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We propose a method for estimating the asymptotic phase and amplitude functions of limit-cycle oscillators
using observed time series data without prior knowledge of their dynamical equations. The estimation is
performed by polynomial regression and can be solved as a convex optimization problem. The validity of the
proposed method is numerically illustrated by using two-dimensional limit-cycle oscillators as examples. As an
application, we demonstrate data-driven fast entrainment with amplitude suppression using the optimal periodic
input derived from the estimated phase and amplitude functions.
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I. INTRODUCTION

There are various nonlinear rhythmic phenomena in the
real world, including brain waves [1,2], animal gaits [3–6],
heartbeats and respiration [7], and passive walking [8,9],
many of which can be modeled mathematically as limit-cycle
oscillators [10]. The phase reduction method [11–18] is useful
for analyzing synchronization properties of limit-cycle oscil-
lators subjected to weak perturbations, which represents the
state of a multidimensional nonlinear oscillator using only the
phase variable introduced along its limit cycle and describes
the dynamics approximately by a one-dimensional phase
equation. Recently, the phase reduction method has been ex-
tended to the phase-amplitude reduction method [16,19–26],
which incorporates the amplitude variable characterizing the
distance of the system state from the limit cycle. The resulting
phase-amplitude equation can be used, for example, in de-
riving the optimal periodic force for stable entrainment that
suppresses amplitude deviations [25,27,28].

The phase reduction method is based on the notion of the
asymptotic phase [13], but it is generally not possible to ana-
lytically obtain the phase function that gives the asymptotic
phase of the system state even if the explicit mathematical

*Corresponding author: namura.n.aa@m.titech.ac.jp

model of the oscillator is available. Similarly, it is not possi-
ble to analytically determine the amplitude functions of the
oscillator in general. Moreover, if the mathematical model
of the target oscillator is unknown, the phase and amplitude
functions should be determined from observed data.

In this study, we propose a simple method for estimating
the phase and amplitude functions from the time series data
observed from limit-cycle oscillators without relying on their
mathematical models. Rather than measuring the values of
the phase and amplitude by evolving the system state until it
converges to the limit cycle, we estimate them by polynomial
regression from the differenced time series of the system state
started from various initial conditions. Our method gives a
convex optimization problem, which is computationally inex-
pensive and can be solved globally. We show that the phase
and amplitude functions are estimated reasonably well around
the limit cycle, including moderately nonlinear regimes, by
the proposed method using known models of limit-cycle os-
cillators as examples.

For estimating the phase and amplitude functions from
observed data, Extended Dynamic Mode Decomposition
(EDMD) [29–31] and other system-identification methods
[32–34] can also be employed. In particular, EDMD can es-
timate the Koopman eigenvalues and eigenfunctions of the
system from observed data [30,31,35–42]. The natural fre-
quency and Floquet exponents of the oscillator can then be
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evaluated from the eigenvalues, and the phase and amplitude
functions can be obtained from the associated eigenfunctions
[21–23,43,44]. In contrast to EDMD, our proposed method
estimates the natural frequency and the dominant Floquet
exponent separately from the observed data by using a con-
ventional method for Lyapunov exponents and then uses them
to estimate the phase and amplitude functions by polynomial
regression. Our method thus gives an alternative to EDMD
and can more robustly estimate the phase and amplitude func-
tions depending on the data.

As closely related but different problems, methods for
estimating the phase response properties of limit-cycle oscil-
lators [6,45–51] and for estimating phase coupling functions
between interacting oscillators from observed data have been
proposed and applied to experimental data [1,2,52–59]. In
these studies, the phase values of the oscillators are extracted
from the time series, e.g., by extracting the spike timing of
neural oscillators or by using the Hilbert transform, and then
the phase response property of the oscillator or the phase
coupling functions between the oscillators are estimated under
the assumption that the oscillators are described by the phase
model. The phase of the oscillator is typically estimated in
the vicinity of the limit cycle and deviation from the limit
cycle is not considered; unlike the present study, the phase and
amplitude functions are generally not introduced explicitly.

This paper is organized as follows. We first outline the
notions of asymptotic phase and amplitude in Sec. II and then
describe the method for estimating the phase and amplitude
functions by polynomial regression in Sec. III. The validity of
the proposed method is illustrated by numerical simulations
using two types of oscillators and how to evaluate the esti-
mated results is described in Sec. IV. Section V demonstrates
data-driven fast entrainment of the oscillator with amplitude
suppression using the estimated phase and amplitude func-
tions, and Sec. VI gives concluding remarks.

