3/26, Degree Type:Course doctor, Examiner:,,,,
 学位種別(和文)	博士論文
Category(English)	Doctoral Thesis
 種別(和文)	
Type(English)	Outline

Numerical Modeling Methods for Full-Scale Viscoelastic Dampers subjected to Long-Duration Loading considering Heat Generation and Transfer

by

Dave Montellano OSABEL

- 1. Introduction
 - 1.1 Background of the study
 - 1.1.1 High-rise buildings and viscoelastic dampers
 - 1.1.2 Fundamentals of viscoelastic behavior
 - 1.1.3 Factors affecting viscoelasticity
 - 1.2 Modeling methods and studies on viscoelastic dampers
 - 1.3 Problem statement and objectives of the study
 - 1.4 scopes and organization of the study
- 2. Understanding the Heat Transfer Aspect: Three-Dimensional Finite Element Analysis of Viscoelastic Dampers with Different Configurations
 - 2.1 Introduction
 - 2.2 Overview of the 3D finite element analysis method
 - 2.2.1 Transient-state analysis
 - 2.2.2 Steady-state analysis
 - 2.3 Re-evaluation of a benchmark study
 - 2.3.1 Modeling the damper for 3D analysis
 - 2.3.2 Local temperatures, properties and responses
 - 2.3.3 Damper behavior due to heat generated, conducted, stored and dispersed
 - 2.4 Numerical investigation of heat flow in different damper configurations
 - 2.5 Three-dimensional to one-dimensional heat flow
 - 2.6 Conclusions
- 3. Time-history Analysis Methods for Viscoelastic Dampers subjected to Long-Duration Loading with Heat Transfer Analysis
 - 3.1 Introduction
 - 3.2 One-dimensional (1D) modeling approaches
 - 3.2.1 Modeling the viscoelastic damper for 1D approach
 - 3.2.2 Long-duration (LD) method: An overview
 - 3.2.3 Fast long-duration (FLD) method: An update
 - 3.3 Numerical examples: Comparison between LD and FLD methods
 - 3.3.1 Different damper configurations
 - 3.3.2 Different loading conditions
 - 3.3.3 Different viscoelastic materials
 - 3.4 Key comments on the accuracy and applicability of the FLD method
 - 3.4.1 Adequacy of the FLD method
 - 3.4.2 Calculation time
 - 3.5 Conclusions
- 4. Evaluation Method for Wind Engineering Application of Viscoelastic Damper considering the Effects of Heat Generation and Transfer
 - 4.1 Introduction
 - 4.2 Experimental data

- 4.2.1 Random waveform of damper deformations due to wind load
- 4.2.2 Equivalent sinusoidal waveform of damper deformations
- 4.2.3 Test specimen and setup
- 4.2.4 Experimental results
- 4.3 Three-dimensional (3D) finite element analysis
 - 4.3.1 Modeling the viscoelastic damper
 - 4.3.2 Ideal value of heat transfer coefficient $\Box c$
 - 4.3.3 Single value of \Box c adopted for all loading cases
 - Time-history analysis using LD method
 - 4.4.1 Adequacy of the FLD method
 - 4.4.2 Calculation time
- 4.5 Conclusions

4.4

- 5. Three-Dimensional Analysis of Full-Scale Viscoelastic Damper subjected to Long-Duration Wind Loading
 - 5.1 Introduction
 - 5.2 Experimental data
 - 5.2.1 Test specimen and setup
 - 5.2.2 Wind-induced damper deformations
 - 5.2.3 Experimental results
 - 5.3 Three-dimensional (3D) finite element analysis
 - 5.3.1 Modeling the full-scale viscoelastic damper
 - 5.3.2 Determining the appropriate value of $\Box c$
 - 5.3.3 Simulation results
 - 5.4 Conclusions
- 6. Experimental Study on a Full-Scale Viscoelastic Damper at Extreme Low Ambient Temperature
 - 6.1 Introduction
 - 6.2 Experimental data
 - 6.2.1 Damper specimen
 - 6.2.2 Test setup
 - 6.2.3 Loading conditions and measurements
 - 6.3 Three-dimensional (3D) finite element analysis
 - 6.3.1 Measured temperatures
 - 6.3.2 Deformations
 - 6.3.3 Stiffness
 - 6.4 Conclusions
- 7. Performance Evaluation Method for Full-Scale Brace-Type Viscoelastic Damper considering Ambient Temperature
 - 7.1 Introduction
 - 7.2 Theoretical background: Overview of the simplified evaluation rule
 - 7.3 Proposed modification of the simplified evaluation rule
 - 7.4 Conclusions
- 8. Summary and Conclusions