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Soft Tensegrity Robot Driven by Thin Artificial Muscles
for the Exploration of Unknown Spatial Configurations

Ryota Kobayashi1, Hiroyuki Nabae1, Gen Endo1, and Koichi Suzumori1

Abstract— The primary role of a robot exploring an unknown
space is to investigate the state and the spatial shape of the
environment. We have designed a soft robot that aims to move
forward in an unknown space as it recognizes and adapts to
the spatial shape of the environment. We previously reported
that soft tensegrity and recurrent neural networks can be used
to realize tensegrity structure shape recognition. In this study,
a tensegrity robot was designed to actively generate propulsive
force as it presses its body against a wall in its surrounding
environment. This robot design includes a novel artificial muscle
arrangement called ”4/3 muscle winding,” which induces large
deformation in the tensegrity structure. The application of
this new artificial muscle arrangement allows two types of
large deformations to be induced in the tensegrity structure,
which results in displacements of 20% to 40% in the axial
and radial directions. We have demonstrated that the robot,
which was created by connecting the tensegrity structures, is
lightweight and possesses passive shape adaptability in a three-
dimensional environment. This tensegrity robot could enter an
unknown space, such as a cave, and recognize the spatial shape
of the surrounding environment by recognizing the tensegrity
structure shape.

I. INTRODUCTION

One of the roles of robots is to explore unknown spaces
that are inaccessible to humans. Some examples include the
exploration of an environment with obstacles [1][2], and the
exploration of an environment that cannot be directly ob-
served [3][4]. In such an unknown space, one of the primary
roles of a robot is to investigate the state and the spatial
shape of the unknown environment. If the space is well lit,
the robot can recognize the spatial shape of the environment
by applying parallax triangulation in accordance with the
structure-from-motion approach [5][6]. If the space is dark,
the spatial shape of an object can be recognized by using
time-of-flight sensors, such as light detection and ranging
(LIDAR) and laser range finder (LRF) [7][8]. However, the
optical and sonic echoes that are generally unavoidable in
dark and narrow spaces make it difficult to apply these
methods to recognize the spatial shape of the environment.

A soft robot (e.g., [9][10][11][12]) can physically sense
its surroundings in such an environment because of its
passive shape adaptability to the external world. Thus, we
purposed to realize a soft robot that can enter a space with
an unknown spatial shape, and concurrently navigate through
the space by utilizing wall-body contact, and recognize the
3D spatial shape of the space based on time-series data of its
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Fig. 1. Soft tensegrity robot driven by thin artificial muscles.

position and shape. Such a robot can be used, for example,
for cave exploration and spatial shape recognition. In an
unknown environment, the robot needs to be light enough
to avoid disturbing the environment. For this reason, we
focused on the development of a very light soft tensegrity
structure driven by thin McKibben muscles [13], which have
a large power output relative to their own weight and flexible
movement among other lightweight artificial muscles [14].
We have previously reported on the success of tensegrity
structure shape recognition by incorporating a soft thread
sensor and processing the data using recurrent neural network
(RNN) [15]. This allows the robot to recognize the spatial
shape of the environment based on the knowledge of its own
shape as it moves through a space with its body in contact
with a wall assuming that the robot moves through a space of
the approximate size of the robot’s motion range. However,
a tensegrity robot that can move through an unknown space
while adapting to the spatial shape of the environment has
not been realized here.

For a body to make contact with a wall in an unknown
space, it is necessary to realize a robot with a tensegrity
structure that can undergo significant shape changes and ap-
ply moderate pressure against walls, which can be achieved
via inchworm mechanisms. This mechanism requires the
robot to generate a large amount of deformation in both the
axial and radial directions. However, most of the tensegrity
robots that have been developed to date deform a part
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Fig. 2. Proposed 4/3 muscle winding scheme for the large deformation of
tensegrity structures using artificial muscles.

of the structure to realize rolling motion under their own
weight [16][17][18]. Such motion cannot actively generate
horizontal or gravitational thrust, or passively adapt to the
environment. Alternatively, robots that use artificial mus-
cles to move tensegrity structures have also been studied
[15][19][20][21], but the amount of deformation that they
can achieve is insufficient for the desired motions. Thus, it
is necessary to develop a new method that allows a large
amount of displacement to be generated in the tensegrity
structure using artificial muscles.