II. PHASE AND AMPLITUDE OF
LIMIT-CYCLE OSCILLATORS

A. Asymptotic phase and amplitude functions

We first introduce the asymptotic phase and amplitude
functions [19,20,22,26]. We consider a limit-cycle oscillator
described by

d

dt
X (t ) = F(X (t )), (1)

where X (t ) ∈ RN is the system state at time t . We assume
that the system has an exponentially stable limit cycle trajec-
tory X 0(t ) with a natural period T and frequency ω = 2π/T ,
which is a T -periodic function of t satisfying X 0(t + T ) =
X 0(t ).

First, we assign a phase θ ∈ [0, 2π ) for each state on
the limit cycle, where 0 and 2π are considered identical,
by choosing a state X 0(0) on the limit cycle as the phase
origin, θ = 0, and defining the phase of the state X 0(t ) at
t > 0 as θ = ωt (mod 2π ). We denote by X 0(θ ) the state
on the limit cycle with phase θ . Next, we extend the def-
inition of the phase to the basin of the limit cycle. The
phase of a system state X A in the basin is defined as θ if
limt→∞ ‖�t,t0 X A − �t,t0X 0(θ )‖ = 0 holds, where �t,t0 is the

flow of Eq. (1) and ‖ · ‖ is the L2 norm. That is, if the state
�t,t0 X A started from X A at t0 converges to the state �t,t0X 0(θ )
started from X 0(θ ) at t0 as t → ∞, we consider that the phase
state X A has the same phase θ as X 0(θ ). This defines a phase
function � for all states X in the basin, which assigns a phase
value θ (t ) = �(X (t )) to the state X (t ) and satisfies

d

dt
θ (t ) = d

dt
�(X (t )) = ω. (2)

The phase defined in this way is called the asymptotic phase,
and the level sets of the phase function is called “isochrons”
[11–15]. The asymptotic phase can also be interpreted as
the argument of the eigenfunction of the Koopman gener-
ator F(X ) · ∇ of Eq. (1) associated with the eigenvalue iω
[21–23,43,44].

Next, we introduce the (dominant) amplitude function. In
a similar way to the phase θ (t ), we assign a scalar amplitude
r(t ) = R(X (t )) for all states X in the basin, where the ampli-
tude function R satisfies

d

dt
r(t ) = d

dt
R(X (t )) = λR(X (t )) = λr(t ). (3)

Here the coefficient λ < 0 is the Floquet exponent of the limit
cycle with the largest nonzero real part, which is assumed to
be real and simple. As the state X (t ) converges to the limit
cycle, the amplitude r(t ) decays exponentially and satisfies
R(X 0(θ )) = 0 when the state is on the limit cycle. The am-
plitude function can also be considered an eigenfunction of
the Koopman generator F(X ) · ∇ of Eq. (1) associated with
the eigenvalue λ. The level sets of the amplitude function is
called “isostables” in the framework of the Koopman operator
analysis of limit-cycling systems [21–23,43,44].

By using the phase and amplitude functions, we can reduce
the dimensionality of the oscillator and globally linearize
the dynamics in the basin of the limit cycle, which yields
a simple description of the oscillator useful for the analysis.
Moreover, near the limit cycle, we can write phase-amplitude
equations describing weakly perturbed oscillatory dynamics.
The simplicity of the phase equation has played a prominent
role in the theoretical analysis of synchronization phenomena
in various types of limit-cycling systems [11–14].

B. Response and sensitivity functions

We next introduce the response and sensitivity functions of
the phase and amplitude, which are used for the validation of
our estimation method.

