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Several studies have proposed that vote tampering based on heuristic algorithms can manipulate voters’ votes. It can be found
from the analysis of the poll results of the 2016 US election that the frequency of “Trump won,” which is generally considered a
black swan phenomenon, is not low and even reached 16.8%. However, manymodels are unable to restore the generation of such a
high frequency of black swan phenomena. In this study, the black swan phenomenon is successfully reproduced using a bias-
generating agent-based election systemmodel. By adjusting the tampering method, the frequency of the black swan phenomenon
will change from 5% to 15%. From the simulation results, it can be observed that one of the possible causes of the black swan
phenomenon is the tampering of the voting results, which leads to more biased voters, thus increasing the frequency of the
winning elections. 'is study proposes that to obtain more realistic simulation results, it is necessary to introduce more realistic
perceptual models for agents, rather than relying solely on random functions. Allowing agents to make mistakes for a reason
should be an integral part of multi-agent-based simulation in the field of pairwise human simulation.

1. Introduction

Black swan phenomena frequently occur in electoral cam-
paigns; for example, in the 2016 US election, the final
election of Trump was considered as a black swan phe-
nomenon in electoral campaigns [1]. An analysis of polling
data related to the 2016 US election [2] shows that among
polls conducted for the entire United States, the higher-trust
“Google Consumer Surveys” results show that Trump was
elected about 5% of the time in the poll results. Meanwhile,
all polls across the United States show that Trump is elected
with about 16.8% frequency. If every poll is considered a
“real” election, then the frequency of black swans seems a bit
high (even ignoring some of the less confident pollsters,
Trump is still elected with a 10% frequency). Many scholars
have proposed various voting models, and some of them
have discussed whether it is feasible to use heuristic algo-
rithms to tamper with voting results to achieve vote ma-
nipulation [3, 4]; other scholars have borrowed voting

models to analyze the relationship between voters and social
networks [5]; other scholars aim to identify a more just and
democratic model of voting [6, 7].

However, few studies have used voting models to analyze
the frequent occurrence of black swan phenomena. 'is
study argues that this phenomenon occurs because the
agents used in the voting model behave rationally and
profitably. Hence, there are essentially no surprises and,
therefore, no high-frequency black swans. In real life, voters
cannot be rational all the time, and they may be blindly
confident because of their own biases. Voters’ overconfi-
dence can have an impact on the voting results [3]. 'e
purpose of this study is to introduce bias-generating voter
models for voting systems to analyze how the high frequency
of black swan phenomena is generated.

'e purpose of this study is to apply it to a multi-agent
model based on some models used to simulate perceptual
behavior [8]. Since the perceptual behavior of individuals is
inextricably linked to social phenomena, this study uses it to
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see whether the simulation of perceptual behavior leads to
more realistic simulation results; i.e., this study proposes an
agent model that learns a false perception, called bias, from
the environment. It is used to model the perceptual behavior
of voters. To demonstrate its efficacy, it will be used to
simulate the reproduction of Pavlov’s dog experiment. 'is
experiment is a basic example of bias due to the limitations
of the received signal. Finally, it will be applied to a voting
system to recover the high-frequency black swan
phenomenon.

'is study applies some of the techniques used to model
the perceptual behavior of a single agent to a multi-agent
system, enabling them to interact to analyze the impact of
perceptual behavior on society as a whole.'e significance of
this study is not only to analyze the causes of the high-
frequency black swan phenomenon in voting but also to
make the following points. When simulating organisms that
may behave emotionally, such as humans, it is necessary to
introduce a function that can produce “irrational” (not just
using a random function) behavior for the agent to obtain
more realistic simulation results. At the same time, the
boundaries of whether a behavior is “perceptual” are not
clear, but since individual perceptual behavior is closely
related to sociality, the more natural sociality observed in the
multi-agent system can, in turn, support the demonstration
of whether the simulation gets behavior “perceptual.”

1.1. Research Purpose. 'is study argues that the high fre-
quency of the black swan phenomenon in elections is caused
by voter bias. 'at is, a few agents fall into cognitive bias due
to more extreme environmental inputs, and their behavior
leads to behavioral changes in other agents, ultimately
leading to a runaway situation. To prove the point, this study
will propose two different layers of models. One is the agent
model, as an individual layer model for the whole simula-
tion, which can simulate bias and generate bias from specific
environmental inputs. 'e second model is the voting
model, as a social layer model, which should be able to count
the votes of the agents and perform some tampering with the
results for the purpose of vote manipulation. 'is study
argues that applying the general agent model to the voting
model alone does not restore the emergence of the high-
frequency black swan phenomenon, as its generation re-
quires agent “overconfidence” [9]. Instead, when applying a
bias-generating agent model, it is possible to model the
overconfidence of some agents that generate the high-fre-
quency black swan phenomenon.

'erefore, this study aimed to construct an agent model
for generating bias and applying it to a simplified version of
the voting model [3]. 'e result is that the simulation re-
produces a high frequency of the black swan phenomenon
and analyzes the possible causes of its generation.

