
論文 / 著書情報
Article / Book Information

題目(和文) FPGAベースの機械学習アクセラレータの設計最適化に関する研究

Title(English) A Study on Design Optimization for FPGA-based Machine Learning
Accelerator

著者(和文) 神宮司明良

Author(English) Akira Jinguji

出典(和文) 学位:博士（工学）,
 学位授与機関:東京工業大学,
 報告番号:甲第11761号,
 授与年月日:2022年3月26日,
 学位の種別:課程博士,
 審査員:中原 啓貴,髙橋 篤司,本村 真人,劉 載勲,佐々木 広,高前田 伸也

Citation(English) Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第11761号,
 Conferred date:2022/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

A Study on Design Optimization for
FPGA-based Machine Learning Accelerator

Akira Jinguji

Tokyo Institute of Technology

March, 2022

Contents

1 Preliminary 4
1.1 Background . 4
1.2 FPGA . 5

1.2.1 Configuration . 5
1.2.2 Architectural Features 6
1.2.3 High-Level Synthesis (HLS) Design 6

1.3 Machine Learning (ML) . 7
1.3.1 ML for Embedded Systems 7
1.3.2 Random Forest . 8
1.3.3 Deep Neural Network 10

1.4 Objective . 11

2 An FPGA Realization of a Random Forest with k-Means
Clustering using HLS 14
2.1 Introduction . 14

2.1.1 Acceleration of the Random Forest 14
2.1.2 FPGA Realizations . 15

2.2 High Performance and Short Time Design 16
2.2.1 Comparison of Computation Model 16
2.2.2 Short Time Design Using HLS 18

2.3 Conventional Techniques . 18
2.3.1 Fixed-Point Representation 18
2.3.2 Pipeline Stages by Loop Unrolling 20

2.4 Comparator Sharing by k -Means Clustering 23
2.4.1 Hardware Reduction 23
2.4.2 k -Means Clustering . 24
2.4.3 Tool Flow . 25

2.5 Experimental Results . 26
2.5.1 Implementation Environment 26
2.5.2 Compared with Conventional Methods 29
2.5.3 Compared with Other Platforms 30

1

2.6 Conclusion . 31

3 An FPGA Realization of OpenPose with a Sparse Weight
Convolutional Neural Network (CNN) 32
3.1 Introduction . 32

3.1.1 Pose Estimation . 32
3.1.2 Sparseness for a Large CNN 33

3.2 Sparse Weight CNN . 34
3.2.1 CNN for OpenPose . 34
3.2.2 Convolutional Operation 34
3.2.3 Weight Sparseness . 35

3.3 Sparse Weight Architecture 35
3.4 FPGA Implementation . 37

3.4.1 High-Throughput Multi-Stage CNN 37
3.4.2 Overall Architecture 37

3.5 Experimental Results . 38
3.5.1 Training Results . 38
3.5.2 Implementation Results 38
3.5.3 Compared with a High-End GPU 40

3.6 Conclusion . 40

4 Weight Sparseness for a Feature Map Split-CNN Toward
Low-End FPGAs 41
4.1 Introduction . 41

4.1.1 Computational Bottleneck on Low-End FPGAs 41
4.1.2 CNN Implementation on Low-End FPGAs 42

4.2 Memory Size Optimizations 43
4.2.1 Definition of a Split-CNN 43
4.2.2 Operation of a Split-CNN 43
4.2.3 Scheduling of Computation 44

4.3 FPGA Implementation . 46
4.3.1 Overall Architecture 46
4.3.2 Processing Element Architecture 47
4.3.3 Operation and Communication for PEs 48
4.3.4 Zero-Skip Computation for Sparse Weights 48
4.3.5 Scheduling for Feature Map Split 50

4.4 Experimental Results . 52
4.4.1 Implementation Setup 52
4.4.2 Buffer Size and Accuracy by a Split-CNN 52
4.4.3 Resource Usage and Peak Performance 53
4.4.4 Performance Analysis for Each Layer 53

2

4.4.5 Comparing Classification Performance 54
4.5 Conclusion . 55

5 An FPGA Implementation of a Multi-Core Neural Network
Design using HLS 56
5.1 Introduction . 56

5.1.1 FPGA Design using HLS 56
5.1.2 Limitations of HLS Design 57
5.1.3 Parallelism in CNN . 57

5.2 Architecture . 57
5.2.1 Overall Architecture 57
5.2.2 Primary Interface . 58
5.2.3 Core Architecture . 58
5.2.4 Processing Element Architecture 60
5.2.5 System Operation . 61

5.3 Instruction Set . 63
5.3.1 Overview . 63
5.3.2 Control Instruction . 63
5.3.3 SIMD Instruction . 64
5.3.4 Compression Instruction 64

5.4 Evaluation . 64
5.4.1 High Frequency by Multi-Kernel HLS Design 64
5.4.2 Implementation Results 65
5.4.3 Comparison with Other Platforms 66

5.5 Conclusion . 67

6 Summary 68

Acknowledgements 69

References 70

Publications 76

3

Chapter 1

Preliminary

1.1 Background

A new paradigm of computer systems with machine learning is about to
arrive, along with the practical application of the age of automated or un-
manned societies. In the face of this new society, autonomous systems are
approaching practical application, but they face several challenges. In gen-
eral, a system consists of inputs, outputs, and processing. For instance, in an
automated driving system, various sensors such as cameras are the input, and
the gas pedal, brakes, and steering are the output, and the processing is to
recognize the input information and determine how to drive. Existing tech-
nologies for input and output are sufficient for practical use, but recognition
has been an issue. Until recently, recognition, an essential part of processing,
has been a challenge, but with the development of machine learning, signif-
icant improvements in recognition performance have been realized, and the
realization of autonomous systems is becoming realistic.

An autonomous system has several requirements: high recognition accu-
racy, real-time response time, low power consumption, and low manufactur-
ing cost. There are several computing methods to achieve this, especially in
embedded devices, the most typical of which is the CPU. CPUs in embedded
devices are inexpensive and have low power consumption. However, their
performance may be insufficient for real-time response. Therefore, the use
of processors explicitly designed for the application, such as GPUs, ASICs,
and FPGAs, can be considered. GPUs have high computational performance
for matrix computation, but their power consumption is high, and they are
not suitable for flexible computation, and designing dedicated circuits with
ASICs requires a very high cost for design. We are interested in FPGAs be-
cause they are capable of very flexible computation and have a good balance

4

between moderately high-performance and relatively low design costs. FP-
GAs have a very high potential due to the miniaturization of semiconductor
process size and hard macros. We also believe that by studying the excellent
design of FPGAs, it is possible to exploit their high potential in terms of
computing performance, power consumption, and design cost.

This research proposes an optimization design that satisfies all the con-
straints of computational performance, power consumption, and design cost
on machine learning in autonomous systems. However, the following prob-
lem still exist; as for processing speed, an FPGA allows small and flexible
circuit design, and its processing speed can be improved by co-designing with
the machine learning algorithm itself; as for power consumption, there exists
a trade-off between performance and power consumption; as for the design
cost, it lacks a design flow for a low-cost device for machine learning. We
are paying attention to FPGAs with high potential to meet all constraints
with the above improvements. Our optimization method will bring us one
step closer to realizing autonomous systems and accelerate the arrival of
newcomers.

1.2 FPGA

1.2.1 Configuration

This section describes the structure of an FPGA. An FPGA consists of a
grid of relatively small programmable logic blocks with vertical and horizon-
tal channels between them. A single logic block is small, but a large circuit
can be realized by combining many blocks. The basic structure of a pro-
grammable logic block is a look-up table (LUT) consisting of multiplexers
and flip-flops. Flip-flops are used to construct synchronous outputs and se-
quential circuits. The flip-flop can be connected to the output of the LUT.
The basic logic block is composed of this pair of LUT and flip-flop as the
basic elements and hard macros to improve the performance. The structure
of this block varies from manufacturer to manufacturer and is called CLB
(configurable logic block), LE (logic element), or slice. The basic logic block
can be arbitrarily connected through a switch matrix installed in the routing
path. The switch matrix is made of transfer gates.

The LUTs that make up the logic of an FPGA are volatile memory, and
the transfer gates that make up the switch matrix are also volatile memory.
SRAM data is lost when the power is turned off. Therefore, the FPGA reads
the circuit information (configuration data) from the outside when the power
is turned on. In FPGAs, the delay time of the same logic varies depending

5

on placement and routing. Because FPGAs combine many small logic blocks
and line resources, the length of the wiring and the number of switches to
be routed through vary depending on where the logic blocks are actually
placed. In the case of LSIs manufactured in a microprocessor, the delay of
the placement wiring is larger than the delay of the logic elements. FPGAs
are manufactured and provided as standard LSIs. However, they can also be
used as custom LSIs because they are programmable, and their functions can
be freely designed. In application-specific integrated circuits (ASICs), gate
arrays and standard cells are often used. Since ASICs are manufactured in
semiconductor factories, they require high development costs and a certain
amount of time to manufacture. However, the price per unit can be reduced
through mass production. On the other hand, FPGAs require more cost to
manufacture the circuit, but the cost of writing the circuit data is negligi-
ble. The cost of writing circuit data is negligible, and the manufacturer can
configure a single unit.

1.2.2 Architectural Features

GPUs use processor cores (CUDA cores) and a high bandwidth data transfer
bus to execute threads in a workgroup based on a data-parallel model. On
the other hand, FPGAs are designed based on a pipelined model because
the data communication bandwidth to the CPU and the off-chip memory
bandwidth is narrow. If there is no stall in the pipeline, the communication
with the off-chip memory becomes the input/output of the pipeline. Thus,
the operation can be performed efficiently, even in a narrow bandwidth. The
on-chip memory of FPGAs is larger than that of GPUs and has a dual-port,
so data transfer between pipeline stages can often be done with on-chip mem-
ory. FPGAs have another advantage because custom pipeline stages can be
built in parallel. When the latency of each parallel operation differs, the
GPU is slowed down by the slowest operation (warp divergence). However,
the FPGA can construct a parallel architecture with uniform latency by allo-
cating hardware resources appropriately. In addition to LUTs, FPGAs have
high-density hard macros called DSPs and BRAMs. Unlike logic circuit de-
sign with LUTs, hard macros are implemented as ASIC circuits with specific
functions and thus can realize high operating frequency operations and large
memory capacity at high speed.

1.2.3 High-Level Synthesis (HLS) Design

The design of FPGA logic circuits using hardware description language (HDL)
is much more time-consuming than the software-based design of CPUs and

6

GPUs. Therefore, in recent years, attention has been focused on high-level
synthesis tools that synthesize logic circuits from the C programming lan-
guage. High-level synthesis is creating a hardware description language based
on a program written in a relatively high-level language to realize a logic cir-
cuit. In the conventional RTL level, it is necessary to design the specific
operation at the clock cycle level, which makes it difficult to verify the oper-
ation. High-level synthesis allows design at a high level of abstraction using
high-level languages suitable for algorithm description, thus improving design
efficiency. Resource and clock constraints can be changed by configuration,
and by inserting directives, pipelined, parallel, and standards-compliant in-
put/output and control circuits can be easily generated. By inserting direc-
tives, pipelined, parallel, and standards-compliant input/output and control
circuits can be easily generated. In addition, existing test tools can be used
to verify the operation easily. Xilinx’s Vivado HLS [1] and Intel’s Intel FPGA
SDK for OpenCL [2] have been put to practical use.

HLS design can be achieved in a relatively short period. For example,
Yang et al.’s study [3], which proposes an FPGA implementation using HLS,
was implemented by two workers in one month. On the other hand, there
is a large difference in the achievable operating frequency between the HLS-
generated design and the manual design using HDL. Because it is difficult to
estimate the interconnect delay at the HLS level accurately. This problem is
even more pronounced when implementing large HLS designs [4].

1.3 Machine Learning (ML)

1.3.1 ML for Embedded Systems

Machine learning is a method of analyzing data in which a machine learns
laws from data and recognizes patterns behind the data. Machine learning
applications cover a very wide range of domains, including image recogni-
tion, speech recognition, language processing, and anomaly detection. Ma-
chine learning systems are becoming more and more prevalent in modern
society, such as in search engines, video recommendation functions, security
cameras, smartphones, and automated driving. Conventional rule-based pat-
tern recognition by humans has limited recognition accuracy to process data
existing in the natural world as it is. Machine learning methods for self-
recognition of potential patterns from big data have achieved recognition
accuracy that could not be surpassed by conventional methods, and in some
cognitive tasks, have surpassed the recognition accuracy of human cognition.

We believe that there are two major types of applications of machine

7

Figure 1.1: Example of a classification.

learning: server-side inference and front-side inference. Server-side infer-
ence, such as cloud computing and fog computing, often has small physical
and power consumption constraints and requires overall system throughput.
Front-side inference, such as edge computing and Embedded Systems, has
very severe physical and power constraints. Embedded systems need to be
small in size due to physical constraints, and the response time of the sys-
tem is important because real-time processing is required. Self-sustaining
systems, such as automated driving and robots, are embedded systems and
require front-side reasoning with severe constraints. These autonomous sys-
tems are expected to be widely used in society in the future and will become
increasingly important. This research investigates how to realize machine
learning in Embedded Systems.

1.3.2 Random Forest

A decision tree is a popular method for various machine learning tasks. When
a tree is grown very deep to learn highly irregular patterns, it overfits training
sets. In that case, it has a low bias, while it has a very high variance.
Fig. 1.2 shows an example of a decision tree that classifies a data set shown
in Fig. 1.1. In Fig. 1.2, Xi denotes a feature variable for the dataset, and
Ci denotes a label. Since the decision tree partitions the data set with a
single feature variable, it often misclassifies out-lier labels. A random forest
(RF) [5] is an ensemble learning method for classification and regression, and
it consists of multiple decision trees. At learning, each decision tree is built by
different (randomized) sub-sampling data from the same training set in order
to reduce the variance. Fig. 1.3 shows an example of the RF, which consists

8

Figure 1.2: Example of a decision tree.

Figure 1.3: Example of a random forest.

9

of b decision trees and a voter. At first, decision trees branch corresponding
to given feature variables. Then, they output the matched label. Next, the
voter performs a majority decision of the labels from decision trees. Finally,
it detects the most frequent label as a classification result. Since the RF uses
training feature variables selected at random sampled, decision trees with
low correlation are built. As a result, it improves accuracy and versatility.