In this paper, we propose a new method for artificial mus-
cle arrangement called ”4/3 muscle winding;” this method
enables large deformation in a one-unit tensegrity structure.
The artificial muscle is flexible and can be activated in a
bent position. Thus, it is possible to wind artificial muscles
around the tensegrity structure using the proposed 4/3 muscle
winding method; the amount of displacement of the entire
structure can be increased without any additional mechanism.
Additionally, by connecting the soft tensegrity structures that
induce this large displacement, an inchworm robot shown in
Fig. 1 was created, and its behavior was verified. Eventually,
the robot will be able to enter into an unknown space and
be able to recognize the spatial shape of its surrounding
environment.

The remainder of this letter is organized as follows. In
Section II, the design of a one-unit tensegrity structure that
produces large deformations is described. Experiments on the
environmental adaptability of the inchworm robot consisting
of the tensegrity structures are described in Section III.
Lastly, the conclusions and future plans are presented in
Section IV.

II. MODELING AND DESIGN OF TENSEGRITY UNIT

This section describes 1) the concept of artificial muscle
placement for the large deformation of tensegrity (i.e., Sec-
tion II-A), and 2) the tensegrity model that induces large
deformation (i.e., Section II-B). Then, in Section II-C, the
effects of pre-stretching the rubber thread via simulation
are discussed. For considering the effects of pre-stretching,
the mathematical model is developed based on the potential
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Fig. 3. Different states applied in the 4/3 muscle winding scheme: (a)
initial state and (b) pressurized state.
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Fig. 4. Deformation induced by the artificial muscles.

energy of the system to deal with the balance of force;
Section II-D discusses the experiments that were conducted
using a real tensegrity structure.

A. Proposed 4/3 muscle winding concept

To begin, we will explain the concept of 4/3 muscle
winding, which is a method that entails the arrangement of
artificial muscles to significantly deform the tensegrity. In
this study, a tensegrity structure called the T6-sphere was
used; it consists of six struts and 24 rubber threads, as shown
in Fig. 2. Our group has previously demonstrated that the
shape recognition of tensegrity can be achieved by applying
sensor threads as the rubber threads of the tensegrity [15].

In this tensegrity model, there are 12 strut endpoints, each
of which has a isosceles triangle with itself as its vertex and
another strut as the base as shown in Fig. 2(A).The triangle
comprises two rubber threads and one strut. As shown in
Fig. 2(a), the artificial muscles, which had a combined length
of two struts and two rubber threads, was set to encompass
the triangle. Thin McKibben muscles have a contraction
ratio of approximately 20%; this means that two points that
are connected by artificial muscles can only move toward
each other by approximately 20%. However, by positioning
the artificial muscles as shown in Figs. 2(a) and 3(a) and
applying pneumatic pressure, it is possible to induce contact
between the point and strut (i.e., a contraction ratio of 100%),
as shown in Figs. 2(b) and 3(b). This is because the change
in the length of the perimeter of the triangle is very small
when it deforms (approximately 7%). Thus, the proposed 4/3
muscle winding method allows for 100% contraction ratio of
distance between the point and the strut.

By applying 4/3 muscle winding to six of the 12 triangles
in the tensegrity structure, the entire tensegrity structure can
produce the two large deformations shown in Fig. 4.
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Fig. 5. Names and set variables for tensegrity vertices. The green triangle
is Pattern 1 and the purple triangle is Pattern 2.

B. Kinematics and statics

In the past, static [22] and dynamic analyses [23][24] and
structural stability analyses [25][26] have been conducted
for tensegrity structures. However, because the force of
artificial muscles changes with displacement, it is necessary
to consider the displacement in the analysis. Therefore, in
this study, the conventional kinematic analysis of tensegrity
is coupled with the displacement and force characteristics of
the artificial muscles.