The phase response function (PRF, also known as the
phase response or resetting curve, PRC [11,13,14,60]) gives
the phase difference of the oscillator caused by an im-
pulse perturbation applied to the oscillator at phase θ and is
defined as

g(θ ; ς) = �(X 0(θ ) + ς) − �(X 0(θ ))

= �(X 0(θ ) + ς) − θ, (4)

where ς ∈ RN represents the direction and intensity of the
impulse [13–15,61,62]. When |ς| is sufficiently small, we
can approximate g by using the Taylor expansion of � near
ς = 0, �(X 0(θ ) + ς) = �(X 0(θ )) + ∇�(X )|X=X 0(θ ) ·
ς + O(|ς|2), as g(θ ; ς) � ∇�(X )|X=X 0(θ ) · ς. We denote the
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gradient of �(X ) evaluated at the state X = X 0(θ ) by

Z(θ ) = ∇�(X )|X=X 0(θ ) (5)

and call it the phase sensitivity function (PSF, also known
as the infinitesimal phase resetting curve, iPRC). This Z(θ )
characterizes the linear response of the oscillator phase to a
weak perturbation given at phase θ .

Similarly, we introduce the amplitude response function
(ARF) characterizing the amplitude difference of the oscilla-
tor caused by an impulse ς given at phase θ as

h(θ ; ς) = R(X 0(θ ) + ς) − R(X 0(θ )) = R(X 0(θ ) + ς).

(6)

When |ς| is sufficiently small, we can approximate h by
using the Taylor expansion of R(X 0(θ ) + ς) near ς = 0,
R(X 0(θ ) + ς) = R(X 0(θ )) + ∇R(X )|X=X 0(θ ) · ς + O(|ς|2),
as h(θ ; ς) � ∇R(X )|X=X 0(θ ) · ς. Here we denote the gradient
of the amplitude function R(X ) at the state X = X 0(θ ) by

I(θ ) = ∇R(X )|X=X 0(θ ) (7)

and call it the amplitude sensitivity function (ASF, also known
as isostable response function in the Koopman operator analy-
sis of limit-cycling systems). This I(θ ) characterizes the linear
response of the oscillator amplitude to a weak perturbation
given at θ .

If the mathematical model of the oscillator is known, the
PSF Z(θ ) and ASF I(θ ) can be determined by numerically
calculating the 2π -periodic solutions of the following adjoint
equations [14,17,22,27,60]:

ω
d

dθ
Z(θ ) = −J(θ )�Z(θ ), (8)

ω
d

dθ
I(θ ) = −(J(θ )� − λ)I(θ ), (9)

where J(θ ) denotes the Jacobian matrix of the vector field F at
X = X 0(θ ). The PSF Z(θ ) should satisfy Z(θ ) · F(X 0(θ )) =
ω as a normalization condition. The normalization condition
for the ASF can be chosen arbitrary and will be specified later.

C. Direct numerical calculation of phase
and amplitude functions

It is generally difficult to obtain the phase and amplitude
functions analytically from a mathematical model, but they
can be obtained by direct numerical calculation of the mathe-
matical model as follows.

For the phase function [15], we first choose a point on the
limit cycle as the origin of the phase, then assign the phase
values to the states on the limit cycle. For the states in the
basin of the limit cycle, we let them evolve for an integer
multiple of the period T until they converge to the limit cycle
and then determine their phase values.

Similarly, for the amplitude function, we let the state X in
the basin evolve until it becomes sufficiently close to (but not
completely on) the limit cycle, and find the point X (θ ) on
the limit cycle with the same phase θ as X . The amplitude of
the point sufficiently close to the limit cycle can be obtained
by taking the inner product of the vector �X = X − X (θ )
between the two points and the amplitude sensitivity function

I(θ ) as R(X ) � I(θ ) · �X , which follows from the Taylor
expansion of the amplitude function.

Note that these methods are exhaustive and computation-
ally required. We will use the phase and amplitude functions
directly calculated from the mathematical model by the above
method as “true” functions to characterize the accuracy of the
estimated functions from the observed data.

III. PROPOSED METHOD OF ESTIMATION

A. Estimation of the frequency and Floquet exponent

In our method, the natural frequency ω and the largest
nonzero Floquet exponent λ of the oscillator should be
measured before the estimation of the phase and amplitude
functions. The natural frequency ω can be estimated from the
average period T of the system state to perform rotations. To
estimate the Floquet exponents from time series data, we use
the method of Wolf et al. [63] for the Lyapunov exponents of
dynamical systems. For two-dimensional limit-cycle oscilla-
tors, the Floquet exponents are real and exactly the same as
the Lyapunov exponents. As one Lyapunov exponent λ1 cor-
responding to the phase direction is 0, it is enough to estimate
the sum of the Lyapunov exponents, λ1 + λ2, which can be
performed by measuring the evolution of a small phase-plane
area for a long time. The same method can also be used for
the two largest Lyapunov exponents of higher-dimensional
oscillators when λ is real.