The advantages of the RF are shown as follows [5]:

1. Classification accuracy is high, and it operates correctly even if the
feature variables are from several hundred to thousands.

2. It is possible to estimate the importance of the feature variables for
each label variable.

3. It effectively works with the dataset even if it lacks several feature
variables.

4. The number of individual errors is maintained even in the unbalanced
dataset.

On the other hand, the disadvantages are as follows:

1. Too deep decision trees fall into overfitting.

2. Classification accuracy is low with a small number of learning data.

In addition, classification accuracy is greatly affected by hyperparameters.
The RF can be built with relatively appropriate hyperparameters using a grid
search algorithm and encouraging parameters.

1.3.3 Deep Neural Network

Deep Neural networks are a type of machine learning that has received great
attention due to their high accuracy. The formal neuron [6], the prototype
of neural networks, was published in 1943. In 1986, backpropagation [7],
an algorithm used to train neural networks, was proposed. In 1995, the
convolutional neural network [8] was proposed, and image recognition was
applied. However, at that time, neural networks did not attract as much
attention as they do today due to the limitations of computing power.

Neural networks have been attracting attention again in recent years,
mainly due to the GPU’s improvement of computational power, which makes
it possible to learn complex models. In particular, convolutional neural net-
works (CNNs) have received much attention for image recognition tasks since

10

AlexNet [9] won the 2012 competition. CNNs are known to increase recog-
nition accuracy by increasing the number of layers. In VGG [10], we suc-
cessfully trained a model with many layers by using the transition learn-
ing method. Res-Net [11] used residual learning to learn deep models and
successfully trained a network with 152 layers. Since the model size is in-
creasing faster than the computational power of computers, many efforts
are also being made to improve the trade-off between computational cost
and recognition accuracy. Mobile-Net [12] proposed a model that improves
the trade-off between computational cost and recognition accuracy, focusing
on embedded devices. SE-Net [13] introduced a lightweight computational
squeeze-and-excitation structure to improve accuracy with little overhead.
EfficientNet [14] quantitatively evaluates the computational complexity of
network search and CNN models using reinforcement learning and clarifies
the trade-off between recognition accuracy and computational complexity.

1.4 Objective

The objective of this research is to design an FPGA-based machine learn-
ing accelerator that satisfies the three constraints of inference speed, power
consumption, and design cost. We show that optimizations that improve the
trade-off between recognition accuracy and performance in machine learning
can significantly improve the inference speed and power consumption con-
straints at the cost of a small amount of recognition accuracy. In addition,
we propose a design flow using high-level synthesis, which makes it possible
to easily implement the optimization method described above and to realize
a high-performance accelerator implementation in a short period of develop-
ment.

In Chapter 2, we will focus on random forests and propose to design
a random forest using HLS. In this chapter, to further reduce the amount
of hardware, we propose an optimization that uses k-means clustering to
share the comparators of branching nodes on the decision tree. We have
improved the trade-off between recognition accuracy and hardware usage for
random forests by sharing the thresholds. We have reduced the design cost
by proposing a series of design flows from model training to threshold sharing
and hardware design for random forests. We implemented this random forest
on a Xilinx FPGA and achieved a speedup of more than 8.4 times compared
to the conventional method. In this chapter, we confirmed that the proposed
optimization improves the trade-offs related to recognition accuracy and that
the HLS-based design flow enables high-performance FPGA design in a short
time.

11

In Chapter 3, we will focus on more practical tasks such as human pose
estimation and CNNs, which have higher recognition accuracy. Since CNNs
are computationally intensive, parallelization is not enough to speed up in-
ference in real-time. In order to achieve faster inference, we focused on the
sparsification of CNNs. Optimization by sparsification improves the trade-off
between computational complexity and recognition accuracy of CNNs. We
then propose an indirect memory access architecture for efficient convolu-
tional operations of sparse CNNs. With this work, we have achieved about
3.5 times faster inference speed and about 13 times better power efficiency
compared to the existing GPU method. We have greatly improved the infer-
ence speed and power consumption issues of CNNs, which consumed 55W.

In Chapter 4, we discuss how to realize CNNs on FPGA devices with
smaller power consumption. There is a demand to achieve machine learning
with smaller power consumption. CNNs have large weights and internal data
called feature maps, which pose a challenge for FPGAs in terms of memory
capacity. The problem of large weights has been solved by sparsification
introduced in Chapter 3, but the memory capacity of feature maps is an issue.
In order to solve this problem, we use Split-CNN, which splits the feature map
and processes it in time. We have clarified the trade-off between recognition
accuracy and hardware usage by splitting the Split-CNN. We designed a
memory buffering method and scheduling for Split-CNN and implemented it
on a PYNQ-Z1 FPGA board, a low-end FPGA with a power consumption of
about 3W. With this achievement, we have succeeded in reducing the power
consumption to less than one-third while achieving 3.1 times faster speed
compared to GPU. We have improved the power consumption problem by
realizing CNN on a low-end FPGA.

In Chapter 5, we proposed a CNN accelerator on a low-end FPGA with
DSP utilization exceeding 90% and operator utilization efficiency exceeding
90%. The computational power of a computer is determined by the degree
of parallelism, the efficiency of operator usage, and the operating frequency.
Now that we have implemented a design with sufficiently high parallelism
and efficiency, we need to increase the operating frequency to realize faster
inference on FPGAs. Designing large circuits with HLS has the problem of
decreasing the operating frequency. Designing with HLS also has a problem
of scaling to large circuits. We will consider using multiple small circuit mod-
ules designed using high-level synthesis to achieve a high operating frequency.
We propose an architecture using a ring bus and computation scheduling for
CNNs to hide the communication overhead caused by partitioning the cir-
cuits. In order to easily map complex models by partitioned circuits, we have
developed an instruction set architecture dedicated to CNNs and developed
a deep learning compiler for the proposed architecture to solve the design

12

cost problem. When implemented on a Xilinx FPGA board ZCU102, we
were able to achieve an operating frequency of 500MHz despite the relatively
large design occupying more than 140k LUTs and 800 DSPs.

Through this research, we have achieved an FPGA-based accelerator that
simultaneously improves the three constraints of inference speed, power con-
sumption, and design cost by using an HLS-based design method and opti-
mization with a slight sacrifice of recognition accuracy.

13

Chapter 2

An FPGA Realization of a
Random Forest with k-Means
Clustering using HLS

2.1 Introduction

2.1.1 Acceleration of the Random Forest

A decision tree is a popular method for various machine learning tasks. When
a tree is grown very deep to learn highly irregular patterns, it over-fits train-
ing sets. In that case, it has a low bias, while it has a very high variance.
Since the decision tree partitions the data set with a single feature variable,
it often misclassifies outlier labels. A random forest (RF) [5] is an ensemble
learning method for classification and regression, and it consists of multi-
ple decision trees. As for training, each decision tree is built by different
(randomized) samples from the same training set. Decision trees with low
correlation are built since the RF uses training feature variables selected at
random sampled. As a result, it improves accuracy and versatility compared
with a single decision tree-based classification. The RF is widely used for
classification. For example, they are a key point matching [15], a segmen-
tation [16], a pedestrian detection [17, 18], a human pose estimation [19], a
face direction estimation [20], and an IP address search for the Internet [21].
These applications are demanded to be recognized in real-time. However,
since the classification speed in the CPU is too slow, hardware acceleration
is necessary. Also, low power consumption is desired since it is often used
in embedded systems. However, a single instruction multiple data (SIMD)
architecture, typified by GPU, is not suitable for the RF with three reasons
as follows:

14

1. Higher precision:

Each node in the decision tree can be evaluated by if-then-else state-
ments to evaluate decision trees in the RF. A conditional expression
in the if-then-else statement compares an input with a constant value,
which is represented by a floating-point representation. Although the
GPU supports a double-precision floating-point, such high precision
is not required for the RF classification. Therefore, a high-precision
arithmetic circuit is inefficient in hardware and power consumption.

2. Uniformly processing (CUDA) cores:

The GPU runs the SIMD operations, having a large uniformly pro-
cessing core. These cores are specialized in parallel data computation.
However, the RF consists of decision trees of a different size, which
causes an unbalanced computation. Since a warp divergent frequently
occurs, computation time would be bound by the decision tree, the
longest path.

3. Higher cost for the all-to-all communication:

The GPU can be performed at a relatively high-speed communication
between near processing cores with the same local memory. In contrast,
its communication penalty is large for all-to-all communication. All-to-
all communication would always occur since an RF requires the whole
majority detection after evaluating all the decision trees.

2.1.2 FPGA Realizations

Since the FPGA can configure a dedicated all-to-all communication circuit,
it is possible to configure FPGA heterogeneous cores with different decision
tree sizes and appropriate variable bit length circuits. Thus, the FPGAs
are suitable for accelerating the RF. Becker et al. used decision trees to
accelerate object tracking. They focused on heavily parallelizing the clas-
sification and converted the input data into a dedicated representation in
the FPGA [22]. Essen et al. showed a pipelined architecture and a single
instruction multiple threads (SIMT) algorithm for the RF on FPGA. Also,
they compared the FPGA-based implementation with the multicore CPU
and the GPU [23]. Oberg et al. implemented the RF on the FPGA with
the Kinect depth-image sensor for the Forest Fire pixel classification algo-
rithm [24]. However, the conventional realizations are designed by the RTL
description. Compared with the software-based design, it takes an enormous
amount of development time [25]. As for the RF design, since its structure is

15

completely different for each dataset, it is not practical to tune the architec-
ture by the RTL description. In recent years, many high-level synthesis tools
have been proposed to reduce the development time. A typical high-level
synthesis supports the C/C++ codes as input design. Especially, the Intel
SDK for OpenCL [2] and the Xilinx SDSoC [26] are system-level design tool
that includes system level profiling, automated software acceleration in pro-
grammable logic, automated system connectivity generation, and libraries
to speed programming. Therefore, it can accelerate the target application
with a short development time. In this chapter, we accelerate the RF on the
FPGA. An acceleration method of the RF for training using the FPGA has
already been proposed [27]. In this chapter, we assume that the learning is
done offline. We compare the software-based design such as a CPU and a
GPU for the classification time and power consumption efficiency.

2.2 High Performance and Short Time De-
sign

2.2.1 Comparison of Computation Model

In recent years, Altera Corp. has promoted the Altera SDK for OpenCL
for the FPGA development environment, and Xilinx Inc. also has released
the SDSoC. These tools include system-level profiling, automated software
acceleration in programmable logic, automated system connectivity genera-
tion, and libraries to speed programming. The GPU programming model is
applied directly provides the familiar C/C++ application development ex-
perience. Since the target computation models are different, it is hard to
accelerate the application even if we used such a system-level tool.

Here, we explain the programming model for the FPGA fitted system
and the GPU fitted one. Fig. 2.1 shows an architecture model for the GPU,
while Fig. 2.2 shows that for the FPGA. For the GPUs, it runs the threads in
the workgroup to the data-parallel model by using a large number of CUDA
cores and wideband data transfer memory such as DDR5 off-chip memories.
On the other hand, for the FPGA, since data communication bandwidth, for
off-chip memory is narrow, it tends to configure the pipeline model in the
workgroup. When the pipeline stall is free, communications with the off-chip
memory are only input and output of the pipeline. Therefore, the FPGA
can realize a high-throughput operation even if it has a narrow band to the
off-chip memories. Fortunately, since the FPGA has more on-chip memories
than the GPU, data transfer between the pipeline stages on the FPGA is
possible. The modern system design tools for the FPGA provide a channel

16

Figure 2.1: Computation model for the GPU.

Figure 2.2: Computation model for the FPGA.

17

to make an on-chip communication between pipeline stages. Furthermore,
another advantage of the FPGA is that it is possible to realize a customized
pipeline stage (in other words, it can realize a heterogeneous core) in parallel.
When the latency of each parallel operation is different, its computation time
for the GPU would be bound by the longest one. On the other hand, the
hardware resources in the FPGA are appropriately distributed, it is possible
to realize a heterogeneous parallel architecture with uniform latency.

2.2.2 Short Time Design Using HLS

Another feature of the system design tool is a short design compared with the
conventional HDL design. The modern system-level design, such as an Intel
SDK for OpenCL and a Xilinx SDSoC, supplies the board support package
(BSP) for recommended FPGA boards. The BSP prepares the IP cores and
external memories to bridge the host program and the kernel program on the
host processor. For the conventional FPGA design, since the programmer de-
signed them in the RTL description, it could not respond to frequent changes
in long-term design. Using a system-level design can generate the configu-
ration data that automatically connects with the user program. Therefore,
since it is possible to reduce design time remarkably, the programmer can
concentrate on tuning architectures. The remaining problem for the RF de-
sign on the FPGA is the C/C++ code refactoring, which consumes design
time. In the chapter, we propose the krange tool flow, which automatically
generates optimized C/C++ code to reduce the design time.

2.3 Conventional Techniques

2.3.1 Fixed-Point Representation

As shown in Fig. 2.2, the bandwidth between the off-chip memory and the
kernel on the FPGA becomes a bottleneck. If-then-else statements can ex-
press each node in a decision tree. For many random forest software libraries,
a conditional expression in the if statement compares a feature variable with a
constant value represented by a 32-bit floating-point representation. We use
an n-bit signed fixed-point representation instead of a 32-bit floating-point.
Fig. 2.3 shows the pseudo-codes for the decision tree using a floating-point
and 14-bit signed fixed-point representation. Note that, in the right side
pseudo code, the most signification bit (MSB) represents a sign, while the
latter bits represent a number. Although the standard C/C++ supports
only 8, 16, 32, and 64-bit integers, modern high-level synthesis tools sup-

18

Figure 2.3: Example of a fixed-point representation.

19

Figure 2.4: Example of a multiplexer tree realization for a decision tree.

port variable bit integers using an appropriate mask. Depending on the bit
width, a fixed-point representation lacks accuracy compared with a floating-
point one. Thus, a fixed-point representation may cause misclassification.
However, since it compresses the off-chip memory bandwidth to n, it can
accelerate the classification. Furthermore, since multiplexer trees for a fixed-
point are simplified, they are faster and smaller than floating-point-based
multiplexers.