The name of each vertex in the tensegrity model was set
as shown in Fig. 5, and the length of the strut was set to be
L. In the event of stretching or shrinking along the z axis,
the coordinates of the 12 vertices in the tensegrity model
can be represented by only four variables, i.e., r, θ, ϕ, and h,
according to the symmetry about the z-axis. The method is
shown below.

First, let r be the length of one side of the triangle at the
base, and denote the angles of the struts A1

1A2
1 using θ and

ϕ, as follows:

A1
1 = (0, 0, 0)⊤, (1)

B1
1 = (r, 0, 0)⊤, (2)

C1
1 =

(
1

2
r,

√
3

2
r, 0

)⊤

, (3)

A2
1 = (L sin θ cosϕ, L sin θ sinϕ, L cos θ)⊤. (4)

Additionally, by setting h as the distance between bottom
triangle A1

1B1
1C1

1 and top triangle A2
2B2

2C2
2, the center coor-

dinates of the tensegrity model can be expressed as shown
in Eq. (5).

P =

(
1

2
r,

√
3

6
r,

h

2

)⊤

(5)

From the symmetry around the z-axis, using the rotation
matrix Rz(θ) to rotate θ around the z-axis, the following
relations are obtained.

B2
1 = Rz

(
2

3
π

)
(A2

1 − P ) + P , (6)

C2
1 = Rz

(
4

3
π

)
(A2

1 − P ) + P (7)

Fig. 6. Relationship between the rate of change in rubber length and load.

The coordinates of the remaining six vertices are then
obtained from the symmetry about P , as follows:

Xi
2 = 2P −X3−i

1 (X = A,B,C, i = 1, 2). (8)

Then, the 12 vertices in the tensegrity model can be rep-
resented by using the four variables r, θ, ϕ, and h. Using
the above-mentioned symmetry, the lengths of the 24 rubber
threads can be partitioned into four categories. The four
lengths are shown in Eq. (9), where i = 1, 2, and X and Y
differ from each other in A, B, and C.∣∣Xi

iY
i
i

∣∣ , ∣∣X3−i
i Yi

i

∣∣ , ∣∣Xi
iY

i
3−i

∣∣ , ∣∣Xi
3−iY

3−i
i

∣∣ (9)

Let the names of the lengths given by Eq. (9) be, from left to
right, lrubber,1, lrubber,2, lrubber,3, and lrubber,4. For example,
A2

1B1
1 has i = 1, X = A, and Y = B, and is classified as

lrubber,2.
The potential energy is derived from the above-described

variables. The shape of the tensegrity structure is calculated
by solving the equilibrium equation, which is obtained by
partial differentiation of the potential energy in each variable.

Because the tensegrity structure is sufficiently light, the
total potential energy U of the model is expressed as the
sum of the elastic energy of the rubber threads and the
elastic energy of the artificial muscles. All properties of the
rubber threads and artificial muscles used were measured
by the tensile testing machine used at [27]. The measured
value was an average value taken over five samples. The
relationship between the length and load normalized by the
natural length of the measured rubber thread is shown in
Fig. 6. To simplify the analysis, hysteresis is ignored and
the average value of loading and unloading is used. The
function f(lrubber) of the load on the length lrubber of the
rubber thread is obtained by approximating to the 9th order
function using the least-squares method. The highest order
of the approximation function was set to the minimum value
such that the norm of the error vector was less than 1% of
the maximum value of the measurement.