We assume that a discretized time sequence of the system
state (with observation noise) from an initial condition not on
the limit cycle is obtained. By taking the logarithmic ratio of
the area S(tk ) of the triangle formed by three nearby states
in the time series at time tk to the area S(tk+1) at tk+1 and
summing over a long period of time, we can obtain λ as the
sum of the Lyapunov exponents:

λ = λ1 + λ2 = 1

tL − t0

L−1∑
k=0

ln
S(tk+1)

S(tk )
, (10)

where L is the length of the data and the area S(tk ) is reset to
0.1 at each tk so that it does not vanish due to numerical errors.

As illustrated in Figs. 1 and 6 (see Sec. IV for details),
the method of Wolf et al. can estimate the Floquet exponents
with sufficient accuracy for the observation noise assumed in
this study. If the observation noise is stronger, more advanced
signal processing methods suitable for individual observed
signals should be employed. It is also known the method of
Wolf et al. is not robust against strong noise [64], and vari-
ous improved methods have been proposed [65–68]. We may
also use those improved methods for estimating the Floquet
exponents.

B. Estimation of the phase function

We first propose a method for estimating the phase function
by polynomial regression from observed data of an unknown
limit-cycle oscillator. We do not measure the absolute phase
value of each state, which is difficult with the time series;
rather, we use the phase differences between two consecutive
states in the time series and use Eq. (2) for the estimation.
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We assume that we can obtain discretized time sequences
of X (t ) ∈ RN×1 from various initial conditions (with obser-
vation noise). Each sequence is sampled at equal intervals of
�t with M sampling points, where �t is sufficiently smaller
than the natural period T of the oscillator, namely, �t/T is

small enough to capture the continuous oscillatory signal and
its time derivative.

We construct a standardized row vector of polynomials up
to order p � 1 from X ,

U (X , p) = [
1 x̄1 · · · x̄N x̄2

1 x1x2 · · · x̄2
N · · · x̄p

N

] ∈ R1×P, (11)

where xk is the kth component of X and all cross terms
like x2

1x3
2 up to order p are included. The overline indicates

standardization, i.e., z̄ =: (z − μ)/σ is the standard score of
z, where μ and σ are the mean and the standard deviation of
z, respectively. We consider approximating the sine and cosine
of the phase function �(X ) by polynomials of order p as

cos[�(X )] � U (X , p)z1, sin[�(X )] � U (X , p)z2, (12)

where z1 ∈ RP×1 and z2 ∈ RP×1 are the coefficient vectors of
the polynomials. Hereafter, U (X , p) is denoted by U (X ). Our
aim is to find the best polynomial approximations of sin �

and cos � that are consistent with the definition of �, Eq. (2),
from the time series of X (t ).

Taking the time derivatives of sin �(X ) and cos �(X ), we
obtain

d

dt
cos[�(X (t ))] = −ω sin[�(X (t ))],

d

dt
sin[�(X (t ))] = ω cos[�(X (t ))],

(13)

and using Eq. (12), we obtain

d

dt
U (X (t ))z1 =

[(
∂U (X )

∂X

∣∣∣∣
X=X (t )

)� dX (t )

dt

]
· z1

� −ωU (X (t ))z2,

d

dt
U (X (t ))z2 =

[(
∂U (X )

∂X

∣∣∣∣
X=X (t )

)� dX (t )

dt

]
· z2

� ωU (X (t ))z1, (14)

where ∂U (X )/∂X ∈ RN×P is a matrix whose ( j, k) compo-
nent is given by ∂Uk/∂Xj ( j = 1, . . . , N, k = 1, . . . , P) and
“·” indicates the dot product of two vectors.

We discretize the time as t = i�t with a small time step
�t and represent the time series X (t ) as X i = X (i�t ). We
also denote numerical derivative of X (t ) at t = i�t as Ẋ i,
which is calculated by a linear regression of several consec-
utive data points in the time series since observation noise
is overlapped on the data [69]. From Eq. (14), the following
equations should hold approximately for each i = 1, . . . , M:

Ẋ
�
i

(
∂U (X )

∂X

∣∣∣∣
X=X i

)
z1 + ωU (X i )z2 = 0,

Ẋ
�
i

(
∂U (X )

∂X

∣∣∣∣
X=X i

)
z2 − ωU (X i )z1 = 0.