2.3.2 Pipeline Stages by Loop Unrolling

We connect decision trees in series to form a deep pipeline with on-chip
memory. It increases the system throughput. Also, we realize the voter by
the pipeline circuit. Fig. 2.4 shows an example of decision trees and their
hardware realization by a multiplexer tree. When the decision trees are
written by a for statement, as shown in Fig. 2.5, the high-level synthesis tool
sequentially traces decision trees by a shared multiplexer circuit. Conversely,
we can increase the throughput by using an #pragma unroll, expanding a
sequential circuit to a pipelined one. Fig. 2.6 shows a pipeline circuit with an

20

Figure 2.5: Sequential realization.

21

Figure 2.6: Pipeline realization with an unroll pragma.

22

Figure 2.7: Example of k -means clustering.

Figure 2.8: Example of comparator sharing by k -means clustering.

#pragma unroll. Registers and voters are inserted between the multiplexer
trees in the pipeline circuit. In that case, the number of registers and the
memories tends to increase, and the on-chip memories realize them. Since
communication with the off-chip memory does not occur, it can accelerate
throughput.

2.4 Comparator Sharing by k-Means Clus-
tering

2.4.1 Hardware Reduction

A typical approach to reducing the amount of hardware is resource sharing.
In the RF, a comparison of the input variable with the threshold is required
in each decision tree node. They can be shared by summarizing comparisons
with similar thresholds for certain input variables. Each decision tree node

23

compares the input variable with the constant threshold. In other words, it
divides the feature space by the constant threshold. Since to summarize sim-
ilar comparisons is the same as roughening the division of feature space, it is
expected that the classification accuracy may be worse. Thus, appropriate
sharing is necessary to find small hardware with classification accuracy. We
share similar comparisons using the k -means method, a kind of clustering al-
gorithm. Fig. 2.7 shows an example of k -means clustering. In other words, it
reduces the number of thresholds for feature space partitioning. By applying
k -means clustering, comparators can be merged into a single one. Fig. 2.8
shows an example of comparator sharing by k -means clustering.

2.4.2 k-Means Clustering

A k -means clustering [28] is one of the simplest unsupervised learning algo-
rithms. The procedure classifies a simple and easy to classify a given data
set by using a certain number of clusters (assume k clusters) following simple
and easy ways. The main idea is to define a center value for each cluster.
These k centroid values should be placed cleverly since different location
causes the different result. Thus, the better choice is to place them as much
as possible far away from each other. The next step is to take each point be-
longing to a given data set and associate it with the nearest centroid. When
no point is pending, the first step is completed, and an early grouping is
done. Re-calculation for k new centroids is performed as barycenters of the
clusters resulting from the previous step. After these k new centroids are
obtained, a new binding has to be done between the same data set points
and the nearest new centroid. k centroids are changed their location step by
step until no more changes are done. In other words, centroids do not move
anymore. Finally, this algorithm aims at minimizing an objective function.
Let n be the number of data points in the cluster. In this case, a squared
error function Ferr is defined as follows:

Ferr =
k∑

j=1

n∑

i=1

‖x(j)
i − cj‖2

where ‖x(j)
i − cj‖2 is a distance measure between a data point x(j)

i and the
cluster center cj. It indicates the distance of the n data points from their
respective cluster centers.

The algorithm consists of the following steps:
Algorithm 2.1:

1. Place k points into the space represented by the objects that are being

24

clustered. These points represent initial group centroids.

2. Assign each object to the group that has the close st centroid.

3. When all objects have been assigned, recalculate the positions of the k
centroids.

4. Repeat Steps 2 and 3 until the centroids are no longer changed. It
produces a separation of the objects into groups from which the metric
to be minimized can be calculated.

An advantage of the k -means method is that its algorithm is simple and
operates at high-speed. The result of clustering depends on the random
initial value for centroids. [29] proposed devising the initial allocation for
centroids. Since it is necessary to give the number of clusters k, it uses
other indicators to select the optimum clusters. An estimation method for
the optimum number of clusters using the k average method [30] has been
proposed.

A similar comparison operation of the random forest is shared using k -
means clustering. The algorithm for the comparator sharing RF is shown as
follows:
Algorithm 2.2:

1. Thresholds of nodes are collected for each feature variable at the train-
ing.

2. The thresholds recorded for each feature variable are clustered by the
k -means method and classified into k clusters, respectively.

3. Each centroid is used to compare the corresponding input feature vari-
able at the inference.

In the RF, each node consists of a comparator and a multiplexer. Since
the centroid is used as the threshold for branching of the multiplexer, almost
initial comparators can be shared. Therefore, it is possible to drastically
reduce the comparator in the random forest.

2.4.3 Tool Flow

Fig. 2.9 shows the proposed tool flow, which uses krange (k -means based
random forest generator). First, we use the scikit-learn software [31] to learn
the RF from a given dataset. Note that we find the optimum hyperparameter
set by a grid-search algorithm. Then, we shared the threshold by k -means

25

Figure 2.9: Proposed tool flow.

Table 2.1: Dataset used in the experiment.
Dataset

Name #Rules #Feat. #Class
Arrhythmia 452 279 16
Dermatology 366 33 6
Ionosphere 351 34 2
Iris 150 4 3

clustering with hyperparameters, the number of clusters. Next, we generate
the host code and the kernel code for the high-level synthesis tool for the
FPGA. The generated codes are converted into the bitstream file using the
logic synthesis tool. Since the proposed tool flow automatically generates the
bitstream from a given dataset, we can concentrate the parameter tuning to
accelerate the RF.

2.5 Experimental Results

2.5.1 Implementation Environment

We implement the UC Irvine machine learning repository [32] to a Xilinx Inc.
ZC702 evaluation board with a Xilinx Corp. Zynq7020 (53,200 LUTs, 140
36KbBRAMs, 220 DSP blocks). To generate an executable code, we used
the proposed tool flow shown in Fig. 2.9. For the host PC, we used Intel ’s
Xeon (R) E5607 Processor (2.26GHz, four cores) with 32GB DDR3 off-chip
memory and Ubuntu 14.04 LTS (64-bit version) operating system. Table 2.1
shows the used dataset, and Table 2.2 shows their parameters. Note that, to

26

Table 2.2: Hyperparameters used in the experiment.
Hyper Parameters

Name #Trees Depth #Feat. k PS
Arrhythmia 35 20 20 4 20
Dermatology 30 5 7 1 5
Ionosphere 25 15 10 4 15
Iris 50 20 2 4 20

Figure 2.10: Comparison of the number of LUTs.

find the optimum parameter set, we used a grid search algorithm available in
scikit-learn. We showed the dynamic power consumption. We measured both
the static power consumption and the total power consumption to compute
random test vectors. Then, we obtained the dynamic one.

From the previous work [33], since the 14-bit fixed-point precision caused
no classification error degradation, we used such custom precision to the RF
implementation. We inserted pragma unroll at the top of each loop in the
implementation. Thus the number of pipeline stages equals the depth for
each decision tree. In Table 2.1, we showed the pipeline stages as (PS). Also,
we showed the number of clusters k used in the experiment in Table 2.2.

27

Figure 2.11: Comparison of the number of flip-flops (FFs).

Figure 2.12: Comparison of classification error (%).

28

Figure 2.13: Execution flow for the CPU and the GPU.

2.5.2 Compared with Conventional Methods

We set the number of clusters k to 1, 2, 4, and 8, respectively. Then we mea-
sured the number of comparators (thresholds) and the classification accu-
racy. We compared the proposed comparator sharing with the conventional
realization [33], which did not share the comparators. Fig. 2.10 compares
the number of LUTs, which is a bottleneck of the RF implementation and
Fig. 2.11 compares the number of flip-flops (FFs). Fig. 2.12 compares the
classification error rate. As shown in Fig. 2.10, Fig. 2.11 and Fig. 2.12, there
is a trade-off between the hardware consumption and the classification accu-
racy. It is depended on the variation of a dataset. In Fig. 2.12, even if we
decreased k, the classification error for Dermatology did not increase. Since
its feature values exist around similar values, the clustered value took almost
the same value. For another dataset, when k = 2, their error rates are con-
siderable, and when k = 4, those rates are slightly increased. Thus, we think
that k = 4 is practical value for all cases. The above discussions showed
that we should carefully consider the error rate when designing the RF on
the FPGA using a clustering method since it depends on its dataset. The
experiment reduces the hardware resource usage by 41% at maximum with
a 1% error reduction of the baseline accuracy, while 64% reduces it at one
with 5% or less. Thus, the k -means clustering efficiently reduced the amount
of hardware.

29

Table 2.3: Comparison with the CPU and the GPU.
GPU@86W
876 MHz

Geforce Titan

CPU@13W
2.26 GHz

Xeon (R) E5607

FPGA@14W
100 MHz
Zynq7020

Name LPS LPS/W LPS LPS/W LPS LPS/W
Arrhythmia 33.6 0.52 211.6 16.27 65.7 4.69
Dermatology 71.8 0.84 488.4 37.57 3270.0 233.50
Ionosphere 82.1 0.95 595.9 45.84 3165.0 226.10
Iris 44.7 0.52 436.7 33.59 8087.0 577.60

Ratio 0.016 0.003 0.119 0.128 1.000 1.000

2.5.3 Compared with Other Platforms

We compared the FPGA with the CPU and the GPU for the lookups per sec-
ond (LPS) and the power consumption efficiency (LPS/W). Fig. 2.13 shows
the execution flow used in the experiment. As for the CPU platform, we used
Intel ’s Xeon (R) E5607 Processor (2.26GHz, four cores) with 32GB DDR3
off-chip memory and Ubuntu 14.04 LTS (64-bit version) operating system.
To generate the executable code, we first generated the RF by the scikit-
learn with the same parameters shown in Table 2.1. Then, we converted the
RF to C-codes by Cython [34] and compiled it into executable code by the
GCC compiler. As for the GPU platform, we used the NVidia Geforce Titan
(876 MHz, 2,496 CUDA cores, and 6GB DDR5 off-chip memory) with the
same processor and the main memory running on the Ubuntu 14.04 LTS.
To generate the executable code, first, we generated the RF by the scikit-
learn, then used the CUDA Tree (CUDAT) [35] to generate the executable
code. To measure the LPS, we used 1,000 random test vectors, while to mea-
sure the power consumption excluding the idle power, we inserted the power
measurement between the host PC and the power source. As for the FPGA
realization, we set appropriate numbers of bits (14-bit fixed-point precision)
and unrolls from the above experiments. On the other hand, for both the
CPU and the GPU, 32-bit floating-point precision. Since the FPGA only can
realize a custom bit-length precision to realize a high-performance circuit, it
is an advantage to use the FPGA.

Compared with the previous implementation in [33], the present result is
worse since the previous implementation used the high-end FPGAs to use at
the data center. In contrast, this implementation used the low-end FPGAs
to the embedded system for a low-end system.

Table 2.3 compared the CPU and the GPU realizations. We used the
best k, which reduced maximum hardware resource, and its classification

30

error reduction was around 1% of the baseline accuracy. As shown in Ta-
ble 2.3, the FPGA realization is 8.4 times faster and 7.8 times better power
efficiency compared with the CPU. Compared with the GPU, it is 62.8 times
faster and 385.9 times better power efficiency. Since the RF requires hetero-
geneous if-then-else statements, the conventional homogeneous architectures
are unsuitable for such applications. Only the FPGA can configure custom
pipelined architecture for branch operations in the RF. Thus, it achieved
higher performance and lower power consumption.

2.6 Conclusion

This section showed the acceleration method for the RF on the FPGA. We
proposed a fully pipelined architecture to accelerate the RF, including an
all-to-all communication circuit. It increased the memory bandwidth using
on-chip memories on the FPGA. To further improve the RF for the FPGA
realization, we used k -means clustering to share the comparator of the deci-
sion tree on the RF. We also developed the krange tool flow, which gener-
ates the bitstream with only a few hyperparameters. We implemented the
UC Irvine machine learning repository on the Xilinx Inc. ZC702 evaluation
board. Compared with the CPU and the GPU realizations, as for the LPS,
the FPGA realization was 8.4 times faster than the CPU one, and it was 62.8
times faster than the GPU one. As for the LPS per power consumption, the
FPGA realization was 7.8 times better than the GPU one, and it was 385.9
times better than the GPU one.

31

Chapter 3

An FPGA Realization of
OpenPose with a Sparse
Weight Convolutional Neural
Network (CNN)

3.1 Introduction

3.1.1 Pose Estimation

Human 2D pose estimation, the problem of localizing anatomical key points
or parts, has focused mainly on finding body parts of individuals. Inferring
the pose of multiple people in images, especially socially engaged individu-
als, presents a unique set of challenges. First, each image may contain an
unknown number of humans that can occur at any position or scale. Sec-
ond, interactions between people induce involved spatial interference due to
contact, occlusion, and limb articulations, making an association of parts dif-
ficult. Third, runtime complexity tends to grow with the number of people
in the image, making real-time performance a challenge.

OpenPose [36, 37, 38] uses a high-performance GPU. Thus, power con-
sumption becomes a critical issue to realize on embedded devices. Also, its
computation time is too slow than the current video standard frame speed.
This section implements an efficient multiperson pose estimation method
with state-of-the-art FPGA accuracy. We use the OpenPose pose estimation
algorithm, the first bottom-up representation of association scores via Part
Affinity Fields (PAFs), a set of 2D vector fields that encode the location and
orientation of limbs over the image domain. It takes the entire image as the

32

Figure 3.1: OpenPose overview.

input for a two-branch CNN to jointly predict confidence maps for body part
detection. Fig. 3.1 shows an overview of the OpenPose process. It detects
body parts and estimates parts associations at a time. Then, it connects as-
sociate body parts from candidates. It finally assembles them into full-body
poses for all people.

3.1.2 Sparseness for a Large CNN

As for the recurrent neural network [39] and the CNN [40], Nurvitadhi et al.
compared the FPGA implementation with the CPU, the GPU, and the ASIC,
and it showed that the FPGA could deliver orders of magnitude improve-
ments in performance and performance/watts over well-optimized software
on CPU and GPU. Although FPGA is less efficient than ASIC, the FPGA-
ASIC gap may be reduced for designs that heavily utilize hard blocks [41].
Hence, FPGA offers an attractive solution, which delivers superior efficiency
improvements over software without having to lock into a fixed ASIC solu-
tion.