2. Related Research Work

According to Nassim Nicholas Taleb, “one of the causes of
the black swan phenomenon is overconfidence in experi-
ence” [9]. Knowledge acquired through observation and

experience has significant limitations and vulnerabilities.
'is limited access to information can lead to bias and
“overconfidence” in the results obtained. 'erefore, in this
study, bias is also related to the black swan phenomenon in
elections. According to LA Suchman, all human behavior is
based on improvisation in the current situation [10, 11].
Here, the current position consists of two parts, the brain’s
plan and the environment’s input. It is in this “improvi-
sation” that bias is generated, and the more extreme the
setting [12, 13] and the more “crude” the plan [14], the more
bias is caused.'erefore, in this study, the generation of bias
and the brain’s plan will be modeled separately.

A Wilczynski et al. proposed and proved that manip-
ulating voting results using heuristic algorithms is feasible
and effective in polynomial time [4]. In this study, a con-
current agent model is proposed. In this voting model, the
intelligence gap that arises from the inability of the agent’s
social network to involve all agents is exploited for vote
manipulation. 'e authors add a portion of protection to
avoid uncontrollable outcomes so that the final simulation
results in a controlled and valid voter vote manipulation.
'us, in a simplified version of this model, although the
emergence of the black swan phenomenon can be seen, its
frequency is low (≤3%), and it is also tricky to amplify this
frequency by adjusting the parameters. 'erefore, in this
research work, the simple model with the protection
mechanism removed will be improved to reproduce the
high-frequency black swan phenomenon.

2.1. Agent-Based Simulation. Agent-based simulations,
commonly used to study the relationship between individual
behavior and overall change, are often used in studies related
to voting simulation [3–5]. Agents will act according to a
predetermined procedure so that interactions between
agents will occur and eventually respond to overall changes
[15–18]. As suggested by Argyris [35], to obtain more ef-
fective simulation results, some feedback needs to be in-
troduced to allow the agents to learn, rather than just letting
them “do what they are told.” Some studies will empower
agents with learning skills [20–22], based on reinforcement
learning, where agents could learn from the environment
and act on what they have learned. In this study, feedback
learning is introduced. Still, it is also explored whether it can
model the generation of bias when this feedback value is too
large, even reaching a state of extreme overfitting. Neural
networks were used as reinforcement learning models based
on which the generation of bias was simulated.

3. Bias-Generating Agent

Here, in this section, a neural network-based bias-generating
agent model is presented. 'is neural network enters the
overfitting state faster by returning the same return value
multiple times during the backtracking process. In this
study, the overfitting state will be used to model the gen-
eration of bias. 'is principle will be applied to a simple dog
model that reproduces Pavlov’s dog experiments to dem-
onstrate bias generation.
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3.1. Neuron and Neural Network. 'is agent model is a
neural network model, and each neuron contains the fol-
lowing elements:

Neuron �〈I, O,Ω, RI, RO,AF,BT〉, (1)

where I is the set of inputs: I � i1, . . . , in|ix ∈ (0, 1)􏼈 􏼉, where
n is the number of inputs to the neuron, which is the output
of other neurons or the initial input of the whole neural
network, and if the neuron is in the input layer of the neural
network, then we have I � i1, . . . , in|ix ∈ 0, 1{ }􏼈 􏼉.

O is the output of the neuron:O � o|o ∈ (0, 1){ }. Its value
is the output of the activation function in the neuron. Ω is
the weight of the input. Ω � ω1, . . . ,ωn|ωx ∈ (0, 1)􏼈 􏼉, where
n is the number of inputs to the neuron and each input I

corresponds to a weight ω. 'e basic purpose of neural
network backtracking is to update the weights.RI is the set of
return values received by this neuron. RI � rI1

, . . . , rIn
􏽮 􏽯,

where n is the number of neurons in the layer after this
neuron. In the backtracking, each neuron passes a set of
return values RO to each neuron in its previous layer.
RO � rO1

, . . . , rOn
􏽮 􏽯. AF is the activation function:

AF: I ×Ω⟶ O, and the sigmoid function is used as the
activation function. BT is the backtracking function for
updating the weights and calculating the passed return value.
BT: RI × O⟶ Ω, RO􏼈 􏼉,

ωi � ωi − LR ∗ 􏽘
n

k

rIk

⎛⎝ ⎞⎠ × o ×(1 − o) × ii, (2)

rOi
� 􏽘

n

k

rIk

⎛⎝ ⎞⎠ × o ×(1 − o) × ωi, (3)

where LR is the learning rate, LR ∈ (0, 1).
Figure 1 illustrates a neuron model with three inputs and

three return values. 'ese three inputs are weighted and
summed by a sigmoid function to produce an output. 'is
output is also involved in updating the weights and calcu-
lating the return value of the previous layer upon receipt of
the return value.