The respective relationships between the pressure, load,
and contraction ratio of an artificial muscle is shown in
Fig. 7. It can be seen that the relationship between the load
and contraction ratio can be linearly approximated when
a pressure P is applied to the artificial muscle. Thus, the
load applied to the artificial muscle when the length of the
muscle is lmuscle can be obtained by using the contraction
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Fig. 7. (a) Artificial muscle contraction ratio and load as a function of
pressure. (b) Relationship between the contraction ratio and load at P =
0.4 MPa.

force gmax(P ), contraction ratio rmax(P ) when a pressure
P is applied, and the length of the muscle lmuscle,0 when no
pressure is applied, as follows:

g(lmuscle) =

(
1− lmuscle,0 − lmuscle

rmax(P )lmuscle,0

)
gmax(P ). (10)

By integrating the rubber thread load f(lrubber) and the
artificial muscle load g(lmuscle) with their respective lengths,
the elastic energies of the rubber thread and artificial muscle
can be respectively obtained as F (lrubber) and G(lmuscle).

Two patterns of artificial muscle placement were consid-
ered. Pattern 1 entails the use of 4/3 muscle winding for
triangle A1

1A2
1B1

1 and five other symmetrically positioned
triangles. Pattern 2 entails the use of 4/3 muscle winding
for triangle A1

1A2
1B1

2 and five other symmetrically positioned
triangles. In the cases of Patterns 1 and 2, the artificial
muscles are placed in relation to the z axis, so the tensegrity
structure stretches and contracts along the z axis.

The length of an artificial muscle can be approximated
according to the lengths of the two rubber threads and the two
struts that form the enclosed triangle. For this reason, in the
case of Pattern 1, the length of one artificial muscle can be
approximated as the sum of the lengths of |A1

1B1
1| = lrubber,1

and |A2
1B1

1| = lrubber,2, and the combined length of two
struts 2L. Pattern 2 can be considered in the same way, and
the length of one artificial muscle in Pattern k (k = 1, 2) can
be expressed as lmuscle,k = 2L + lrubber,2k−1 + lrubber,2k.
Thus, the total energy of the model can be expressed as the
sum of the potential energy of the rubber threads, and the
potential energy of the artificial muscles, as follows:

Uk(r, θ, ϕ, h) = 6

4∑
i=1

F (lrubber,i) + 6G(lmuscle,k), (11)

where
F (l) =

∫
f(l)dl, G(l) =

∫
g(l)dl. (12)

Partial differentiation of the potential energy obtained for
each of the four variables yields equilibrium equations for
each variable that can be obtained as shown in Eq. (13).

∂U

∂r
= 0,

∂U

∂θ
= 0,

∂U

∂ϕ
= 0,

∂U

∂h
= 0 (13)

Equation (13) can be solved numerically by using the MAT-
LAB function (vpasolve), and this method is used for all
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Fig. 8. Tensegrity model of Pattern 1 as the pressure is varied.
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Fig. 9. Tensegrity model of Pattern 2 as the pressure is varied.

simulations in this study. When L = 130 mm, the natural
length of the rubber thread is 50 mm, and the artificial
muscles follow Patterns 1 and 2, solving Eq. (13) leads to
the deformation shown in Figs. 8 and 9. Artificial muscles
are omitted for a clear understanding of the deformation of
the structure.

In the case of Pattern 1, the deformation occurs as shrink-
age along the z axis and extension in the radial direction; in
the case of Pattern 2, the deformation occurs as extension
along the z axis and shrinkage in the radial direction.

When applying the tensegrity structure to inchworm
robots, it is desirable for one unit to be able to generate
pulling and pushing forces that can be applied to other
connected units. For this reason, artificial muscles were
designed to be attached to Patterns 1 and 2. However, such
conditions inhibit deformation because the length of the
artificial muscles restricts movement. To solve this problem,
the artificial muscles to be attached were made to be long and
slack. Specifically, we attached an artificial muscle that was
1.1 times longer than the length of that shown in Fig. 2(a);
we then confirmed that the deformation of the structure was
not restricted by the length of the artificial muscle. In the
simulation, when the artificial muscle is slack, the energy G
of the artificial muscle should be set to zero.

C. Case studies for tensegrity design

As shown in Fig. 6, the rubber thread represents strong
nonlinearity in the relationship between rate of change in
length and load. So the natural length of the rubber thread
is a design parameter for tensegrity structure, which can
affect performance of the tensegrity actuation. As mentioned
above, our tensegrity robot requires large deformation in
both the axial and radial directions, therefore, this Subsection
investigates the effect of pre-stretching the rubber thread on
the deformation of the tensegrity in each direction.
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Fig. 10. (a) Component to be attached to the tip of the strut. (b) Fittings
to split one tube into six tubes.