We show that the computationally intensive part of the OpenPose algo-
rithm is a convolution, and its memory size is too large to store the modern
FPGA. We reduced the memory size for weights by introducing sparseness
techniques. In the weight sparseness CNN, an internal weight can take −w,
+w, and zero with a given threshold for an inference, where a skip com-
putation can realize zero weight. Also, we propose a multi-stage pipelined
convolution by inserting a buffer memory to increase system throughput.

33

3.2 Sparse Weight CNN

3.2.1 CNN for OpenPose

The CNN for OpenPose generates confidence maps for part detection and a
parts association. The former role used a fine-tuned VGG19 CNN to extract
a feature from an incoming image. In the latter part, it uses the two-branch
multi-stage CNN. Each stage in the first branch anticipates confidence maps,
and each step in the second branch predicts PAFs. After each stage, the
predictions from the two branches and the image features are concatenated
for the next stage.

Even if we increase the number of stages, accuracy is slightly improved.
As for the accuracy and hardware trade-off, we set t = 2. Since the baseline
OpenPose CNN requires 14,808 18Kb BRAMs, it is impractical for an on-
chip memory realization on a modern FPGA. Thus, compression of the weight
memory must be considered. For the execution on the high-end Titan X GPU
(Pascal architecture), its frames per second (FPS) is around 7, which is slower
than the standard real-time video FPS. Its power dissipation is more than
200 W. Therefore, a real-time computation with a low-power consumption
accelerator is desired. One challenge is to realize the OpenPose using a sparse
weight CNN on an FPGA. Since it can reduce the amount of computation
and the memory size, we can store all parameters on an FPGA. It allows us
to eliminate energy-costly DRAM access with a high-bandwidth [42]. From
profile analysis, the CNN part is computation intensive. Thus, we realize an
FPGA accelerator for the OpenPose. Other parts are executed on the host
PC.

3.2.2 Convolutional Operation

A 2D convolutional operation applies the multiply accumulation (MAC) op-
eration to the feature map’s K ×K size kernel. It dramatically reduces the
number of parameters involved, allows local features, and avoids over-fitting.
The output Z(i)

l,r,c of the i convolutional layer, which takes input Ni images
(feature maps) of dimension K×K at location (r, c), is calculated as follows:

Z(i)
l,r,c = fact

(
Ni∑

s=0

K∑

j=0

K∑

l=0

Wi,j,l,sXi−1,s,r+j,c+k

)

where K ×K is the dimensions of the kernel for the convolution operation.

34

Figure 3.2: Example of a sparse convolution.

3.2.3 Weight Sparseness

We introduce the sparse weight CNN, which is suitable for hardware imple-
mentation. We consider that the sparse weight consists of −w, +w, and zero.
The sparse weight CNN has hidden weights w(hid) during the training on the
GPU. We defined the sparse weight w(t) from the hidden weight as follows:

w(t) =

{
0 |w(hid)| <= ρ
w(hid) |w(hid)| > ρ

where ρ denotes the threshold to distinguish a zero-weight and a non-zero
one, we hardly set ρ.

3.3 Sparse Weight Architecture

Fig. 3.2 shows an example of a sparse convolution operation. In the baseline
CNN, its weight always takes a value of −w or +w. Thus, there is no state
that neurons disconnect with each other. In the sparse weight CNN, we define
the state of the weight zero, which is possible to represent disconnections.
The matrix representation of the sparse weight CNN is a sparse one, so we
can apply the sparse matrix operations to reduce the amount of computation.

As shown in the previous chapter, when the sparse weight becomes zero,
the output becomes zero. Therefore, we can skip the MAC operation for
the zero-weight [43]. The target platform is the FPGA which can config-
ure multiple memory access architecture with a custom data structure. We
realize the sparse weight convolutional operation by zero-weight skip compu-
tation. Fortunately, since the pre-trained CNN has zero-weight, we store the

35

Figure 3.3: Indirect memory access for a sparse convolution.

address corresponding to the non-zero-weight. Thus, we realize the sparse
weight convolutional operation by the conventional CNN operation with zero-
weight skip one. The proposed 2D convolutional operation requires L words,
where L denotes the number of non-zero-weights. Since the CNN with many
zero-weights requires fewer memory accesses, it is faster than the straight-
forward 2D computation.

The zero-skip computation can be done by using indirect memory access.
Fig. 3.3 shows indirect memory access for a sparse convolution. First, it reads
a non-zero-weight and a corresponding address at a time. Then, it computes
an address for a corresponding input. Next, it reads a corresponding one
then performs the MAC operation. Repeating the above operations for all
non-zero-weights in the kernel applies the activation function (In Fig. 3.3, it
is a ReLU).

We propose a kernel parallelization for the sparse weight convolutional
operation to increase throughput further. Fig. 3.4 shows a kernel paralleliza-
tion for the sparse weight 2D convolutional operation. Since the convolutional
operation uses the same kernel, the same weight is applied to the MAC op-
eration in the same row in the feature map. We can compute the MAC
operation in parallel since the internal outputs Y are independent. We load
a line in the sparse weight CNN when the non-zero-weight overlaps.

36

Figure 3.4: Kernel parallelization for the sparse weight 2D convolutional
operation.

3.4 FPGA Implementation

3.4.1 High-Throughput Multi-Stage CNN

We apply the multi-stage pipeline architecture to keep up with the real-time
pose estimation. We attached a feature map memory that supports stride
access for multiple feature map memory access. We realize a large feature
map memory by composting on-chip memories on the FPGA. Thus, the
feature map memory accepts high-bandwidth memory access. The feature
map memory is inserted between pipeline stages to realize a buffer memory.

3.4.2 Overall Architecture

We schedule the pipeline computation from the MAC operation analysis.
As a result, we split the OpenPose CNN convolutional operation into six
stages. Fig. 3.5 shows an overall architecture with six sparse convolution
units with a feature map memory as a pipeline buffer. All the memories
are stored in on-chip memories on an FPGA. Fortunately, the recent Xilinx
Virtex Ultrascale+ device equips the UltraRAM, larger than the block RAM
(BRAM). We use UltraRAMs to realize a feature map memory for the first
layer buffer on the VGG19 part. It is a kind of stage pipeline architecture
with various units. It is suitable for the FPGA realization, not for the GPU.

37

Figure 3.5: Overall architecture.

3.5 Experimental Results

3.5.1 Training Results

We implemented the weight sparse OpenPose CNN training script using
Python 3.5 and a Chainer deep learning framework version 2.1.0. We con-
sidered that the input image size was 368 × 368 and trained our weight
sparse OpenPose CNN using the COCO training dataset consisting of over
100K person instances labeled with over one million total body parts. Ta-
ble 3.1 compares the weights for both the baseline CNN and the proposed
sparse one. As shown in Table 3.1, the baseline CNN requires 14,808 18Kb
BRAMs, which exceeds the modern FPGA resources. On the other hand,
the sparse weight CNN achieved more than 90% of the weights. Thus, the
necessary number of BRAM is only 933.

3.5.2 Implementation Results

We implemented the proposed sparse weight OpenPose on the Xilinx Inc. Xil-
inx Virtex UltraScale+ FPGA VCU1525 acceleration development kit with
a host PC. We used a 16-bit fixed-point precision weight for the CNN imple-
mentation. The FPGA board has a Xilinx Inc. Virtex Ultrascale+ XCVU9P
FPGA, which has 788 K LUTs, 1,576 K FFs, 4,320 18Kb BRAMs, 960 Ultra-
RAMs, and 6,840 DSP slices. We used the Xilinx Inc. SDAccel 2018.2 with
a timing constraint of 300 MHz. Our implementation used 213,225 LUTs,
124,280 FFs, 2,510 18Kb BRAMs, 480 UltraRAMs, and 1,520 DSP48Es.

38

Table 3.1: Comparison of the Number of Weights.
Baseline CNN Sparse Weight CNN

Layer #Weights #BRAMs #Weights ratio(%) #BRAMs
conv1 1 1728 2 1058 61.2 1
conv1 2 36864 32 3133 8.5 3
conv2 1 73728 64 3339 4.5 3
conv2 2 147456 128 5750 3.9 5
conv3 1 294912 256 10911 3.7 10
conv3 2 589824 512 21233 3.6 19
conv3 3 589824 512 20962 3.6 19
conv3 4 589824 512 20830 3.5 19
conv4 1 1179648 1024 100270 8.5 88
conv4 2 2359296 2048 200540 8.5 175
conv4 3 1179648 1024 100270 8.5 88
conv4 4 294912 256 25067 8.5 22
Stage1 conv1 B1 147456 128 8779 6.0 8
Stage1 conv2 B1 147456 128 10995 7.5 10
Stage1 conv3 B1 147456 128 9696 6.6 9
Stage1 conv4 B1 16384 15 786 4.8 1
Stage1 conv5 B1 4864 5 1084 22.3 1
Stage1 conv1 B2 147456 128 9546 6.5 9
Stage1 conv2 B2 147456 128 10007 6.8 9
Stage1 conv3 B2 147456 128 16325 11.1 15
Stage1 conv4 B2 16384 15 2375 14.5 3
Stage1 conv5 B2 4864 3 323 13.3 1
Stage2 conv1 B1 1160320 1008 39153 3.4 34
Stage2 conv2 B1 802816 697 34725 4.3 31
Stage2 conv3 B1 802816 697 46866 5.8 41
Stage2 conv4 B1 802816 697 57779 7.2 51
Stage2 conv5 B1 802816 697 81174 10.1 71
Stage2 conv6 B1 16384 15 3709 22.6 4
Stage2 conv7 B1 4864 5 253 5.2 1
Stage2 conv1 B2 1160320 1008 43615 3.8 38
Stage2 conv2 B2 802816 697 29021 3.6 26
Stage2 conv3 B2 802816 697 28406 3.5 25
Stage2 conv4 B2 802816 697 40249 5.0 35
Stage2 conv5 B2 802816 697 57955 7.2 51
Stage2 conv6 B2 16384 15 4541 27.7 4
Stage2 conv7 B2 4864 5 2656 54.6 3

Total 17048128 14808 1053381 6.1 933

39

Also, it satisfied the timing constraint for real-time applications. Since our
architecture computed an image with 42.6 ms, the number of frames per sec-
ond (FPS) was 23.43. We measured the total board power consumption: It
was 55 W. Thus, the performance per power efficiency was 0.444 (FPS/W).

3.5.3 Compared with a High-End GPU

We compared our FPGA-based OpenPose with a high-end GPU. We used the
NVidia Titan X Pascal architecture GPU. Also, we measured the total power
consumption. Note that, in the experiment, we set the number of batch sizes
to one to measure the latency. Its number of FPS was 6.7 on average, and
power consumption was 195 W. Thus, the performance per power efficiency
was 0.034 (FPS/W). Therefore, the FPGA was 3.49 times faster, dissipated
3.54 times lower power, and its performance per power efficiency was 13.05
times better.

3.6 Conclusion

We implemented the OpenPose, a deep learning-based pose estimator on
the Xilinx Inc. Virtex Ultra-Scale+ FPGA VCU1525 acceleration develop-
ment kit with a host PC. We introduced a sparse weight CNN to reduce the
memory size for weights, which is dominant in the memory size. Then, we
proposed the indirect memory access architecture to efficiently realize the
sparse CNN convolutional operation. Also, to increase throughput further,
we applied the six stages of pipeline architecture with a feature map memory
as a pipeline buffer. Our implementation satisfied the timing constraint for
real-time applications. Since our architecture computed an image with 42.6
ms, the number of frames per second (FPS) was 23.43. We measured the to-
tal board power consumption: It was 55 W. Thus, the performance per power
efficiency was 0.444 (FPS/W). Compared with the NVidia Titan X Pascal
architecture GPU, it was 3.49 times faster, it dissipated 3.54 times lower
power, and its performance per power efficiency was 13.05 times better.

40

Chapter 4

Weight Sparseness for a
Feature Map Split-CNN
Toward Low-End FPGAs

4.1 Introduction

4.1.1 Computational Bottleneck on Low-End FPGAs

When implementing CNNs on low-end FPGAs, the bottleneck is the amount
of memory required to store the CNN feature maps. For example, a VGG [10]
model with an input resolution of 224×224 has a feature map of 224×224×64
pixels in at maximum. If each pixel represents 8 bits (1 byte), then the data
quantity of this feature map will be 3.06 MB. Since the calculation requires
memory to store input and output data, the total future maps are 6.12 MB.
Low-end FPGAs, such as the PYNQ-Z1 FPGA board, have only 630 KB of
on-chip memory and cannot store the entire feature map. Therefore, external
memory must be used, but the external memory bandwidth may become a
bottleneck.

We use the VGG16 model with 90% of the weights sparseness ratio. The
sum of the input and output feature map of the second layer, which is a
significant bandwidth bottleneck, is 6.12 MB, and the weights are 3.6 KB.
The computation required is 0.17 GMAC (Giga Multiply-Accumulate). With
Double MAC [44], one DSP can perform two MAC operations in one cycle,
and if the 220 DSPs on the PYNQ-Z1 FPGA board are running at 200 MHz,
then the amount of computation per second is 88 GMAC. The bandwidth of
the external memory is approximately 1.7 GB/s. In this case, the calculation
takes about 1.9 ms to complete, while the transfer of the feature maps takes
approximately 3.6 ms. Therefore, we can see that the bandwidth with the

41

external memory is the bottleneck. Although the ratio of weights becomes
larger in the other layers of VGG, the required bandwidth does not exceed
the bandwidth of the external memory, so the weights do not become a
bottleneck even if they are read from the external memory.

4.1.2 CNN Implementation on Low-End FPGAs

We implement in a low-end FPGA with more restrictions on on-chip memory
resources and external memory bandwidth. Existing methods are limited
by communication with external memory. Because the FPGA used in an
embedded system has a narrow bandwidth with external memory, storing
data in on-chip memory to realize high speed processing is necessary. The
on-chip memory in a low-end FPGA is small; hence, it cannot store an entire
feature map. Therefore, it is imperative to rely on external memory for
buffering.

We employ a split convolutional neural network (split-CNN) [45] to solve
the problem of external memory bandwidth. An input image is spatially
split into small patches, and each patch is processed individually. A patch
in which the spatial resolution is reduced by splitting can be inferred as a
smaller memory footprint. Splitting does not consider the data dependencies
between layers. Thus, it is possible to design implementations that efficiently
use small, fast-access on-chip memories.