A plural number of neurons can be constructed into a
neural network with the following elements:

NeuronNetworks � < I, O, IL,HL,OL, R> , (4)

where I is the set of inputs. I � i1, . . . , in|ix ∈ 0, 1{ }􏼈 􏼉, where n
is the number of inputs to the neural network. 'ese inputs are
also the inputs to the input layer. O is the set of outputs of the
neural network. O � o1, . . . , on|ox ∈ (0, 1)􏼈 􏼉, where n is the
number of outputs of the neural network and each element has
a value between 0 and 1. In the practical use of neural networks,
this value needs to be defined in a normalized way. IL is the set
of neurons in the input layer of the neural network.
IL � neuron1, . . . ,neuronn|neuronxNeuron􏼈 􏼉, where n is the
number of neurons in the input layer, i.e.,

|IL| � |I|, (5)

where HL is the set of hidden layer neurons of a neural
network. HL � neuron1, . . . , neuronn|neuronxNeuron􏼈 􏼉,
where n is the number of neurons in the hidden layer, and

there is no limit to the number of neurons in the hidden
layer. OL is the set of neurons in the output layer of the
neural network.
OL � neuron1, . . . ,neuronn|neuronxεNeuron􏼈 􏼉, where n is
the number of neurons in the output layer of the neural
network, and the number is the same as the number of
elements in the output set, i.e.,

|OL| � |O|, (6)

where R is the set of returned values when the neural
network is backtracked. R � r1, . . . , rn|ox ∈ (0, 1)􏼈 􏼉, where
the value of n is the same as the number of elements of the
output set, i.e.,

|R| � |O|. (7)

Figure 2 shows a neural network with three inputs and
one output, and the number of neurons in the hidden layer is
3.

3.2. Bias-Generating. 'is study exploits the overfitting
property of neural networks to simulate the generation bias.
Many scholars have been working to eliminate the effects of
overfitting to achieve the best results for their programs
[23, 24]. Others argue that benign overfitting is beneficial
[25]. Schaffer C argues that it is the way the AI is used that
determines whether overfitting is good or bad and that we
cannot generalize about excess [26]. Sagi et al. [20] and
Kirman [10] proposed an overfitting theory to explain
perceptual learning and applied it to computer vision sys-
tems. In this study, the same return value was learned
multiple times during backtracking learning of the neural
network to reach the overfitting state quickly.

3.2.1. Operating Principle. 'e neural network shown in
Figure 2 is used to illustrate the operating principle of this
neural network. First, for convenience, define

ILi � IL.neuroni,

HLi � HL.neuroni,

OLi � OL.neuroni,

(8)

and then, for any ii ∈ I, they are delivered to any input layer
neuron ILj as its input ILj.ii. For the neuron ILi, it will calculate
the output ILi.o and transmit it to the hidden layer neuron HLj

as its input HLj.ii. Similarly, for the neuronHLi, it will calculate
the output HLi.o and pass it to the output layer neuron OLj as
their input OLj.ii. Finally, the output OLi.o of the neuron OLi

in the output layer is the output oi of the whole neural network.
At that time, the neural network completes one output. Next,
the case of backtracking is considered. 'e evaluation function
P(o) is used to evaluate the output,

P(o) � −
1
2

×(d − o)
2
, (9)

where d is the ideal output.'en, if a backtracking operation
is needed, for the output oi, its return value ri should be the
derivative of P(oi), i.e.,
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Figure 2: A 3-input, 1-output neural network model.
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ri � di − oi. (10)

Meanwhile, the return value ri is also the return value of
the output layer neuron OLi, i.e.,

OLi.rI1
� ri. (11)

It is worth noting that the output layer neurons all have
only one return value. For any neuron OLi, after getting the
return value OLi.rI, OLi.ω will be updated through (2),
whereas the return value OLi.rOj

will be calculated through
(3) and passed to the hidden layer neuron HLj as the re-
ceived return value HLj.rIi

. For any neuron HLj in the
hidden layer, similarly, after getting the return value HLi.rI,
HLi.ω is updated with equation (2). Meanwhile, the return
value HLi.rOj

passed to the input layer neuron ILj is cal-
culated by equation (3) and used as the received return value
ILj.rIi

. Finally, for the input layer neuron ILi, after getting
the return value ILi.rI, ILi.ω is updated using equation (2).
Currently, the whole neural network completes a back-
tracking operation. Based on the idea that overtraining leads
to more frequent overfitting [27] if the model needs to
simulate the generation of bias, it is sufficient to perform the
above operation multiple times for the same return value ri.

3.2.2. Model Features. As compared to other models of back
propagation neural networks [28, 29], this model has two
features:

(i) 'e individual neurons are more independent, and
the output and backtracking of each neuron depend
only on the input and return value it receives. 'is
means that this neuron structure can be freely
combined and is not limited to a specific framework.

(ii) In return value learning, simulating overtraining, the
same return value is learned more than once for
backtracking. 'is makes this neural network more
prone to overfitting than other neural networks that
only perform one return.