Figure 11 shows the variation of the structure of the rubber
thread with respect to that at its natural length obtained from
the simulation. The y-axis in Fig. 11 shows the ratio of the
length at the steady state to the initial length in both the axial
and radial direction of the tensegrity. In the actual tensegrity
structure, a physical component shown in Fig. 10(a) at the
vertices in the tensegrity structure come into contact with
the strut, as shown in Fig. 3(b). Thus, the simulation was
designed to terminate at the point where the distance between
the struts equals 15 mm (i.e., 12 mm at the apex and 3 mm
at the radius of the strut). When performing the actual length
measurements for the tensegrity structure, the length of the
component shown in Fig. 10 was also measured; this length
was taken into account in the simulation.

In the simulation wherein 0.4 MPa was applied to the
artificial muscle, the deformation of Pattern 1 did not
significantly change when the natural length was at least
40 mm; alternatively, Pattern 2 most easily deformed when
the natural length was approximately 50 mm.

D. Experimental evaluations

Each strut was made up of a 6-mm-diameter plastic rod
with L = 130 mm; three bamboo sticks that were 110 mm in
length and 2.5 mm in diameter were placed inside to prevent
buckling due to compressive force. Rubber thread with the
load displacements shown in Section II-B was also used. The
rubber thread was fixed by attaching the component shown
in Fig. 10(a) to the end of the strut. Regarding the role of
this component, the artificial muscles were attached to three
of the four holes, and a tube to be attached to the artificial
muscles was passed through the remaining hole and then
fixed. By using the pneumatic fitting shown in Fig. 10(b),
we were able to ensure that the pneumatic pressure supplied
from a single tube could be simultaneously applied to six
artificial muscles. We used 1.8-mm-diameter tubes which
have enough flexibility not to interfere with the deformation
of tensegrity structure. The components shown in Fig. 10
were made using a 3D printer.

The effect of pre-stretching in II-C on the actual tensegrity
structure is shown in Fig. 11. The amount of displacement
was measured by placing two parallel plates on both sides of
the deformed tensegrity structure and measuring the distance
between them. The effects of pre-stretching on deformation,
as described in Section II-C, are shown in Fig. 11 as a
comparison between the simulation and experiment. When
the deformation of the models was experimentally measured,

30 40 50 60 70 80
Natural length of rubber [mm]

0

0.5

1

1.5

R
at

io
 o

f 
th

e 
ax

ia
l l

en
gt

h 
to

 th
e 

in
iti

al
 o

ne

Pattern 1 (Simulation)
Pattern 2 (Simulation)

Pattern 1 (Experiment)
Pattern 2 (Experiment)

30 40 50 60 70 80
Natural length of rubber [mm]

0

0.5

1

1.5

R
at

io
 o

f 
th

e 
ra

di
al

 le
ng

th
 to

 th
e 

in
iti

al
 o

ne

Pattern 1 (Simulation)
Pattern 2 (Simulation)

Pattern 1 (Experiment)
Pattern 2 (Experiment)

a b

Fig. 11. Relationship between the natural length of the rubber thread and
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Fig. 13. (a) Tensegrity when artificial muscles are applied in Pattern 1.
(b) Tensegrity in the initial state. (c) Tensegrity when artificial muscles are
applied in Pattern 2.

there was no significant difference in the deformation mech-
anism when the natural length exceeded 50 mm.

According to [15], the shape of the tensegrity cannot be
estimated if the rubber threads are slack. So the natural length
of the rubber thread should be minimized. For this reason,
a natural length of 50 mm is optimal, because it allows the
tensegrity structure to be sufficiently deformed, while also
discouraging rubber thread sagging.