We propose a scheduling method on FPGAs with small-footprint memory
using split-CNN. In split-CNN, the input image is spatially split into small
patches, and each patch is processed individually. We process the patches in
time-division processing and reuse the buffer. Since the intermediate data
of a typical CNN is larger than the on-chip memory of a low-end FPGA, it
needs to be buffered in off-chip memory. We can store all the data in on-
chip memory by using the scheduling, even for large resolution inputs. We
also propose an FPGA implementation that accelerates sparse convolution
by storing all intermediate data in on-chip memory. All intermediate data
are stored in on-chip memory according to the proposed scheduling. We
achieved high speed sparse convolution with high computational efficiency
and no memory bandwidth bottleneck.

42

4.2 Memory Size Optimizations

4.2.1 Definition of a Split-CNN

Although on-chip memory in an FPGA is fast, implementing CNN in low-end
FPGAs is hindered by their limited memory size. Meanwhile, a CNN requires
significant buffering to retain a feature map. Using large off-chip memory,
such as DDR4 and HBM2, addresses the memory size limitation problem.
However, an external memory bandwidth limitation results in a performance
bottleneck. The resolution of the feature map is large in the first half of
the CNN and small enough to be stored in the on-chip memory of FPGA
in the second half. Therefore, by reducing the feature map size only for the
first half of the CNN, all intermediate data can be stored in on-chip memory,
eliminating the communication bottleneck with external memory. By split-
ting, the size of the feature map in the step before concatenate becomes 1/k
of the size without splitting so that the entire feature map can be buffered
only in on-chip memory. In other words, it works like cache blocking. As a
result, access to external memory for intermediate data can be eliminated.

To address the limitations of external memory bandwidth and its size, we
employ a split-CNN [45] that splits an input image into small spatial patches
and tests each patch using a CNNmodel. Each patch independently collapsed
in the first half. Subsequently, patch concatenation is performed, and the
merged feature map is applied to the final layer. Although this splitting
does not consider the data dependence between the shallow layers, the entire
layer is used by the subsequent layers after concatenation. Accuracy may
scarcely deteriorate or improve because of the split. We demonstrated a
slight accuracy drop through experiments.

4.2.2 Operation of a Split-CNN

Fig. 4.1 illustrates an example of a split-CNN operation. A five-layer CNN
uses four sub-images. The cube represents the feature map size. A quadran-
gular pyramid between the cubes indicates layer operations, such as convo-
lution and pooling.

A split-CNN splits the primary input image into smaller spatial patches
(four in this example) and performs inference operations on each patch. Be-
cause the pooling operation reduces the feature-map size and becomes smaller
in the subsequent layers, an on-chip memory can store the feature map. After
several CNN layers are inferred, the feature maps are concatenated. Follow-
ing the merging of the temporary feature maps, a convolutional operation is
performed on the entire feature map region to obtain a detection result with

43

Figure 4.1: Example of operation for split-CNN, which splits into four
patches.

dependency on the whole input image.

4.2.3 Scheduling of Computation

The feature map represented by the white cube in Fig. 4.1 indicates the
memory size. For feature maps represented as black-filled cubes, we reuse
the on-chip buffers. Therefore, memory resource allocation for the entire
feature map is not essential.

The computation scheduling, including memory allocation and its access
to hardware implementation, is as follows: The input image is split into
patch inputs for the CNN. Two convolutional operations of the first two
layers and the pooling operations are performed for each patch. The outputs
are stored in the scratch-pad memory implemented in BRAM prepared for
concatenation. The remaining three patch images are analogously examined
and stored in the scratch-pad memory. The four patched images are merged
into a single feature map. After completion, a merged feature map can have
the same size as a conventional CNN. The latter causes resolution reduction.
If concatenation is performed immediately after pooling, the scratch-pad
memory is minimized. We sequentially consider a patched image; hence,
preparing a small feature map memory for a patch image is sufficient. The
number of operations and the weight (parameter) size are the same as those of
a conventional CNN that processes an entire image. The merge operation has
a computational overhead; it requires additional data movement for feature
map merging, but it is negligible because it is an on-chip memory operation.

44

Figure 4.2: Overall architecture.

Figure 4.3: Processing element.

45

4.3 FPGA Implementation

4.3.1 Overall Architecture

Fig. 4.2 shows the overall architecture. It consists of a convolution unit
that performs a convolution operation, controller, and direct memory access
(DMA) controller. The control signals for the convolution and concatenation
operations are offloaded to the FPGA circuit. The host CPU performs im-
age transfer, image preprocessing, FPGA control, and calculation of a neural
network of a fully connected layer. In our implementation, the I/O data
are transferred asynchronously using the AXI4Lite protocol. Generally, it
is used for parameter setting and circuit control owing to its narrow band-
width. However, because our circuit contains only the input and output of
the input image and the output of the inference result, the bandwidth for
AXI4Lite is sufficient for real-time performance. Additionally, AXI4Lite can
be accessed asynchronously from a host program, facilitating communication
hiding and debugging during development and the AXI4Stream protocol.
Meanwhile, the compressed sparse weight parameter and weight index are
burst transferred by the AXI4Stream protocol via the DMA controller.

The convolution unit includes several convolution cores and a write-
back module. The number of cores depends on available FPGA resources.
Each convolution core consists of an address controller, buffer memory, and
2D SIMD connected to a two-dimensional grid. The 2D processing ele-
ments (PEs) calculate the vertical and horizontal images of the input image
in parallel. If the resolution is a constant resolution multiple, then all PEs
operate efficiently without a fraction. Because the VGG model uses an input
resolution of 224 × 224, we set the size of the PEs to 7 × 7. Each PE is re-
sponsible for the input image area and has spatial computational parallelism
relative to the input feature map. Each core stores a distributed set of feature
map data divided in the channel direction. Therefore, the number of cores
indicates the computational parallelism of the number of input channels.

The write-back module returns the output feature map generated by the
2D SIMD operator to the buffer memory. Each convolution core is assigned
in the channel direction of the input image because the output computed for
each core needs to be written back across the cores. The output core data are
reduced, and the addition of a bias and processing of an activation function
is performed. Two types of activation functions are implemented: ReLU and
Linear. If the reduction calculation is completed, the output destination core
is selected by the demultiplexer, and the data are written back to the buffer
memory.

46

Figure 4.4: Assignment of feature maps into 2D PEs.

4.3.2 Processing Element Architecture

Fig. 4.3 shows the processing element (PE) structure consisting of a multi-
plier, an accumulator, and a communication unit. Each accumulator stores
one output pixel data. The weight and feature map are sent as input sig-
nals. The weight value is the stream transferred from external memory to
all PEs in a certain core. The wide-band feature map loaded from the buffer
memory is transferred in a one-to-one ratio to each PE for the feature map.
Therefore, buffer memory has a word width of the cores × feature map bit
width.

The PE communication unit is connected to the neighboring PEs at the
top, bottom, left, and right. Convolution requires the data of adjacent pix-
els owing to the stride effect. Two three-input selectors are implemented
for the up-down selection and left-right selections. If the two selectors are
enabled simultaneously, communication is performed with PE in the oblique
direction. All PE selectors are synchronized.

We represent the weight and feature map by 8-bit fixed-point numbers
and multiplier treatment by an 8-bit input / 16-bit output. The accumulator
register has 16-bit precision. Multipliers and accumulators are implemented
using digital signal processing (DSP) blocks. A double MAC operation tech-
nique [44] computes two MAC operations simultaneously with one DSP block
per clock. Because the available number of bits for the DSP is 25 × 18, it
computes y = (x 1 << 9+x 2)×w and then obtains y 1 = (y >> 9) & mask
and y 2 = y & mask. Therefore, the number of PEs up to twice the number
of DSP blocks of the FPGA resource can be implemented by the DSP blocks.

47

Figure 4.5: Example of buffer memory addressing.

4.3.3 Operation and Communication for PEs

In the proposed circuit, all feature maps are stored in the on-chip buffer
memory in the PE. It is possible to perform sparse convolution with random
access at high speed. Fig. 4.4 shows a typical feature map allocation to the
PEs. We assume that the feature map of size 6 × 6 is assigned to the 3 × 3
PEs. Each PE is set spatially continuous feature map data. We carefully
assign them so that feature map data are not duplicated. If the feature map
size is not a constant PE multiple, a zero padding is performed. If the input
and output feature maps are the same size, then the coordinates and PEs
have a one-to-one correspondence.

The communication between the PEs is as follows: In a convolutional
operation, neighboring data in the input feature map must obtain a certain
coordinate output. The required neighboring data range is the same as the
convolution kernel size. Spatially continuous feature maps are assigned to
the same PE. Therefore, the required input feature map is stored in the same
PE as the output feature map in many cases. If the output feature map is the
area boundary allocated to the PE, then it is necessary to obtain the buffer
memory data of the adjacent PE. Communication between PEs occurs if the
dependence of the calculation straddles the PE assignment boundary. Two
three-input selectors are used for up-down and left-right selections. Commu-
nication overhead can be concealed using a pipelined selector.

4.3.4 Zero-Skip Computation for Sparse Weights

We explain the format of the compressed weights and the method for realizing
zero skipping. We assume that almost all the weights have zeros. Therefore,
the trained weights can be compressed by removing zeros. Compressing the

48

Figure 4.6: Example of scheduling for splitting into two patches.

weight reduces the memory size and bandwidth. To retain skipped zero-
weights during convolution, it is necessary to store a location for zero ele-
ments. Therefore, we created a pair of non-zero weight values and indices
and stored them in the off-chip memory. Because we train the CNN model
with a high sparse ratio (typically more than 90%), the overhead of the index
memory size is low.

The weighted index comprises the m, n, and k coordinate of the kernel.
The coordinates of the kernel indicate the original address of the convolu-
tion kernel. Here, m and n denote the vertical and horizontal coordinates,
respectively, and k denotes the input feature map channels.

Fig. 4.5 shows an example of a buffer memory address. Zero-weight
restoration is performed in the address controller. The address of the buffer
memory is computed by The following formula computes the address of the
buffer memory:

Address = Sx× (x+mi) + Sy × (y + ni) + Sch× ki

where Address is the buffer memory address, and Sx, Sy, and Sch indicate
the vertical, horizontal, and channel directions of the memory offset, respec-
tively. Further, x and y are the coordinates of the input image, and mi, ni,
and ki are the weight indexes.

Because a different weight index is transferred to each convolutional core,
the buffer memory address differs. A pair of weight data and its index are
burst-transferred to each convolution core during convolution. It enables the
performance of a MAC operation with the weight data in each cycle without
the PE in an idle state.

49

Table 4.1: Split and feature map sizes in CIFAR-10 dataset.
#Splits (k) Feature-map size Error

None 64.0 KB 6.4%
2 32.0 KB 6.6% (+0.2)
4 16.0 KB 7.3% (+0.9)
8 8.0 KB 9.0% (+2.6)
16 4.0 KB 12.9% (+6.5)
32 2.0 KB 23.9% (+17.5)
64 1.0 KB 28.0% (+21.6)

Table 4.2: Split and feature map sizes in CIFAR-100 by dataset.
#Splits (k) Feature-map size Error

None 64.0 KB 29.7%
2 32.0 KB 30.1% (+0.4)
4 16.0 KB 30.5% (+0.8)
8 8.0 KB 34.7% (+4.7)
16 4.0 KB 44.1% (+14.4)
32 2.0 KB 56.6% (+26.9)
64 1.0 KB 58.0% (+28.3)

4.3.5 Scheduling for Feature Map Split

Fig. 4.6 shows an example of scheduling for two split images. The image is
split on the host CPU, and the upper half is transferred (Fig. 4.6 (1)). Con-
volution operations are performed on the transferred image in several layers
in the first half of the CNN, and the result is stored in the scratch-pad mem-
ory (Fig. 4.6 (2)). Furthermore, the lower half of the image is transferred,
computed, and stored in the scratch-pad memory (Fig. 4.6 (3) and (4)). The
sub-feature maps are concatenated (Fig. 4.6 (5)). Besides, the concatenated
feature map is written back to the buffer memory, and the latter half of the
CNN layer is operated (Fig. 4.6 (6)). All layer evaluations are completed
and transferred to the DDR memory (Fig. 4.6 (7)). Finally, the procedure
for inferring one image is completed.

50

Table 4.3: Split and feature map sizes in ImageNet by dataset.
#Splits (k) Feature-map size Error

None 3.06 MB 27.6%
2 1.53 MB 27.8% (+0.2)
4 0.77 MB 28.0% (+0.4)
8 0.38 MB 28.1% (+0.5)
16 0.19 MB 29.9% (+2.3)
32 0.10 MB 31.3% (+3.7)
64 0.05 MB 37.9% (+10.3)

Table 4.4: FPGA implementation results.
LUT FF DSP 18K BRAM

Consumption 31,465 26,692 204 258
Utilization 59.1% 25.1% 92.7% 92.1%

Table 4.5: performance for each convolutional layer.
Size Sparse Latency Measured Perf. Peak Perf. Efficient

56× 56 0% 24.4 ms 151.6 GOP/s 156.8 GOP/s 96.7%
56× 56 80% 6.0 ms 613.5 GOP/s 784.0 GOP/s 78.3%
56× 56 85% 4.8 ms 769.1 GOP/s 1,045.3 GOP/s 73.6%
56× 56 90% 3.6 ms 1,033.3 GOP/s 1,568.0 GOP/s 65.9%
56× 56 95% 2.3 ms 1,601.5 GOP/s 3,136.0 GOP/s 51.1%
56× 56 80% 6.0 ms 613.5 GOP/s 784.0 GOP/s 78.3%
28× 28 80% 1.6 ms 567.3 GOP/s 784.0 GOP/s 72.4%
14× 14 80% 0.5 ms 444.6 GOP/s 784.0 GOP/s 56.4%

51

Table 4.6: Comparison of the performance of VGG16 classifications.
GPU ASIC[46] FPGA[47]

Platform Jetson Nano Edge TPU Zynq-7020
Throughput 10.0 FPS 2.8 FPS 5.7 FPS
Performance 393 GOP/s 110 GOP/s -
Clock Freq 850 MHz - 214 MHz
Power 10 W 2 W 3 W
Precision FP32 INT8 INT8
Accuracy 71.8% - 67.7%

FPGA[48] FPGA[49] Ours
Platform Stratix V Xilinx VC709 Zynq-7020
Throughput 7.0 FPS - 30.8 FPS
Performance - 1,713 GOP/s 1,210 GOP/s
Clock Freq 200 MHz 200 MHz 200 MHz
Power 8 W - 3 W
Precision INT32 INT8 INT8
Accuracy - - 67.8%

4.4 Experimental Results

4.4.1 Implementation Setup

Our environment was PyTorch 1.7.1, Ubuntu 20.04, and RTX 3090. We
designed the proposed CNN architecture using the Xilinx Inc. Vivado HLS
2020.1 and implemented it on a Digilent Inc. PYNQ-Z1 FPGA board (FPGA:
Xilinx Inc. Zynq XC7Z020). The host program was written in Xilinx Inc.
PYNQ 2.5, whose library controls the FPGA circuits in Python.