However, in turn, this makes the neural network
somewhat disadvantageous compared with other BP neural
networks.

(i) More independent neurons imply greater compu-
tational complexity, making this neural network
much less computationally efficient than those
neural network models that rely on matrices for
backtracking computation. However, this drawback
is quickly compensated on a vehicle that allows
parallel computation.

(ii) A higher overfitting frequency often means that this
neural network is substandard. 'erefore, the
number of backtracking learning needs to be con-
trolled so that this number is not so high that it
enters overfitting for arbitrary training data.

'e first drawback is that this study’s primary purpose is
not to build a faster and more accurate neural network
model. Instead, such a neuronal structure helps create an

upgraded network tomore conveniently increase or decrease
the number of neurons in the input and output layers and
the hidden layer.

'is study is precisely designed to use overfitting to
model perceptual behavior like bias for the second draw-
back. Hence, the higher frequency of overfitting is not a
drawback in this study. Of course, it is not a good idea if the
overfitting frequency is so high that it produces an over-
fitting state for any training dataset. 'erefore, an excessive
number of backtracking will not be used (usually 3 or 4 at
most). 'e neural network only enters the overfitting state
more quickly for the “more specific” training data sets.

3.3. Application of Bias-Generating Agent: Simulation of
Pavlov’sDog. 'is section applies the bias-generating neural
network introduced in the first three sections to a simple dog
model to reproduce Pavlov’s dog experiment to demonstrate
bias generation.

3.3.1. Pavlov’s Dog Experiment and Model. Pavlov’s famous
psychologist performed such an experiment with dogs
[1, 30, 31], and every time a dog was shown a picture or a bell
was rung before it was given something to eat. After some
time, whenever the bell was rung, or the image was seen, the
dog began to secrete saliva. Pavlov’s dog experiments have
a critical role in the innovation of one of the most im-
portant concepts in human thinking. While it happened
quite an accident, Pavlov’s famous experiments had a
major impact on our understanding of how learning takes
place and the development of the school of behavioral
psychology [32].

'is study considers Pavlov’s dog as an excellent model
to be used as an example for simulating bias generation.

For simulation convenience, the model of Pavlov’s dog is
defined as follows:

Dog � < I, O,NN,BR> , (12)

where I is the set of inputs. I � if, im, ip|if, im, ip ∈ 0, 1{ }􏽮 􏽯,
where if, im, ip are whether to give food, bell, and picture,
respectively, 0 is not given, and 1 is given.

O is the set of outputs. O � o|o ∈ (0, 1){ }. 'e magnitude
of this value represents the probability that the dog will
salivate (or the amount of saliva), and the closer to 1, the
greater the probability (amount). 'is value depends on the
output of the neural network and the brain, and this rela-
tionship is noted as a function Ο： NN × BR⟶ O, where:

Ο(NN,BR) �
output(NN)where output (BR) � 0,

output(BR) else,
􏼨 (13)

where NN is a neural network for dogs.
NN ∈ NeuronNetworks. Where the number of inputs to
NN is 3, the number of hidden layer neurons is 3, and the
number of outputs is 1; i.e., |NN.I| � 3, |NN.HL| �

3, |NN.O| � 1.
According to equation (5)–(7), it can be derived that
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|NN.IL| � 3,

|NN.OL| � 1,

|NN.R| � 1.

(14)

BR is the brain of the dog, represented by the function
br: I⟶ output(BR). 'ere is:

br(I) �
0where if � 0,

1 else.
􏼨 (15)

Figure 3 illustrates the structure and goal of the model,
where the environment part is the input I, the reflexive nerve
part consists of the neural network NN, and the brain part is
the function br(I). 'e goal of the model is to feed a specific
amount of input I to the dog so that when br(I) � 0,
Ο(NN,BR) � 1 for the dog.

3.3.2. Simulation Results. A model of a dog was built based
on the models mentioned in the previous two subsections.
First, the input signals are I � 1, 1, 0{ } and I � 0, 0, 1{ } and let
the dog learn. During this period, the change in output O is
observed if the input signal is I � 0, 1, 0{ }. 'e simulation
results are shown in Figure 4. 'e simulated dog falls into a
biased state after a certain number of inputs and drools even
if it receives only the signal I� {0,1,0} (only music is heard).

Based on Pavlov’s experiments with dogs, we know that
prejudices produce results that can be changed, but over time
they are reinforced and become “immutable,” called “stereo-
types.” To prove that themodel can also restore this situation, it
is necessary to introduce some interference signals, as follows.

Based on the previous simulation, the interference signal
I′ � 0, 1, 0{ } will be used as input from time to time for the
simulation dog to learn. Again, the change in output O is
observed at any moment if the input signal is I � 0, 1, 0{ }.
'e results are shown in Figure 5.