(15)

Introducing z = [z�
1 , z�

2 ]� ∈ R2P×1, these equations can be
expressed as

[
Ẋ

�
i U ′

i ωU i

−ωU i Ẋ
�
i U ′

i

]
z := ciz =

[
0
0

]
, (16)

where U i = U (X i ) and U ′(X i ) = ∂U (X )/∂X |X=X i . We try to
find the best coefficient vector z that satisfies the above equa-
tion as much as possible for the given time series. Defining
a matrix C by C = [c�

1 , c�
2 , . . . , c�

M]� ∈ R2M×2P, this gives a
minimization problem of the following objective function:

E� = ‖Cz‖2, (17)

where ‖Cz‖2 = ∑2M
k=1{(Cz)k}2.

To fix the origin of the estimated phase function, we also
require that the absolute phase of a given state X̃ is zero:

�(X̃ ) = 0. (18)

Thus, the polynomial approximations of cos �(X̃ ) and
sin �(X̃ ) should satisfy

U (X̃ )z1 = 1, U (X̃ )z2 = 0, (19)

and using z = [z�
1 , z�

2 ]�,[
U (X̃ ) 0

0 U (X̃ )

]
z =

[
1
0

]
. (20)

Considering the above objective function and the con-
straints, the proposed estimation method can be formulated
as an optimization problem for the coefficient z as follows:

ẑ = argmin
z

‖Cz‖2

s.t.

[
U (X̃ ) 0

0 U (X̃ )

]
z =

[
1
0

]
. (21)

This optimization problem is convex with respect to the coef-
ficient vector z.

In this study, we assume that the oscillator state is
measured at a sampling rate sufficiently larger than the os-
cillation frequency. Therefore, the number of observed data
is sufficiently larger than the number of model parameters
(coefficients of the polynomials), and the estimation problem
is a standard overdetermined problem. In our method, we
used a simple linear regression of the consecutive data points
for calculating the derivative of the observed time series,
which worked well for the observation noise that we assumed
(see Sec. IV). For stronger noise, estimation of the time
derivative can be difficult and more sophisticated filtering
methods should be employed.
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C. Estimation of the amplitude function

We next develop a method for estimating the amplitude
function by polynomial regression using the same observed
data as in the previous subsection. For simplicity, we con-
sider the amplitude function of a two-dimensional oscillator;
the method can also be applied straightforwardly to higher-
dimensional oscillators whose Floquet exponent with the
largest nonzero part is real.

Since the Floquet exponents of a two-dimensional oscil-
lator are real, i.e., a zero exponent associated with the phase
(tangential) direction and another negative exponent associ-
ated with the amplitude direction, the amplitude function is
also real. Therefore, we can approximate the amplitude func-
tion R(X ) by a polynomial as

R(X ) � U (X )ζ, (22)

where ζ ∈ RP×1 is the coefficient vector. Plugging Eq. (22)
into Eq. (3), we obtain[(

∂U (X )

∂X

∣∣∣∣
X=X (t )

)� dX (t )

dt

]
· ζ = λU (X )ζ. (23)

Discretizing the time and plugging the time series data, we
obtain[

Ẋ
�
i

(
∂U (X )

∂X

∣∣∣∣
X=X i

)
− λU (X i )

]
ζ := d iζ = 0 (24)

for i = 1, . . . , M, where d i ∈ R1×P. As in the case for the
phase function, the numerical differentiation of X (t ) is eval-
uated by the linear regression. Defining a matrix D by D =
[d�

1 , d�
2 , . . . , d�

M]� ∈ RM×P, we obtain the following objec-
tive function to minimize:

ER = ‖Dζ‖2. (25)

On the limit cycle, the value of the amplitude func-
tion should take 0, i.e., R(X 0(θ )) = 0. This condition is
given as the constraint for the polynomial approximation
of R as U (X 0,i )ζ = 0, where X 0,i (i = 1, . . . , M0) denotes
M0 oscillator states on the limit cycle, which can be cho-
sen at equal time intervals. Defining a matrix U0 by U0 =
[U (X 0,1)�,U (X 0,2)�, . . . ,U (X 0,M0 )�]�, we obtain

U0ζ = 0. (26)