4.4.2 Buffer Size and Accuracy by a Split-CNN

The CIFAR dataset includes ten classes for CIFAR-10 and 100 classes for
CIFAR-100. Each dataset contains a total of 60,000 labeled images. We
used the VGG16 CNN as a target model and increased the k from 2 to 64
splits. Each model was independently fully trained, and performed the test
was conducted independently. The bit precision during training is a 32-bit
float, and the GPU performs all calculations. The feature map capacity
indicates the maximum feature map size at the time of 8-bit quantization.

Table 4.1 and Table 4.2 show the splits, maximum feature map size,
and classification error rate. Each patch is processed independently, and
neural connections in the network across the split boundary are ignored.

52

It will degrade the representative capability of the CNN model and thus
degrade the recognition accuracy. Therefore, there is a trade-off between the
feature map size and classification accuracy corresponding to the splits. The
misclassification rate was increased with increasing splitting in both datasets
from the experiments.

The ImageNet dataset contains approximately 1 million images with 1000
labeled classes. It is a practical classification task benchmark with sufficiently
large image resolution. We used the VGG16 CNN as the target model from 2
to 16 splits. Each model is independently trained with a full scratch and the
same hyperparameters as in the CIFAR datasets. The feature map capacity
denotes the maximum feature map size using 8-bit quantization.

Table 4.3 shows the number of splits k, the maximum feature map ca-
pacity, and the classification error rate. Similar results were obtained for the
CIFAR dataset.

4.4.3 Resource Usage and Peak Performance

Because the buffer memory of each convolutional layer is implemented by a
block RAM (BRAM), if the number of splits k increases, the BRAM usage
decreases. The BRAM usage for the buffer memory was reduced by 85%
in 16 splits than the no split case and fit in the PYNQ-Z1 FPGA board
resource. The proposed method reduces the buffer memory usage toward a
low-end FPGA. The two splits did not reduce the BRAM usage due to the
scratch-pad memory overhead for concatenation.

Table 4.4 shows the actual hardware consumption after placement and
routing. We have designed an architecture for the VGG16 model with 16
splittings. Since sparsity is sourced from off-chip memory as a weighting pa-
rameter, the same architecture is used for all sparsity. The DSP and BRAM
consumed more than 90%; thus, the proposed circuit effectively utilizes the
available FPGA resources. The proposed architecture contains eight cores
and 392 PEs in total. The clock frequency was 200 MHz; thus, the peak
performance of non-spars was 156.8 Giga operations per second (GOP/s).

4.4.4 Performance Analysis for Each Layer

We analyzed the relationship between the sparse ratio and system perfor-
mance. We compared the theoretical performance with the measured perfor-
mance to examine the computational efficiency of the proposed architecture.
We investigated how the performance and the operation unit usage change
based on practical layer parameters. The proposed architecture stores all in-
termediate data in on-chip memory. Hence, we do not consider the transfer

53

between the host processor and the FPGA.
Table 4.5 presents the throughput of each layer. If the sparse ratio is high,

then the processing of the MAC operation is reduced; thus, the write-back of
the computation result becomes relatively a bottleneck. In the model with
the sparse ratio of 80%, the computational efficiency exceeded 70%, and
it is observed that the model had high computational efficiency. In other
words, almost all MAC units were used for the computation. If the input
resolution is small, then the weights transfer becomes relatively overhead,
resulting in lower computational efficiency of the operation units. For an
FPGA with small on-chip memory, storing weight data in a large-capacity
external memory is necessary. Therefore, it is challenging to improve weight
transfer time further.

4.4.5 Comparing Classification Performance

For an image classification task using ImageNet, the inference speed and
power efficiency were measured using the proposed circuit. The model used
was VGG16 for a 224×224 input image for ImageNet 2012 dataset. An 8-bit
integer was used for weights and feature maps. In our model, the number of
feature maps split is 16, and the weight sparsity is 90%. For comparison, we
used the NVIDIA Jetson Nano for embedded GPU board and Google Edge
TPU board for application-specific integrated circuit (ASIC). The weights
and bit precision of the feature map to be compared are shown in the table.
All platforms implemented VGG16. Only our FPGA implementation applied
the weight sparseness techniques, with a 90% ratio. To train our sparse
weight for a split-CNN, we use a gradual sparseness technique that can be
easily applied across different sparseness ratios for several steps [50]. We used
known training hyperparameters (learning ratio, number of epochs, initial
weight values, and an optimizer) [51].

Table 4.6 shows a comparison of the throughput and power efficiency for
GPU, ASIC, existing FPGA, and our FPGA implementation. From the ex-
periment, our implementation was 3.1 times faster than the GPU, 11.0 times
faster than the ASIC, and 5.4 times faster than an existing implementation
using the same FPGA. Our implementation was superior to all platforms in
terms of power efficiency. The accuracy has been reduced by sparseness and
feature map splitting but was still higher than the existing same FPGA im-
plementation [47]. In addition, our implementation is faster and less power
consumption than another low-end embedded FPGA implementation [48]
and achieved the same speed as the FPGA implementation [49] with ten
times more resources than ours.

54

4.5 Conclusion

This study proposed an architecture and scheduling method using a sparse
weight split-CNN for a low-end FPGA for an embedded vision system. Our
implementation resolved the memory bottleneck on low-end FPGAs by split-
ting the feature maps and scheduling on-chip memory buffering. Also, we
developed an architecture for CNNs with high computational efficiency for
sparse weights. Our architecture achieves high speed by storing the internal
data in on-chip memory. We implemented the proposed architecture on the
PYNQ-Z1 FPGA board, a low-end FPGA. The experiment on classification
using VGG16 with ImageNet 2012 dataset shows that our implementation
was 3.1 times faster than the GPU, 11.0 times faster than the ASIC, and 5.4
times faster than an existing FPGA implementation.

55

Chapter 5

An FPGA Implementation of a
Multi-Core Neural Network
Design using HLS

5.1 Introduction

5.1.1 FPGA Design using HLS

Designing FPGAs at the logic circuit level using hardware description lan-
guage (HDL) is much more time-consuming than the software-based design
of CPUs and GPUs. In recent years, attention has been focused on High-
Level Syntheses (HLS), which can synthesize logic circuits from the C pro-
gramming language. High-Level Syntheses (HLS) generates HDL based on
programs written in high-level languages such as C to realize logic circuits.
Conventional HDL design requires a specific behavioral design at the clock
cycle level, which is time-consuming and difficult to verify. HLS design en-
ables design at a high level of abstraction using languages such as C suitable
for algorithm description, thus improving design efficiency. Existing test
tools for high-level languages can be used to verify the operation. It is also
possible to change resource and clock constraints by configuration. By insert-
ing the pragma directive, pipelined and parallelized computational circuits
standards-compliant input/output and control circuits can be easily gener-
ated. Xilinx’s Vitis HLS [52], Intel’s Intel FPGA SDK for OpenCL [2], and
others have been put to practical use.

56

5.1.2 Limitations of HLS Design

HLS design can be realized in a relatively short time. For example, Yang
et al.’s study [3], which proposes an FPGA implementation using HLS, was
implemented by two workers in one month. On the other hand, there is a large
difference in the achievable operating frequency between the HLS-generated
design and the manual design using HDL. Because it is difficult to estimate
the interconnect delay at the HLS level accurately. This problem is known
to be even more pronounced when implementing large HLS designs [4].

In this chapter, we propose a multi-core architecture for fast CNN infer-
ence. A high operating frequency can be achieved even in large HLS-based
FPGA designs by dividing a large HLS kernel into multiple small cores.

5.1.3 Parallelism in CNN

The output feature map of each layer of CNN is a set of independent output
pixels computed by the inner product of the input feature maps and weight.
When considering the speedup in computing each output pixel, it is necessary
to copy and distribute the input data to each output if the output pixels are
parallelized. It is necessary to aggregate the partial sums due to the compu-
tational dependency if the input pixels are parallelized. In this chapter, we
propose a method to solve the problem of input feature map dependency and
perform parallel computation without using complex structures by commu-
nicating partial sums in a unidirectional ring. The increase in latency caused
by the communication is masked by the time-division processing using the
independent nature of the output feature maps. It is possible to reduce the
degree of coupling between the computations of each feature map By paral-
lelizing the computation in this way. This has the advantage of increasing
the operating frequency because the control circuit can be had on each core,
shortening the circuit’s synthesis time.

5.2 Architecture

5.2.1 Overall Architecture

In this chapter, we propose an architecture for a fast CNN accelerator called
the Wasabi Engine. The block diagram in Fig. 5.1 shows the overall picture
of the Wasabi Engine. The Wasabi Engine is an architecture consisting of
multiple cores. Each core has independent registers and executes its own
sequence of instructions. In addition to the cores, the Wasabi Engine con-
sists of FIFOs that connect the cores and Direct Memory Access (DMA)

57

circuits that communicate with external memory. Each core is connected by
a unidirectional ring bus through the FIFO, and the number of cores can
be configured according to the resources. Each core is connected to a DMA
circuit for supplying instruction strings from external memory. Some cores
are also connected to DMA circuits to communicate feature map data with
external memory.

Vitis HLS designs each core of the Wasabi Engine. Each core is separated
by a simple FIFO connection, which facilitates optimization by EDA tools.
HLS generates the cores as a small design, and multiple cores are designed
by connecting them to achieve a high operating frequency. The FIFOs and
DMAs that connect the cores are IPs provided by Xilinx. The connection
between the designed cores and IPs was designed using the Xilinx Vivado IP
integrator.

5.2.2 Primary Interface

The Wasabi Engine has an instruction stream and a data input/output
stream as interfaces. The instruction stream is an AXI Stream standard
stream that transfers 32-bit instruction strings. Each core has its indepen-
dent instruction stream, and instruction strings are supplied to each core
from external memory by DMA. The data input/output stream is an AXI
Stream standard stream that transfers 8-bit feature map data. Only one
data input stream and one data output stream are implemented in the entire
circuit, and they are connected to a specific core. Data input and output
to the cores not connected to the data input/output stream is realized by
communication via the ring bus between the cores.

5.2.3 Core Architecture

A block diagram of the core architecture is shown in Fig. 5.2. The core
consists of the instruction cache, instruction controller, SIMD unit, buffer
memory, ALU, and ring bus. The core is designed in the C language using
HLS, and it pipelines the circuits for parallel operation.

The instruction cache is a direct-mapped read-only cache for instruction
strings. If a cache miss occurs, the DMA circuit reads data from external
memory. The instruction controller performs instruction decoding, instruc-
tion execution, and circuit control. It has a program counter, general-purpose
registers, adders, comparators, etc., and performs state transitions in loops.
The controller sends the decoded control signals to other modules when ex-
ecuting a SIMD instruction. The SIMD unit consists of an array of pro-
cessing elements (PEs) connected in a two-dimensional pattern and mainly

58

Figure 5.1: Overall architecture.

59

Figure 5.2: Architecture of the core.

performs the numerical computation of CNNs. The PEs are connected in a
two-dimensional way to compute kernels that extend horizontally and verti-
cally in the feature map. The buffer memory is an on-chip memory for storing
the feature map and provides high bandwidth data to the SIMD unit. The
data width of the buffer memory corresponds to the PE of the SIMD unit
on a one-to-one basis. The arithmetic logic unit (ALU) is a circuit that per-
forms the numerical computations on a single element and mainly performs
operations on CNN layers, including contraction operations. The ALU is
primarily composed of arithmetic circuits and is connected to a bus for one-
to-one communication with each PE of the SIMD unit and a ring bus for
communication with neighboring cores. The ring bus is for data communi-
cation with neighboring cores and is connected in a unidirectional ring. The
SIMD unit and ALU registers can be sent to the adjacent cores. It is used to
transfer the input/output feature map to/from the SIMD unit registers and
to compute the data of other cores in the convolution operation.

5.2.4 Processing Element Architecture

The architecture of each PE is shown in Fig. 5.3. Each PE consists of a
multiplier, an adder, an accumulator register, and an activation circuit. The
activation circuit consists of an arithmetic right shift operator for downscal-

60

Figure 5.3: PE architecture.

ing, a comparator, and a register for comparison. The multiplier, adder, and
accumulator register are used to perform the sum-of-products operation of
convolution. When computing a CNN in integer representation, the result
of the sum-of-products operation needs to be divided to prevent overflow. In
this case, the right shift circuit can be used to perform the division by limiting
the number of divisors to a power of two. The ReLU operation, which takes
the maximum value of the target and zero, and the max pooling operation,
which calculates the maximum value, are realized using a comparator and
a comparison register. Each cycle, the PE is supplied with calculation data
from the instruction controller and buffer memory, and the PE calculation
results are written back to the buffer memory.

5.2.5 System Operation

First, we explain the allocation of the feature map. The feature map is
three-dimensional tensor data, and each axis is referred to as the vertical,
horizontal, and channel directions. The vertical and horizontal directions
correspond to the coordinates of pixels in the input image. The channel
direction is the size of the data that make up a single pixel for RGB color
images, and the number of channels is 3. The feature map is divided into
channel directions and assigned to different cores. In the case of an RGB
color input image, each data is assigned to three cores. The feature map data
assigned to different cores may be required for the Convolution calculation.

61

Figure 5.4: Allocation of feature map to PE array.

The cores are connected by a ring bus to access the feature map data assigned
to other cores. Feature maps are divided horizontally and vertically within a
core and assigned to PE arrays. The allocation of feature maps to PE arrays
is shown in Fig. 5.4. The feature map is divided horizontally and vertically
into adjacent regions and allocated to the BRAMs in the buffer memory
corresponding to each PE. In the case of convolution computation, one PE
is responsible for the computation corresponding to the output of one pixel.
The entire output feature map can be computed by shifting the computation
horizontally and vertically within PE arrays. The PE arrays are connected
in a two-dimensional mesh, and the feature map data of neighboring PEs can
be accessed.