As can be seen in Figure 5, during the initial phase of
training (within the first 40 moments), there is a significant
change in the output O of the simulated dog due to the
interference signal. Still, as time goes on, the interference
signal becomes less influential on the results. 'is is con-
sistent with the creation of “stereotypes” described earlier. In
this section, a neural network-based bias generation agent
model is proposed, which can be easily overfitted. It is
expected to model the generation of biases and can even-
tually be fixed as “stereotypes.” It was applied to a model of a
dog to simulate Pavlov’s dog experiments. Simulation results
show that the model enables agents to make bias-like
learning outcomes and that such learning outcomes are
deepened and strengthened over time.

4. Voting Model with Polls

To apply biased generative agents to a voting system, it is first
necessary to define a simple model of the voting system. 'e
model used over here is a simplified version of the model
proposed by A Wilczynski, which allows manipulation of
voting results using heuristic algorithms [3]. Many cum-
bersome protections are ignored in the tampering operation,

and the tampering is simplified to make the end of the
tampering less “natural” so that the “black swan phenom-
enon” can be observed (even if its frequency is low).

4.1. Voting Model. 'e voting model is constructed as
follows:

VotingModel � <V, C, PA, Γ, Poll, SN>, (16)

where V is the set of voters, V � v1, . . . , vn􏼈 􏼉, where n is the
total number of voters. Each voter is composed of 6 more
elements, which will be described in detail in Section 4.1.1. C

is the set of candidates. C � c1, . . . , cm􏼈 􏼉, wherem is the total
number of candidates. 'is element is known for any voter
vi. PA is a poll function. PA: V × SN⟶ Poll is used to
calculate the poll result Poll.'is result can be either a simple
count of voters’ votes or a tampered poll result. 'e tam-
pering method is mentioned in Section 4.1.2. Γ is the
winning rule for this voting model in a general election.
Γ: V × C⟶ winner, where the winner ∈ [1, m]. 'e
model uses a majority voting model, i.e., the candidate with
the most votes wins. SN is the (average) density of the agent’s
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social network, expressed as a distance, in the whole system.
If the distance between a voter vi and voter vj is less than or
equal to the SN, then vi and vj are called to be neighbors of
each other.

4.1.1. Voter Model. For any voter vi there is

vi � <≿i,TVi,Ni,Ci,Τi,Bi > . (17)

'e set≿i is the degree of voter vi’s preference for a
candidate noted as ca ≿i cb if vi prefers candidate ca over
candidate cb. 'e set ≿i records the degree of voter preference
for all candidates. TVi is the set of votes for the candidate
currently thought by voter vi: TVi � tvi1

, . . . , tvim
􏽮 􏽯. 'e value

of TVi is calculated by the thinking function Τi:

Τi: Ni × Poll⟶ TVi. (18)

'e specific calculation method is to update Poll after
subtracting the votes of the current neighbors Ni and
their votes, and then, the changes in the votes of the
neighbors are observed and watched and the value of TVi

in real time is updated. All voters default to their own
unseen voters’ votes without change.Ni is the neighbor of
voter vi; i.e., the set of all voters whose distance from voter
vi is less than or equal to SN:
Ni � n1, . . . , nk|n1 ∈ Vi− × SN􏼈 􏼉. Ci is vi’s confidence,
representing voter vi’s perception of their voting value.
Higher values of Ci indicate that voter vi is more confi-
dent. If the value of Ci is set to positive infinity, it can be
modeled that voter vi is a loyal follower of the candidate
ctop(≿i), who ranks first in their preference ranking≿i (vi

will only vote for ctop(≿i)). Bi is the actual vote (ballot) of
vi; i.e., if a general election/vote were held at this time, vi

would vote for the candidate Bi. 'e value of Bi is also
calculated using the thinking function Τi, noted as follows:

Τi: TVi × Ci × ≿i⟶Bi. (19)

'e specific behavior is as follows: vi first their self-
confidence Ci is added to each candidate, one by one based
on TVi, and if a candidate cj has the highest number of votes
after adding their self-confidence Ci, then cj is called to be
the “probable winner (PW).” After confirming all PWs,
candidates are selected from PWs for voting according to ≿i.

4.1.2. Tampering with Poll Results. First, the number of
manipulable votes (MV) needs to be calculated based on the
total number of voters |V| and the average density SN of the
social network. 'is value should not be so significant as to
cause “suspicion” among voters [3].'erefore, it is necessary
to ensure that the minimum number of votes for each
candidate is at least equal to the statistical sum of the votes of
the neighbors Ni, which can be observed by any voter vi.