As stated previously, the scale of the amplitude can be arbi-
trarily chosen. To fix the scale of the amplitude function (this
also fixes the scale of the amplitude sensitivity function I(θ )
introduced in Sec. II B), we specify the absolute amplitude
value of a given state X̃ as R(X̃ ) = r0 (r0 > 0) as in the case of
the phase function. This point X̃ should not be on the limit
cycle and should be chosen near the fixed point of the system
in order to capture the shape of the amplitude function appro-
priately. This constraint can be expressed as

U
(
X̃

)
ζ := Ũζ = r0. (27)

Moreover, we require that the norm of the coefficient vector
ζ does not become too large so that the estimated amplitude
function does not diverge outside of the limit cycle due to
the above two constraints near the fixed point and on the
limit cycle. We thus include an additional objective function
proportional to the norm ‖ζ‖2.

Summarizing, the proposed estimation method can be for-
mulated as an optimization problem for the coefficient vector
ζ as follows:

ζ̂ = argmin
ζ

‖Dζ‖2 + γ ‖ζ‖2

s.t.

[
Ũ
U0

]
ζ =

[
r0

0

]
, (28)

where γ is a parameter for the penalty for the solution norm.
This optimization problem is convex with respect to the coef-
ficient vector ζ.

The second term of the objective function in Eq. (28)
takes the same form as the regularization term in the ridge
regression. The hyperparameter γ was determined by using
the L curve [70]. The L curve is defined by a log-log plot of
the error ‖Dζ‖2 and the solution norm ‖ζ‖2. We empirically
choose the value of γ where the absolute value of the slope
falls below 6.

IV. VERIFICATION OF THE PROPOSED METHOD

A. Data used for estimation

In this section, we verify the validity of the proposed
method by numerical simulations using two-dimensional
limit-cycle oscillators, the Stuart-Landau oscillator [11,15]
and the van der Pol oscillator [71–73]. The time series data are
produced by numerical integration of the dynamical system
from n initial states that are taken uniformly at random in
a certain region, where each initial state is evolved until it
converges to the limit cycle and M data points are sampled
from the trajectory. Here we took n initial points to increase
the number of data points outside the limit cycle, while we
assumed a single time series in our explanation of the methods
in Sec. III. These n time series are concatenated and treated as
one time series vector, but the regression and differentiation
are performed only within the individual time series.

B. Evaluation of estimated results

To examine the performance of the proposed method, we
consider limit-cycle oscillators whose mathematical models
are known and compare the estimated results with the true
results obtained by direct numerical calculations of the math-
ematical models. We evaluate the estimation accuracy by
comparing the PSFs, PRFs, ASFs, and ARFs obtained from
the estimated and the true phase and amplitude functions. In
what follows, we use normalized PRFs (nPRFs) and normal-
ized ARFs (nARFs) defined as the PRFs and ARFs divided by
the impulse intensity, respectively.

The jth component of the PSF Z(θ ) and ASF I(θ ) are
obtained by numerical derivative of the estimated phase and
amplitude functions as

Ẑ j (θi) = �̂(X 0,i + εe j ) − �̂(X 0,i − εe j )

2ε
(29)

and

Î j (θi) = R̂(X 0,i + εe j ) − R̂(X 0,i − εe j )

2ε
, (30)

014204-5



NORIHISA NAMURA et al. PHYSICAL REVIEW E 106, 014204 (2022)

FIG. 1. Phase and amplitude functions of the SL oscillator used
for the estimation. (a) Time series data used for the estimation.
(b) Estimated nonzero Floquet exponent. (c) Estimated phase func-
tion. (d) True phase function. (e) Estimated amplitude function. (f)
True amplitude function. In (c)–(f), the red bold circle shows the limit
cycle.

for sufficiently small ε, where e j is the unit vector in the jth
direction and X 0,i is the system state on the limit cycle with
phase θi. We use ε = 10−5 in what follows.