Next, we describe the operation of the entire system during inference.
First, the input image data prepared in the external memory is transferred
to a core by the DMA circuit for input data. The transmitted data is then
transferred to the corresponding core via the ring bus. After the transfer is
completed, each core of the Wasabi Engine is supplied with a sequence of
instructions by the DMA circuit and starts to compute CNNs. After all the
CNN computation is completed, the feature map is transferred to the external
memory by the ring bus and the DMA circuit for output data. When the
transfer to the external memory is completed, the following input image is
transferred.

62

Figure 5.5: Block diagram of the Vivado IP integrator showing the connection
between the 16-core kernel and the peripheral circuits.

5.3 Instruction Set

5.3.1 Overview

The Wasabi Engine has its instruction set architecture (ISA). The proposed
ISA is a 32-bit RISC system. It has a dedicated SIMD instruction to compute
CNNs. The immediate value of the instruction provides the parameters of
CNN. TheWasabi Engine is a multi-core architecture, and each core executes
one thread. The proposed ISA consists of control instructions, SIMD instruc-
tions, and compression instructions. The control instructions are used to set
in the SIMD parameters and perform loop processing. SIMD instructions
are used to perform MAC operations executed in SIMD by two-dimensional
PE arrays. A compressed instruction is a SIMD instruction that packs four
SIMD instructions by compressing SIMD instructions that satisfy specific
conditions into eight bits and expressing them.

5.3.2 Control Instruction

The control instructions are mainly used to set the SIMD parameters and to
perform loop processing. The control instructions include the SET, ADD,
and BNE instructions. The SET instruction resets the values of general-
purpose registers and parameter registers to their immediate values. The
ADD instruction performs signed integer addition to general-purpose regis-
ters and is mainly used to calculate the counter of a loop. The BNE instruc-
tion is a conditional branch instruction that compares two general-purpose
registers and branches when the values are different. This constraint and the
cache mechanism allow the instruction sequence to perform burst transfers.

63

5.3.3 SIMD Instruction

SIMD instructions are instructions for performing numerical computations
on SIMD units and ALUs. Most of the SIMD instructions consist of immedi-
ate values that are broadcast to each PE and instructions for the multiplexer
of the SIMD circuit. Most SIMD instructions consist of an immediate value
that is broadcast to each PE and a control part that expresses the control
of the multiplexer of the SIMD circuit as a bit string. A single SIMD in-
struction can be used to A single SIMD instruction can perform address
calculation, reading from the buffer memory, multiply-and-accumulate oper-
ations, ALU operations, maximum value operations, and writing back to the
buffer memory in parallel. Since other operations such as address calculation
are performed simultaneously as the sum-of-products operation, the utiliza-
tion rate of the multiplier, which accounts for most of the computation time
of the CNN, can be increased.

5.3.4 Compression Instruction

A compressed instruction is a type of SIMD instruction packing four SIMD
instructions by expressing SIMD instructions that satisfy specific conditions
in a compressed 8-bit format. By reducing the amount of data in the in-
struction sequence, it is possible to save bandwidth with external memory
and the capacity of the instruction cache. Most of the SIMD instructions
only perform address computation, call from memory, and perform product-
and-accumulate operations, while other operations are partially executed.
Therefore, the most commonly used SIMD instructions can be expressed in
8 bits. Up to four SIMD instructions can be compressed and stored in a
single compressed instruction, executed in four-cycle steps.

5.4 Evaluation

5.4.1 High Frequency by Multi-Kernel HLS Design

We confirm that the operating frequency can be increased by multi-kernel
design using HLS. The size of the PE array is 7 × 7, the number of cores is
changed to 8, 16, and 20, and the circuit is implemented on a Xilinx FPGA
board ZCU102. The circuit was designed using Vitis HLS 2021.1 and Vivado
2021.1. Table 5.1 shows the operating frequencies of the HLS single-kernel
and multi-kernel designs and the LUT resource utilization of the multi-kernel
design. In the single-kernel design, the operating frequency decreased when

64

Table 5.1: Operating frequency by design method and number of cores.
#Cores Single Multi LUT

8 300 MHz 500 MHz 27 %
16 200 MHz 500 MHz 53 %
20 - 150 MHz 65 %

Table 5.2: Resource usage and utilization.
LUT FF 36K BRAM DSP
145.4k 300.0k 434 864
53.0 % 54.7 % 47.6 % 34.3 %

the circuit size was increased, and the Vitis HLS could not complete the HLS
synthesis in the case of 20 cores.

On the other hand, the operating frequency did not decrease even when
the circuit size was increased up to 16 cores in the multi-kernel design. In
the multi-kernel design, the operating frequency decreased significantly when
the number of cores was increased to 20. The experiments confirmed that
the multi-kernel HLS design method is effective for large circuit sizes. To
balance the number of cores and the operating frequency, we set the number
of cores to 16 in the following experiments.

5.4.2 Implementation Results

We design the proposed architecture using Xilinx Vitis HLS 2021.1 and Vi-
vado 2021.1 and implement it on Xilinx ZCU102. In the experiments in this
chapter, the size of the PE array is 7× 7, and the number of cores is 16. The
block diagram of the Vivado IP integrator is shown in Fig. 5.5. Among the
blocks in the figure, the block with the red figure is the 16 cores designed in
the Vitis HLS. Table 5.2 shows the resource usage of the synthesis result. The
LUTs and BRAMs utilize around 50%, while the DSP blocks have utilization
of about 35%. The resource utilization of each module in the core circuit is
shown in the Vitis HLS synthesis report. Table 5.3 shows the breakdown
of the estimated resource usage by module in each core. We find that the
instruction controller occupies the LUT, the SIMD unit occupies the DSP
block, and the buffer memory occupies the BRAM.

65

Table 5.3: Estimation of resources by module within a core.
Module LUT FF BRAM DSP
Inst Cache 0.4 % 0.2 % 15.4 % 0.0 %
Inst Control 51.5 % 89.4 % 0.0 % 9.3 %
SIMD Unit 35.5 % 0.0 % 0.0 % 90.7 %
ALU 12.6 % 10.4 % 0.0 % 0.0 %
Buffer 0.0 % 0.0 % 84.6 % 0.0 %

Table 5.4: Comparison between the proposed method and other platforms.
CPU GPU MB2[53] Ours

Prec. FP32 FP16 INT8 INT8
Freq. 2.4 GHz 1.4 GHz 0.3 GHz 0.5 GHz
Peak Perf. 0.3 TOPS 11.0 TOPS 1.4 TOPS 0.8 TOPS
Top1 Acc. 72.9 % 72.9 % 68.1 % 71.3 %
Power - 19.9 W - 32.7 W
Throughput 17.6 fps 52.8 fps 809.8 fps 123.5 fps
Latency 56.7 ms 18.9 ms - 8.1 ms

5.4.3 Comparison with Other Platforms

We perform inference for MobileNetV2 using the proposed architecture im-
plemented on a Xilinx FPGA board, ZCU102. We also compare the proposed
architecture with CPU, GPU, and existing FPGA implementations. For the
CPU, we use Intel Core i9-9980H, which is a notebook CPU from Intel Cor-
poration, and the computational accuracy is FP32. For the GPU, we use
Xilinx’s Jetson AGX Xavier GPU for embedded systems, with an accuracy
of FP16. The CPU and GPU use Python 3.6 and PyTorch 2.3 libraries for
inference, and the batch size is set to 1 to minimize latency. For the existing
and proposed FPGA implementations, we used the circuit implemented in
the ZCU102 to perform the inference, and the computational accuracy was
INT8. In all experiments, we measured the time from the start of the image
data transfer to the external memory until the inference results were written
to the external memory. We also measured the power of the entire board
using an AC watt checker.

Table 5.4 shows the performance and inference speed of each platform.
The experiments found that the proposed method is 7.0 times faster than
the CPU and 2.3 times faster than the GPU. The inference speed is inferior
to the existing FPGA implementation. This is because the current FPGA
implementation is a highly parallel circuit that uses more DSP block resources
than the proposed method.

66

5.5 Conclusion

In this chapter, we have proposed a multi-core architecture for fast CNN
inference, which has the problem that the achievable operating frequency
becomes small when a large HLS design is implemented. The proposed ar-
chitecture solves this problem by connecting multiple cores designed by HLS
as a small design with FIFOs. It is possible to design a circuit with a high op-
erating frequency even when implemented by HLS. Evaluation experiments
show that the proposed method is 7.0 times faster than the CPU and 2.3
times faster than the GPU.

67

Chapter 6

Summary

We have proposed co-design methods for machine learning algorithms and
computer architectures to conclude an optimization method for machine
learning accelerator on an FPGA. Chapter 2 presented the design and opti-
mization methods of random forests on FPGAs. k-means clustering is used
to optimize the algorithm and the design flow based on high-level synthesis
design, enabling us to obtain high-performance RF in a short design time.
Chapter 3 proposed an efficient indirect memory access architecture using
sparse weighted CNNs. We implemented OpenPose, a pose estimation algo-
rithm, on FPGA for the first time, enabling inference of pose estimation that
satisfies the timing constraints of real-time applications. Chapter 4 proposed
a method for on-chip memory compression in CNN implementation. This
research enables us to implement large CNN models on FPGAs with very
tiny memory without memory constraints. Chapter 5 proposed a method to
realize a large-scale circuit of CNN with high operating frequency by using
high-level synthesis. We achieved a 500 MHz implementation despite the
large-scale design.

This research has proposed an optimization design flow that satisfies the
constraints, including throughput and computational resource limitations,
at the slight expense of recognition accuracy for machine learning. It has
become possible to develop high-performance implementations quickly by
proposing flows using HLS. We have improved the three requirements for
autonomous systems: speed, power consumption, and design cost by co-
designing the algorithm and hardware and proving FPGA accelerators’ high
potential. As an implementation method based on our research, we have
created a framework allowing a non-expert to realize a high-performance ma-
chine learning accelerator on FPGA. The co-design of the machine learning
algorithm and architecture and the establishment of the design flow shown in
this study will be helpful for future machine learning algorithms or models.

68

Acknowledgements

I would like to sincerely thank my advisor, Associate Professor Hiroki Naka-
hara, for his guidance in my research, support in university life, and life
advice. Without Associate Professor Hiroki Nakahara, I would not have
had a fulfilling graduate school experience. I would like to thank Professor
Atsushi Takahashi for supporting my research by giving me a view of my
research motivation. I would like to thank Assistant Professor Shimpei Sato
for helping and advising my research. I would like to thank the secretary,
Mrs. Reiko Shimura, for managing my research expenses.

I am grateful to my colleagues in the laboratory. I would like to thank Mr.
Masayuki Shimoda for inspiring me in my research through discussions and
daily conversations. I would like to thank Mr. Naoto Soga for providing me
with an enjoyable research life by improving the lab atmosphere. I would like
to thank Mr. Kouki Sayama for the research discussions we had together. I
would like to thank Mr. Ryousuke Kuramochi for his advice on implementing
my research. I would like to thank Mr. Takeshi Senoo for helping me run
the laboratory’s experimental system.

Finally, I would like to express my deepest gratitude to my parents for
supporting me all my life. To my mother, I would like to thank you for
raising me to be a curious person. To my father, I would like to thank you
for accepting my whimsical nature and supporting our family.

69

References

[1] Xilinx, “Vivado Design Flows Overview.”
https://japan.xilinx.com/content/xilinx/en/support/documentation-
navigation/design-hubs/dh0002-vivado-design-flows-overview-hub.html.
[Online; accessed 1-February-2022].

[2] Intel, “Intel FPGA SDK for OpenCL Software Technology.”
https://www.intel.com/content/www/us/en/software/programmable/sdk-
for-opencl/overview.html. [Online; accessed 1-February-2022].

[3] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella, M. Blott,
L. Lavagno, K. Vissers, J. Wawrzynek, et al., “Synetgy: Algorithm-
hardware co-design for convnet accelerators on embedded fpgas,” in In-
ternational Symposium on Field-Programmable Gate Arrays, pp. 23–32,
2019.

[4] L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun, Z. Zhang,
and J. Cong, “Autobridge: Coupling coarse-grained floorplanning and
pipelining for high-frequency hls design on multi-die fpgas,” in Interna-
tional Symposium on Field-Programmable Gate Arrays, pp. 81–92, 2021.

[5] L. Breiman, “Random forests,” Springer, Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.

[6] W. S. McCulloch andW. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” Springer The bulletin of mathematical biophysics,
vol. 5, no. 4, pp. 115–133, 1943.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol. 323, no. 6088,
pp. 533–536, 1986.

[8] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech,
and time series,” The Handbook of Brain Theory and Neural Networks,
vol. 3361, no. 10, pp. 255–258, 1995.

70

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Conference on Neural In-
formation Processing Systems, pp. 1097–1105, 2012.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Conference on Computer Vision and Pattern Recogni-
tion, pp. 770–778, 2016.

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[13] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Con-
ference on Computer Vision and Pattern Recognition, pp. 7132–7141,
2018.

[14] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” arXiv preprint arXiv:1905.11946, 2019.

[15] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint recog-
nition using random ferns,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 32, no. 3, pp. 448–461, 2009.

[16] Y. Amit and D. Geman, “Shape quantization and recognition with ran-
domized trees,” MIT Press Neural Computation, vol. 9, no. 7, pp. 1545–
1588, 1997.

[17] D. Tang, Y. Liu, and T.-K. Kim, “Fast pedestrian detection by cas-
caded random forest with dominant orientation templates.,” in British
Machine Vision Conference, vol. 1, p. 5, Citeseer, 2012.

[18] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab, “Dominant
orientation templates for real-time detection of texture-less objects,”
in Conference on Computer Vision and Pattern Recognition, pp. 2257–
2264, IEEE, 2010.

[19] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in Conference on Computer Vision and Pat-
tern Recognition, pp. 1297–1304, Ieee, 2011.

71

[20] M. Dantone, J. Gall, G. Fanelli, and L. Van Gool, “Real-time facial
feature detection using conditional regression forests,” in Conference on
Computer Vision and Pattern Recognition, pp. 2578–2585, IEEE, 2012.