Wilczynski’s method is to calculate Ni for each voter vi

in turn and then keep the maximum value. However, this
method is a bit too computationally lengthy. For the con-
venience of subsequent simulations, the average density SN
of the social network will be used in this model to simplify
the calculation, so

MV � |V| −
SN∗ (SN + 1)

2
. (20)

'e purpose of tampering with the voting results is to try to
manipulate voters to vote for the target candidate ctarget. For this
purpose, themethod used here is to create an imaginary enemy,
also known as the ghost candidate cghost, so that ctarget and cghost
are evenlymatched. At this point, if ctarget ≿i cghost holds formost
voters vi, then the information gap (a single voter’s social
network cannot reach all voters) can be exploited to successfully
canvass for ctarget. In this study, the Borda count ranking [33, 34]
will be considered as the level of preference of most voters; i.e.,
candidates with poor Borda count ranking will be regarded as
ghost candidates cghost. For an “evenly matched” to hold, MVs
need to be assigned to ctarget and cghost so that they have more
votes than the other candidates in the poll, and they end upwith
a similar number of votes or ctarget is narrowly below cghost [3]
and published as the Poll.

4.2. Results. Based on the above model, a model with 100
voters and 10 candidates was created for simulation.

4.2.1. Result 1—Whether to Tamper. First, whether the
heuristic algorithm can manipulate the number of votes is
observed. 'ere are ctarget � C.Borda Count(6),
cghost � C.BordaCount(7),Ci � 3, and SN � 4. 'e election
frequencies (of 100 votes) of the target and ghost candidates
were observed without tampering (flag_ tamper� 0) and
with tampering (flag_ tamper� 1). 'e results are shown in
Figure 6.

Two conclusions can be drawn from Figure 6:

(i) Heuristic algorithms can be used for voter vote
manipulation purposes. (ctarget’s election frequency
increases from 0 to about 88%).

(ii) Heuristic algorithms can manipulate voters’ votes,
which may lead to the black swan phenomenon.
(cghost’s election frequency also increases but is less
than 3%, which is still acceptable as a category of the
black swan phenomenon).

4.2.2. Result 2—Denser Social Networks. To observe the
effect of the density of the social network on the impact of
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Figure 5: Simulation results of Pavlov’s dog with interference.
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manipulated voting, there are ctarget � C.BordaCount(1),
cghost � C.Borda Count(7), and Ci � 3, and the election
frequency of ctarget at SN � 1 and SN � 6 is observed, re-
spectively. 'e simulation results are shown in Figure 7.

It can be observed from the figure that the higher the
density of social networks, the more difficult it is to ma-
nipulate voter voting using heuristic algorithms.

4.2.3. Result 3—Fanatic. 'e model can simulate the situ-
ation when the voters are fanatics. 'ere are
ctarget � C.Borda Count(1), cghost � C.Borda Count(7), and
SN � 1, and the election frequency of c_target when Ci � 3
and Ci � 30 is observed, respectively. 'e results are shown
in Figure 8.

As can be seen from the graph, the higher the confidence
level of the voters (the closer they are to fanatical believers),
the more difficult it is to manipulate the voters’ votes using
heuristic algorithms.

4.2.4. Result 4—Wrong Ghost Candidate. Since it is almost
impossible to predict the Borda count of a candidate, the
tamperer needs to select cghost empirically. However, if the
experience is biased and a candidate is more popular,
thenctarget is selected as cghost, and they are bound to be “bad”
consequences. To simulate this case, there are
ctarget � C.Borda Count(7), cghost � C.Borda Count(6), Ci �

3, and SN � 1. 'e election frequencies of the target and
ghost candidates were observed without tampering (flag_
tamper� 0) and with tampering (flag_ tamper� 1). 'e
results are shown in Figure 9.

From Figure 9, we can see that when the popularity of
ctarget and cghost is misjudged, voters’ votes will be absorbed
more by cghost.

4.3. Summary of the Results. In this chapter, a simple model
of a voting system with manipulated voting functionality is
presented. Based on this model, the simulation simulates the
results for four different cases. In terms of conclusions, there
are five features:

(i) Heuristic algorithms can be used to manipulate
voters’ votes.

(ii) Heuristic algorithms may lead to the black swan
phenomenon when manipulating voters’ votes, but
the frequency of the black swan phenomenon is still
in a shallow range.

(iii) 'e higher the density of social networks, the more
difficult it is to manipulate voters to vote.

(iv) 'e level of voter confidence has a significant im-
pact on the outcome of the vote.

(v) Once voters’ preferences for candidates are mis-
judged, rigging the vote through tampering is
bound to backfire.

'is suggests that the model can simulate the voting
environment well, and these findings are consistent with the
conclusions of A Wilczynski et al. Here, it can be seen that
the black swan phenomenon occurs when someone tries to
manipulate the voter’s vote. Although it has a low probability
of occurrence, this is a result that does not appear in A
Wilczynski’s model, including other models [35–37]. It is
just that the frequency of such occurrences is still within the
range of what could be recognized as a black swan
phenomenon.

5. Bias-Generating Agent-Based Voting Model

In this study, a bias-generating agent model is proposed,
which models the generation of bias. In Section 4, a simple
voting model with a tampering mechanism is presented. In
this section, these two models are combined and used to
reproduce the high-frequency black swan phenomenon in
elections. Agents that generate bias will act as individual
layers, just like the agents in Section 4, and their behavior
will have an impact on the overall social layer model (i.e., the
voting model), which in turn will generate feedback that will
allow agents to learn based on their changes.