The nPRF Gς, j (θ ) := g(θ, ςe j )/ς and the nARF
Hς, j (θ ) := h(θ, ςe j )/ς of the oscillator with respect to
the impulse of finite intensity ς given to the jth component of
the system state can be calculated from the estimated phase
and amplitude functions as

Ĝς, j (θi ) := �̂(X 0,i + ςe j ) − �̂(X 0,i )

ς
(31)

and

Ĥς, j (θi ) := R̂(X 0,i + ςe j ) − R̂(X 0,i )

ς
, (32)

respectively.
We evaluate the accuracy of the PSFs, ASFs, nPRFs, and

nARFs by using the coefficient of determination as follows:

R2
Y = 1 −

∑
i[Yj (θi ) − Ŷj (θi )]2∑

i[Yj (θi ) − Y j]2
, (33)

where Yj is either of Zj , I j , Gς, j , or Hς, j , and Y j represents
the mean of {Yj (θi )} over i. The closer the coefficient of deter-
mination is to 1, the higher the accuracy of the estimation.

FIG. 2. Phase sensitivity functions (PSFs) of the SL oscillator.
Each graph shows the estimated PSF (red solid curve) and the true
PSF (black dotted curve). (a) x1 component; (b) x2 component. Esti-
mated PSFs are obtained by numerical differentiation with ε = 10−5.
True PSFs are calculated by solving the adjoint equation.

C. Stuart-Landau oscillator

First, we verify the validity of the proposed method using
the Stuart-Landau (SL) oscillator, for which the analytical
solutions of the phase and amplitude functions are obtained
[74]. The SL oscillator is described as follows:

d

dt

[
x1

x2

]
=

[
x1 − αx2 − (x1 − βx2)

(
x2

1 + x2
2

)
αx1 + x2 − (βx1 + x2)

(
x2

1 + x2
2

)
]
, (34)

where x1, x2 are the variables and α = 2, β = 1 are parame-
ters. We set the sampling interval as �t = 0.005, the number
of initial points as n = 1200, and the number of data points as
M = 500. We estimated the phase function for the SL oscil-
lator under the observation noise, which is given by Gaussian
noise with mean 0 and standard deviation 5×10−3 added to
the time series. The data used for the estimation are shown in
Fig. 1(a). The Floquet exponents are estimated with L = 1000
and tk+1 − tk = 0.25 in Eq. (10). The natural frequency is
estimated as ω � 0.9997, and the nonzero Floquet exponent
is estimated as λ � −2.0457, while their theoretical values
are ω = 1 and λ = −2, respectively. The estimated value of
the Floquet exponent is plotted with respect to the length L
in Fig. 1(b). The maximum degree of the polynomial is set to
p = 18.

We estimated the phase function � by the proposed method
(Sec. III B) from the time series data [Fig. 1(a)]. The esti-
mated phase function [Fig. 1(c)] is compared with the true
one [Fig. 1(d)]. The phase function is accurately estimated
by the proposed method except for the central and peripheral
regions far from the limit cycle. The discrepancy is due to
the lack of data in those regions (trajectories stay near the
limit-cycle attractor most of the time) and due to the limited
representation power of the polynomials.

We evaluated the estimation accuracy of the PSFs and
PRFs. Figure 2 compares the PSFs Z1 and Z2 obtained from
the estimated phase function using Eq. (29) with the true
function obtained by solving the adjoint equation (8). Figure 3
compares the nPRFs Gς, j for finite-intensity impulses ob-
tained from the estimated phase function using Eq. (31) with
the true functions obtained from the analytical solution. The
estimated functions are well consistent with the true ones and
the estimation error is small; the accuracy of the estimation
is R2

Z � 0.9859 for the PSFs and R2
G � 0.9903 for the nPRFs,

respectively (Table I). These results indicate that the proposed
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FIG. 3. Normalized phase response functions (nPRFs) of the SL
oscillator. Each graph shows the estimated nPRF (red solid curve)
and the true nPRF (black dotted curve). (a), (c) Impulses applied
in the x1 direction. (a) ς = −0.2, (c) ς = +0.2. (b), (d) Impulses
applied in the x2 direction. (b) ς = −0.2, (d) ς = +0.2.

method accurately estimates the phase function in the vicinity
of the limit cycle and a bit farther out from the limit cycle
where moderate nonlinearity comes in.

Next, we estimated the amplitude function R by the pro-
posed method (Sec. III C) from the same time series data
[Fig. 1(a)]. The hyperparameter γ is determined to be γ =
1.0×106 from the L curve. The estimated amplitude func-
tion [Fig. 1(e)] is compared with the true amplitude function
[Fig. 1(f)]. Our method can accurately estimate the ampli-
tude function near the limit cycle, but the estimate deviates
in the central and peripheral regions. In particular, the es-
timate cannot reproduce the divergence of the amplitude
function near the fixed point. This discrepancy is due to the
lack of data and the singularity near the fixed point of the
system.