Figure 12 shows the axial and radial length results for the
tensegrity with a natural length of 50 mm. The tensegrity
in this case is shown in Fig. 13. Pattern 1 resulted in a
shrinkage of approximately 40% in the axial direction, and
an elongation of approximately 25% in the radial direction.
Pattern 2 resulted in approximately 25% elongation in the
axial direction, and approximately 20% shrinkage in the
radial direction. Consequently, a change from Pattern 1 to
Pattern 2 resulted in 65% and 45% changes in the axial
and radial directions. Application of the 4/3 muscle winding
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method can cause a large deformation to be generated in
response to a very small change in the length of the artificial
muscle; thus, it works well even when there is slack, and two
patterns can be simultaneously implemented. A source of the
discrepancies between the simulation and experiment is the
large frictional force at the point where the artificial muscle
bends. Because the large deformations in the two types of
tensegrity structures that can be generated via 4/3 muscle
winding significantly vary in the axial and radial directions,
it should be possible to create an inchworm robot that propels
by pushing its body against walls.

III. DESIGN AND EXPERIMENTAL EVALUATION OF
PERIODIC SOFT TENSEGRITY ROBOT

A. Robot design and control

By connecting the five tensegrity structures, an inchworm
robot was created. The robot and its control system are
shown in Fig. 14. For each unit, there are two sets of
artificial muscles for Patterns 1 and 2 of the artificial muscle
arrangement; thus, there are a total of 10 sets of artificial
muscles in the five units. The control of these 10 pairs
of artificial muscles occurs as follows. First, the pneumatic
pressure from the compressor is adjusted to 0.4 MPa by the

regulator. Then, five tensegrity deformations are controlled
by using a microcontroller to control the on/off functionality
of 10 3-port solenoid valves. By using this control system,
the robot can move as shown in Fig. 15. The weight of the
robot, excluding the pneumatic tubes, is 397 g. Additionally,
to ensure that the robot grips the wall, we attached two anti-
slip Tango Black rubber bumpers for each tensegrity that
grips the wall, as shown in Fig. 14.

Figure 15 shows the driving principle of the robot. Each
unit is named as shown in Fig. 15, the tensegrity robot moves
in the direction opposite to the direction of the wave when it
is moved for one cycle by changing the extending unit from
Unit I→Unit II→Unit III while gripping the others.

B. Experimental evaluation

1) Spatial adaptability to path width: The influence of
wall spacing on the driving characteristics of the robot was
determined. Experiments were conducted to evaluate the
movement of the robot when the distance between the walls
was changed from 150 mm to 240 mm in 10-mm steps.
Figure 16 shows how the robot moves when the wall-to-
wall distances are 150, 200, and 240 mm. In each case, only
the middle unit extends in the direction of motion, while the
other units deform their tensegrity to grip the wall. Owing to
its softness, the tensegrity robot is able to contact its body
with a wall, even if the width between the walls changes.
The speed at which the robot moves is shown in Fig. 17.
To measure the speed, we performed the sequence shown
in Fig. 15 ten times, and calculated the speed based on the
distance traveled. The interval between each sequence was
set to 2.0 s to allow sufficient deformation of the tensegrity
structure.

When the wall spacing was 210 mm, the tensegrity struc-
ture was able to consistently establish contact with both sides
of the wall; however, under the condition of wider spacing,
the tensegrity robot was unable to consistently establish
contact with the walls, as was observed in the case of the
240 mm spacing (Fig. 16). When the spacing between the
walls was narrow, the tensegrity structure deformed less in
the radial direction; the extent of axial deformation also
decreased accordingly; nevertheless, it was still able to move
forward. In this case, the tensegrity structure was rotating
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Fig. 16. Adaptation of the robot to the width of the wall.