5.1. BgAb-VotingModel. Similar to Section 4.1.1, this voting
model is constructed in the following way:

BgAb VotingModel � <Bg V, C, PA, Γ,Poll, SN> . (21)

Except for the set of voters Bg V:
Bg V � bgv1, . . . , bgvn􏼈 􏼉􏼈 , the rest of the entire model is the
same. 'erefore, their descriptions are omitted. 'e dif-
ference between this model and the one in Chapter 4 lies
mainly in the model of voter vi.

5.2. Bias-Generating Voter. For any bgvi ∈ Bg V, there is as
follows:

bgvi � <≿i,TVi,Ni,Ci,Τi,Bi,Ni > , (22)

where≿i,TVi,Ni,Τi,Bi are all defined in the same way as
(17), so the descriptions are omitted. 'e main difference is
that the confidence Ci is no longer a given value but is
determined by the output of the neural network
Ni ∈ NeuronNetworks, which learns Poll, Ni, Bi, and≿i,
denoted asNi × Poll × Ni⟶ Ci. 'e following section will
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Figure 6: Result 1—whether to tamper.

8 Mathematical Problems in Engineering



focus on the definition and parameter setting of this neural
network.

5.2.1. Bias-Generating Voter’s Neural Network. For
Ni ∈ NeuronNetworks, it is defined as follows. 'e input
Ni.I of this neural network has three elements corresponding
to the answers of the three Boolean questions.

(i) if (Bi �� Poll.winner). Was ballot the first-place
winner in the poll?

(ii) if(≿i.top �� Poll.winner). Was the most popular
candidate at the top of the poll?

(iii) if Ni.top �� Poll.winner. Was the first place in the
neighborhood vote the first place in the poll?

'e output of the neural network, Ni.O, has only one
element and is proportional to the degree of confidence:
Ni.O∝Ci. 'e number of different neuronal layers is as
follows: |Ni.HL| � |Ni.IL| � |Ni.I| � 3, and |Ni.OL| � 1. 'e
return value Ni.R is proportional to the difference between
the vote change values of Bi and Ci in Poll: Ni.R∝
Δ(Poll).Bi − Ci.

5.2.2. Standardization. Since the output and return values of
the neural network are between 0 and 1, normalization is
necessary. 'e standardization is done as follows:

Ci � Ni.O∗ 10 + 1,

Ni.R �
Δ Poll.Bi( 􏼁 − Ci

10
.

(23)

Based on the principle of “one person, one vote,” in this
study, bias is considered to be generated when the confi-
dence level of voters is high. In the subsequent analysis of the
results, the relationship between the confidence level of
those voters whose preferred candidate is the phantom
candidate and the average confidence level of all voters will
be considered to analyze the relationship between bias
generation and the black swan phenomenon.

5.3. Results. Based on the above model, similar to Section
4.2, a model with 100 voters and 10 candidates is created for
simulation. 'ere are ctarget � C.Borda Count(6),
cghost � C.BordaCount(7), and SN � 4. 'e election fre-
quencies of the target and ghost candidates were observed
without tampering (flag_ tamper� 0) and with tampering
(flag_ tamper� 1). 'e results are shown in Figure 10.

Comparing Figure 6, it can be seen that the frequency of
cghost elections has increased significantly (about 9%), a
figure that is already very close to the frequency of the high-
frequency black swan phenomenonmentioned in Chapter 1,
which is about 10%. Adjusting different parameters still gives
similar results, with cghost being elected between 5% and 15%.
Figure 11 illustrates a portion of these results of whether to
temper or not.

Continuing to analyze the experimental data in Fig-
ure 10, it is obtained that the average confidence of voters
under this simulation is about 5.7; i.e., C � 5.7. 'ere are
ctarget � C.Borda Count(6), cghost � C.Borda Count(7), and
SN � 4. 'e election frequency of cghost is observed when
Ci ≡ 6 and Ci � std(Ni.O). 'e results are shown in
Figure 12.

As can be seen in Figure 12, even at the same confidence
level, whether the voter is bias-generating or not still has a
significant impact on the emergence of the high-frequency
black swan phenomenon. To further analyze the relationship
between the generation of bias and the black swan phe-
nomenon, the analysis continues with (Figure 10) the
analysis of the percentage of voters who identify cghost as
their preferred candidate (≿i.top � cghost) with an average
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Figure 7: Result 2—denser social networks.
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confidence level higher than the average confidence level of
all voters in the entire model in the following three scenarios.

(i) In any case.
(ii) Only if cghost is elected.
(iii) Only if cghost is elected.

'e results are shown in Figure 13.
As shown in Figure 13, in the case that cghost is elected,

voters who have cghost as their preferred candidate will have a
higher confidence level than the overall average confidence

level. On the contrary, in the case that cghost is not elected,
their confidence level is not much different from the normal
situation.