[21] H. Le, W. Jiang, and V. K. Prasanna, “A sram-based architecture for
trie-based ip lookup using fpga,” in International Symposium on Field-
Programmable Custom Computing Machines, pp. 33–42, IEEE, 2008.

[22] T. Becker, Q. Liu, W. Luk, G. Nebehay, and R. Pflugfelder, “Hardware-
accelerated object tracking,” in International Conference on Field-
Programmable Logic and Applications, 2011.

[23] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger, “Acceler-
ating a random forest classifier: Multi-core, gp-gpu, or fpga?,” in In-
ternational Symposium on Field-Programmable Custom Computing Ma-
chines, pp. 232–239, IEEE, 2012.

[24] J. Oberg, K. Eguro, R. Bittner, and A. Forin, “Random decision tree
body part recognition using fpgas,” in International Conference on
Field-Programmable Logic and Applications, pp. 330–337, IEEE, 2012.

[25] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a chip: High
performance lossless data compression on fpgas using opencl,” in Pro-
ceedings of the International Workshop on OpenCL, pp. 1–9, 2014.

[26] Xilinx, “Xilinx SDSoC Development Environment.” https://www.
xilinx.com/products/design-tools/legacy-tools/sdsoc.html.
[Online; accessed 1-February-2022].

[27] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, and J. Zambreno,
“An fpga implementation of decision tree classification,” in Design, Au-
tomation and Test in Europe Conference and Exhibition, pp. 1–6, IEEE,
2007.

[28] J. MacQueen et al., “Some methods for classification and analysis of mul-
tivariate observations,” in Berkeley Symposium on Mathematical Statis-
tics and Probability, vol. 1, pp. 281–297, Oakland, CA, USA, 1967.

[29] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” tech. rep., Stanford, 2006.

[30] D. Pelleg, A. W. Moore, et al., “X-means: Extending k-means with effi-
cient estimation of the number of clusters.,” in International Conference
on Machine Learning, vol. 1, pp. 727–734, 2000.

72

[31] Scikit-leran, “Scikit-leran: Machine Learning in Python.” http://
scikit-learn.org/stable/. [Online; accessed 1-February-2022].

[32] U. Irvine, “UCI Machine Leraning Repository.” https:
//archive-beta.ics.uci.edu/. [Online; accessed 1-February-2022].

[33] H. Nakahara, A. Jinguji, T. Fujii, and S. Sato, “An acceleration of
a random forest classification using altera sdk for opencl,” in Inter-
national Conference on Field-Programmable Technology, pp. 289–292,
IEEE, 2016.

[34] Cython, “Cython: C-Extensions for Python.” http://cython.org/.
[Online; accessed 1-February-2022].

[35] W.-T. Lo, Y.-S. Chang, R.-K. Sheu, C.-C. Chiu, and S.-M. Yuan, “Cudt:
a cuda based decision tree algorithm,” Hindawi The Scientific World
Journal, vol. 2014, 2014.

[36] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional
pose machines,” in Conference on Computer Vision and Pattern Recog-
nition, pp. 4724–4732, 2016.

[37] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint detec-
tion in single images using multiview bootstrapping,” in Conference on
Computer Vision and Pattern Recognition, pp. 1145–1153, 2017.

[38] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in Conference on Computer
Vision and Pattern Recognition, pp. 7291–7299, 2017.

[39] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
“Accelerating recurrent neural networks in analytics servers: Compari-
son of fpga, cpu, gpu, and asic,” in International Conference on Field-
Programmable Logic and Applications, pp. 1–4, IEEE, 2016.

[40] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating binarized neural networks: Comparison of fpga,
cpu, gpu, and asic,” in International Conference on Field-Programmable
Technology, pp. 77–84, IEEE, 2016.

[41] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong
Gee Hock, Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra, et al.,
“Can fpgas beat gpus in accelerating next-generation deep neural net-
works?,” in International Symposium on Field-Programmable Gate Ar-
rays, pp. 5–14, 2017.

73

[42] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 367–379,
2016.

[43] H. Yonekawa, S. Sato, and H. Nakahara, “A ternary weight binary in-
put convolutional neural network: Realization on the embedded proces-
sor,” in International Symposium on Multiple-Valued Logic, pp. 174–179,
IEEE, 2018.

[44] D. Nguyen, D. Kim, and J. Lee, “Double mac: Doubling the perfor-
mance of convolutional neural networks on modern fpgas,” in Design,
Automation and Test in Europe Conference and Exhibition, pp. 890–893,
IEEE, 2017.

[45] T. Jin and S. Hong, “Split-cnn: Splitting window-based operations in
convolutional neural networks for memory system optimization,” in In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 835–847, 2019.

[46] Google, “Edge TPU performance benchmarks.” https://coral.ai/
docs/edgetpu/benchmarks/. [Online; accessed 8-January-2021].

[47] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang, “From
model to fpga: Software-hardware co-design for efficient neural net-
work acceleration,” in Symposium on High Performance Chips, pp. 1–27,
IEEE, 2016.

[48] A. Podili, C. Zhang, and V. Prasanna, “Fast and efficient implementa-
tion of convolutional neural networks on fpga,” in International Con-
ference on Application-specific Systems, Architectures and Processors,
pp. 11–18, IEEE, 2017.

[49] S. Yin, S. Tang, X. Lin, P. Ouyang, F. Tu, L. Liu, and S. Wei, “A
high throughput acceleration for hybrid neural networks with efficient
resource management on fpga,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 4, pp. 678–691,
2018.

[50] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

74

[51] E. Elsen, M. Dukhan, T. Gale, and K. Simonyan, “Fast sparse convnets,”
in Conference on Computer Vision and Pattern Recognition, pp. 14629–
14638, 2020.

[52] Xilinx, “Vitis Unified Software Platform.” https://www.xilinx.com/
products/design-tools/vitis/vitis-platform.html. [Online; ac-
cessed 1-February-2022].

[53] D. Wu, Y. Zhang, X. Jia, L. Tian, T. Li, L. Sui, D. Xie, and Y. Shan,
“A high-performance cnn processor based on fpga for mobilenets,” in In-
ternational Conference on Field-Programmable Logic and Applications,
pp. 136–143, IEEE, 2019.

75

Publications

Jpurnal Papers

1. A. Jinguji, S. Sato, and H. Nakahara,“ An FPGA Realization of a
Random Forest with k-means Clustering using a High-level Synthesis
Design,”IEICE Transactions on Information and Systems, Vol. E101-
D, No. 2, pp. 354-362, February, 2018.

2. A. Jinguji, S. Sato, and H. Nakahara,“Weight Sparseness for a Feature-
Map-Split-CNN Toward Low-Cost Embedded FPGAs,”IEICE Transac-
tions on Information and Systems, Vol. E104-D, No. 12, pp. 2040-2047
December, 2021.

International Conferences

1. H. Nakahara, A. Jinguji, T. Fujii, and S. Sato,“ An Acceleration of a
Random Forest Classification using Altera SDK for OpenCL,”Inter-
national Conference on Field-Programmable Technology, pp. 285-288,
Xian, China, December, 2016.

2. H. Nakahara, A. Jinguji, S. Sato and T. Sasao,“ A Random Forest
using a Multi-valued Decision Diagram on an FPGA,”International
Symposium on Multiple-Valued Logic, pp. 266-271, Novi Sad, Serbia,
May, 2017.

3. A. Jinguji, T. Fujii, S. Sato and H. Nakahara,“An FPGA Realization
of OpenPose based on a Sparse Weight Convolutional Neural Network,”
International Conference on Field-Programmable Technology, pp. 313-
316, Naha, Okinawa, Japan, December, 2018.

4. H. Nakahara, A. Jinguji, M. Shimoda and S. Sato,“ An FPGA-based
Fine-Tuning Accelerator for a Sparse CNN,”International Symposium

76

on Field-Programmable Gate Arrays, pp. 186-186, Seaside, California,
USA, February, 2019.

5. H. Nakahara, Y. Sada, M. Shimoda, K. Sayama, A. Jinguji, S. Sato,“ FPGA-based Training Accelerator Utilizing Sparseness of Convolu-
tional Neural Network,”International Conference on Field-Programmable
Logic and Applications, pp. 180-186, Barcelona, Spain, September,
2019.

6. A. Jinguji, Y. Sada, H. Nakahara,“Real-Time Multi-Pedestrian Detec-
tion in Surveillance Camera using FPGA,”International Conference on
Field-Programmable Logic and Applications, pp. 424-425, Barcelona,
Spain, September, 2019.

7. Y. Sada, M. Shimoda, A. Jinguji, H. Nakahara,“A Dataflow Pipelining
Architecture for Tile Segmentation with a Sparse MobileNet on an
FPGA,”International Conference on Field-Programmable Technology,
pp. 267-270, Tianjin, China, December, 2019.

8. H. Nakahara, Q. Zhiqiang, A. Jinguji, W. Luk,“ R2CNN: Recurrent
Residual Convolutional Neural Network on FPGA,”International Sym-
posium on Field-Programmable Gate Arrays, pp. 319-319, Seaside,
California, USA, February, 2020.

9. A. Jinguji, S. Sato, H. Nakahara,“Tiny On-Chip Memory Realization
of Weight Sparseness Split-CNNs on Low-end FPGAs,”International
Symposium on Field-Programmable Custom Computing Machines, pp.
229-229, Online, May, 2020.

10. Y. Sada, N. Soga, M. Shimoda, A. Jinguji, S. Sato and H. Nakahara,“ Fast Monocular Depth Estimation on an FPGA,”International Par-
allel and Distributed Processing Symposium Workshops, pp. 143-146,
Online, May, 2020.

11. T. Senoo, A. Jinguji, R. Kuramochi and H. Nakahara,“ A Multilayer
Perceptron Training Accelerator using Systolic Array,”Asia Pacific
Conference on Circuits and Systems, No. 1570752115, Online, Novem-
ber, 2021.

Japanese Domestic Conferences

1. 中原啓貴, 神宮司明良, 藤井智也, 佐藤真平, 丸山直也,“Altera SDK for
OpenCLを用いたランダムフォレストによる分類の高速化,”コンピュー

77

タシステム研究会, CPSY2016-25, Vol.116, No.177, pp. 175-180, 長野,
2016年 8月.

2. 中原啓貴, 神宮司明良, 藤井智也, 佐藤真平, 丸山直也,“Altera SDK for
OpenCLを用いた組込みメモリに基づくランダムフォレストによる分類について,”リコンフィギャラブルシステム研究会, Vol. 116, No. 210,
pp. 57-62, 富山, 2016年 9月.

3. 中原啓貴, 神宮司明良, 佐藤真平, 笹尾勤, 丸山直也,“多値決定グラフを用いたランダムフォレストに関して,”第 39回多値論理フォーラム,多値論理研究ノート第 39巻, 岩手, 2016年 9月.

4. 神宮司明良, 佐藤真平, 中原啓貴,“特徴空間の分割に k平均法を導入したランダムフォレストの FPGA実装,”第 30回多値論理とその応用研究会, 金沢, 2017年 1月.

5. 神宮司明良,佐藤真平,中原啓貴,“Feature-Map Separable Convolutionによる小メモリFPGAでの画像認識の実現,”リコンフィギャラブルシステム研究会, RECONF2018-41, pp. 39-44, 広島, 2018年 12月.

6. 神宮司明良, 下田将之, 中原啓貴,“特徴マップを空間分割したCNNの
FPGAにおける小メモリ実装,”VLSI設計技術研究会, VLD2018-94, pp.
7-12, 沖縄, 2019年 3月.

7. 神宮司明良, 下田将之, 中原啓貴,“特徴マップを空間分割したCNNの
FPGAにおける小メモリ実装について,”リコンフィギャラブルシステム研究会, RECONF2019-16, pp. 85-90, 東京, 2019年 5月.

8. 神宮司明良, 佐藤真平, 中原啓貴,“Wide-SIMDを用いた ISAベースのスパースCNNのFPGA実装,”リコンフィギャラブルシステム研究会,
RECONF2019-37, pp. 9-14, 愛媛, 2019年 11月.

9. 佐山功起, 神宮司明良, 曽我尚人, 中原啓貴,“解像度に基づくスケールが可能なCNNアクセラレータの FPGA実現に関して,”リコンフィギャラブルシステム研究会, RECONF2020-68, pp. 58-62, オンライン,
2021年 1月.

10. 神宮司明良, 中原啓貴,“高位合成を用いたマルチコア構成のニューラルネットワークのFPGA実装,”リコンフィギャラブルシステム研究会,
RECONF2021-18, pp. 7-12, オンライン, 2021年 9月.

11. 神宮司明良, 中原啓貴,“ gMLPを用いた画像認識向けDNNアクセラレータのFPGA実装,”リコンフィギャラブルシステム研究会, RECONF
2021-29, pp. 25-30, オンライン, 2021年 12月.

78

12. 妹尾豪士, 神宮司明良, 倉持亮佑, 中原啓貴,“シストリックアレイによる多層パーセプトロンの学習アクセラレータについて,”リコンフィギャラブルシステム研究会, RECONF2021-31, pp. 37-42, オンライン, 2021年 12月.

13. 市川雄樹, 神宮司明良, 倉持亮佑, 中原啓貴,“蒸留とレイヤー枝刈りによるエッジデバイス推論処理の高速化について,”リコンフィギャラブルシステム研究会, RECONF2022-66, pp. 49-54, オンライン, 2022年 1月.

14. 高嶋優希,神宮司明良,中原啓貴,“最終層学習によるDPUの学習機能追加について,”リコンフィギャラブルシステム研究会, RECONF2021-67,
pp. 55-60, オンライン, 2022年 1月.

Awards

1. リコンフィギャラブルシステム研究会 若手優秀講演賞,“Feature-Map
Separable Convolutionによる小メモリFPGAでの画像認識の実現,”電子情報通信学会リコンフィギャラブルシステム研究会, 2019年 1月.

2. デザインガイア 優秀ポスター発表賞,“ gMLPを用いた画像認識向け
DNNアクセラレータの FPGA実装,”電子情報通信学会デザインガイアポスター賞選奨実行委員会, 2021年 12月.

3. リコンフィギャラブルシステム研究会 若手優秀講演賞,“高位合成を用いたマルチコア構成のニューラルネットワークのFPGA実装,”電子情報通信学会リコンフィギャラブルシステム研究会, 2022年 1月.

79