Fig. 17. Relationship between wall-to-wall spacing and speed.
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Fig. 18. (a) Moving along a straight path. (b) Moving along a curved path.
(c) Vertical tube climbing demonstration.

with a slight twist in the axial direction.
2) Spatial adaptability to curved path: The adaptability of

the curved environment is shown in Fig. 18, where Fig. 18(a)
shows the robot moving along a straight path with a wall
spacing of 210 mm; Fig. 18(b) shows the robot moving along
a curved path with a radius of curvature of 550 mm and wall
spacing of 210 mm. In both cases, the driving principle of the
robot is the same, and the ∆T and ∆t discussed in Section
III-B.4 were ∆T = 0.6 s, and ∆t = 0.2 s. Under the condition
of the same driving principle, the robot was able to passively
adapt to even unknown environment.

Fig. 19. Relationship between the sequence time interval ∆T and speed
when the wall spacing is 210 mm.

3) Propelling forward in vertical pipe: The ability of the
robot to overcome the force of gravity was also evaluated.
When six anti-slip rubbers were attached to each unit, the
robot was able to climb vertically through a pipe with an
inner diameter of 210 mm, as shown in Fig. 18(c). However,
under the condition of a relatively short time interval between
sequences, the robot was occasionally unable to grip the pipe,
which caused it to fall; this did not occur under the condition
of horizontal movement. For this reason, the time interval of
the sequence should be sufficiently long; thus, in the case
of the movements shown in Fig. 18(c), ∆T = 1.0 s and
∆t = 0.2 s were used. This experiment confirmed that, not
only is the robot able to move along the horizontal plane,
but it is also able to overcome the force of gravity. Thus,
the robot is believed to be capable of such movements in
an unknown environment, meaning that it should be able to
adapt to and explore a 3D environment.

4) Driving frequency: Lastly, the influence of the time
interval of the sequence on the driving characteristics of the
robot was evaluated. The driving mechanism of this tenseg-
rity robot differs from the conventional inchworm mecha-
nism, in that its axial and radial motions are interlocked,
which results in interference between them. For example, in
Fig. 15-1→2, Unit I grips before Unit II is fully extended and
the amount of extension of Unit II is reduced. For this reason,
the gripping motion is delayed by ∆t as shown in the control
signal in Fig. 15. The change in the speed at which the robot
moves in response to the change in the time interval of the
sequence ∆T is shown in Fig. 19 for ∆t = 0.0, 0.2, 0.4 s. The
wall-to-wall distance was set to be 210 mm, and the sequence
intervals were 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, and 2.0 s. When
the time interval was relatively long, the artificial muscles
were able to sufficiently contract to deform the tensegrity;
however, the speed of movement was slow because the time
of one cycle was excessively long. Alternatively, when the
time interval was relatively short, the speed was reduced
because the artificial muscles did not sufficiently contract
to deform the tensegrity. Under the conditions of ∆t = 0.2
and 0.4 s, robot movement was faster than that which
occurred under the condition of ∆t = 0.0 s. Thus, unlike the
conventional inchworm mechanism, because the proposed
inchworm mechanism mandates interlocking in the axial and
radial directions, it is possible to ensure efficient movement



by changing the timing of the application of pneumatic
pressure.

IV. CONCLUSIONS

We have developed the 4/3 muscle winding method, which
generates 100% collapsing motion under the conditions of a
20% artificial muscle contraction ratio; we also realized large
deformation of the tensegrity structure. This method allows
one tensegrity structure to perform the following two types of
movements: 1) approximately 40% contraction in the axial
direction and approximately 25% elongation in the radial
direction under the conditions of an artificial muscle con-
traction ratio of approximately 20%, and 2) approximately
25% elongation in the axial direction and approximately 20%
elongation in the radial direction.

By connecting the five units of the tensegrity structures,
we were able to create a lightweight (approximately 400 g)
tensegrity robot with passive environmental adaptability. The
robot was demonstrated to be able to move between walls
with widths ranging from 150 mm to 240 mm by adapting
to its environment; it was also able to apply same driving
method to move forward while adapting its body to a curved
path with a radius of curvature of 550 mm. Furthermore,
because the robot was able to climb a vertical pipe, it is
expected that the robot will be able to adapt to and navigate
complex 3D environments.

In the future, we plan to employ RNN to endow this
tensegrity robot with the ability to recognize the spatial shape
of an unknown environment.
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