'e bias-generating agent model introduced in the
earlier section is combined with the voting model pre-
sented in Chapter 4 and simulates the generation of high-
frequency black swan phenomena. 'e simulation results
show that black swans appear more frequently in the
model with bias-generating voters than in the model
without bias-generating voters and are closer to the
frequencies mentioned in the earlier section. At the same
time, it can be seen that whether bias is created or not,
there is a prerequisite for the black swan phenomenon to
occur. 'at is, the results of public opinion polls are
tampered with. 'is suggests that one of the possible
causes of the black swan phenomenon is that the results
have been tampered with to manipulate the vote. 'e
reason for the increased frequency of the black swan
phenomenon is that some voters have been misled by the
results of such manipulated polls and have thus generated
bias. In this study, it is considered possible that some
voters who like cghost are more inclined to vote for cghost
because they develop a bias and thus have a higher level of
trust, and if these voters happen to be closer to each other,
they will drive their neighbors to vote for cghost as well
because of their social network, which eventually leads to
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Figure 10: Result—whether to tamper (with bias-generating).
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the frequent occurrence of the black swan phenomenon.
'is is also corroborated in Figure 4.2.3, where a higher
degree of confidence can make the tampering results
uncontrollable.

6. Conclusion

'is research work simulates the high frequency of the black
swan phenomenon, which demonstrates that using an agent
model that generates perceived behavior (e.g., bias) in a
multi-agent model can simulate and reproduce more natural
social phenomena. It is argued that the high frequency of the
black swan phenomenon in elections is caused by voter bias.
'at is, a few agents fall into cognitive bias due to more
extreme environmental inputs, and their behavior leads to
behavioral changes in other agents, ultimately leading to a
runaway situation. To demonstrate this, a bias-generating
agent model is first proposed that enables the agent to learn
some misinformation from the input of the environment,
and a simulation of Pavlov’s dog is used to demonstrate that
it can provide a model of bias generation. 'en, a simple
voting model with polls is proposed, and after experimental
simulations, it is shown that it can achieve the purpose of
controlling voters’ votes through heuristic algorithms. It is
also found that the black swan phenomenon sometimes
occurs when tampering with voting results. To reproduce the
high frequency of the black swan phenomenon, these two
models were combined so that voters would be biased and
“overconfident” due to some misinformation. 'is directly
leads to an increase in the frequency of the black swan
phenomenon, reaching values similar to the actual data.
Analysis suggests that one of the possible causes of the black
swan phenomenon is that the poll results were tampered
with, which led to more bias among voters, thus deepening
the frequency of the black swan phenomenon. Compared
with the studies by A Wilczynski et al. [3–5], who utilized
several voter models to simulate the voting proceeding and
finally to achieve simulated voting results in various sce-
narios. 'e present research work focuses more on the
learning behavior of the voter model in the voting system by
adding a learning function to the voter model. Compared
with the studies by Alan Kirman et al. [10–37], who in-
troduced a learning capability for the agent that allowed the
agent to learn from the environment to make more correct

decisions and used stochastic functions (e.g., epsilon-greedy
method) to simulate “unexpected” situations.'is study also
introduces perceptual learning mechanisms for the agents in
agent-based simulations, which allow the agents to perform
some “nonoptimal solution” behaviors without relying on
random functions. 'e advantage of this is that it allows
agents to make mistakes “with reason,” and “unexpected”
situations can be explained. 'ese bias the voters in the
voting model and ultimately lead to the frequent occurrence
of the black swan phenomenon. 'is study is not only
intended to identify the reasons for the frequent occurrence
of the black swan phenomenon. It also aims to show that
when simulating humans or other organisms considered to
have perceptual minds, it is necessary to introduce more
realistic perceptual models for agents rather than to rely on
random functions, to obtain simulation results that are
closer to reality. Allowing agents to make mistakes “for a
reason” should be an integral part of multi-agent-based
simulations in the field of human simulation. 'is bias-
generating agent model can be extended to other scenarios
to support the findings of this study.

Data Availability

'e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

'e authors have no competing interest.

References

[1] J Jerit and J Barabas, “Partisan perceptual bias and the in-
formation environment,”8e Journal of Politics, vol. 74, no. 3,
pp. 672–684, 2012.

[2] A. Wiener, “Trump and the end of taken for grantedness:
when the exception becomes the rule,” in Proceedings of the
Norms Research in International Relations (IR) 8eory,
Cambridge, UK, November 2006.

[3] Kaggle, “Election Polls [Dataset],” 2016, https://www.kaggle.
com/fivethirtyeight/2016-election-polls.

[4] A. Wilczynski, “Poll-confident voters in iterative voting,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, no. 1, pp. 2205–2212, 2019.

[5] D Baumeister, A. K Selker, and A Wilczynski, “Manipulation
of Opinion Polls to Influence Iterative Elections,” in Pro-
ceedings of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), Auckland
New Zealand, May 2020.

[6] A Wilczynski, Interaction Among Agents via a Social Network
in Computational Social choice, Université Paris sciences et
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