Figure 4 compares the ASFs I1 and I2 obtained from the
estimated amplitude function using Eq. (30) with the true
function obtained by solving the adjoint equation (9). Figure 5
compares the nARFs Hς, j (θ ) obtained from the estimated am-
plitude function using Eq. (32) with the true results. Despite
the discrepancy in the amplitude function far from the limit
cycle, the estimated results agree reasonably well with the true
results for the impulse intensities used here. The accuracy of
estimation is R2

I � 0.9998 for the ASFs and R2
H � 0.9725 for

the nARFs (Table II). These results confirm that the amplitude
function is estimated appropriately around the limit cycle in-
cluding moderately nonlinear regimes.

TABLE I. Coefficients of determination of the nPRFs and PSFs
of the SL oscillator.

Z1 Z2 G−0.2,1 G−0.2,2 G0.2,1 G0.2,2

0.9869 0.9859 0.9912 0.9903 0.9927 0.9929

FIG. 4. Amplitude sensitivity functions (ASFs) of the SL oscil-
lator. Each graph shows the estimated ASF (red solid curve) and
the true ASF (black dotted curve). (a) x1 component; (b) x2 compo-
nent. Estimated ASFs are obtained by numerical differentiation with
ε = 10−5. True ASFs are calculated by solving the adjoint equation.

D. van der Pol oscillator

Next, we verify the validity of the proposed method using
the van der Pol (vdP) oscillator. The vdP oscillator [71–73] is
described as follows:

d

dt

[
x1

x2

]
=

[
x2

ν
(
1 − x2

1

)
x2 − x1

]
, (35)

where x1, x2 are the variables and the parameter is chosen
as ν = 1. We set the sampling interval as �t = 0.005, the
number of initial points as n = 1200, and the number of data
points as M = 1000. We estimated the phase function for the
vdP oscillator under the observation noise, given by Gaussian
noise with mean 0 and standard deviation 5×10−3 to the
time series as the observation noise. The data used for the
estimation are shown in Fig. 6(a). The Floquet exponents are
estimated with L = 1000 and tk+1 − tk = 0.25 in Eq. (10).
The natural frequency is estimated as ω � 0.9434 and the
nonzero Floquet exponent is estimated as λ � −1.0885. The
latter value agree well with the theoretical value λ � −1.0581
that is evaluated from the monodromy matrix of the original
model [27]. The estimated value of the Floquet exponent with

FIG. 5. Normalized amplitude response functions (nARFs) of
the SL oscillator. Each graph shows the estimated nARF (red solid
curve) and the true nARF (black dotted curve). (a), (c) Impulses
applied in the x1 direction. (a) ς = −0.1, (c) ς = +0.1. (b), (d)
Impulses applied in the x2 direction. (b) ς = −0.1, (d) ς = +0.1.
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TABLE II. Coefficients of determination of the nARFs and ASFs
of the SL oscillator.

I1 I2 H−0.1,1 H−0.1,2 H0.1,1 H0.1,2

0.9998 0.9999 0.9779 0.9727 0.9725 0.9742

respect to the length L is shown in Fig. 6(b). The maximum
degree of the polynomial is set to p = 18.

We estimated the phase function � by the proposed method
(Sec. III B) from the time series data [Fig. 6(a)]. The estimated
result [Fig. 6(c)] is compared with the true phase function
[Fig. 6(d)] obtained directly from the mathematical model,
Eq. (35). As in the case with the SL oscillator, the estimated
function is close to the true one except for the central and
peripheral regions far from the limit cycle.

We examined the estimation accuracy of the PSFs and
PRFs. Figure 7 compares the estimated PSFs Z1, and Z2 with
the true ones. The estimated PSFs agree well with the true

FIG. 6. Phase and amplitude functions of the vdP oscillator.
(a) Time series data of the vdP oscillator used for the estimation.
(b) Estimated nonzero Floquet exponent. (c) Estimated phase func-
tion. (d) True phase function. (e) Estimated amplitude function. (f)
True amplitude function. In (c)–(f) the red curve shows the limit
cycle.

FIG. 7. Phase sensitivity functions (PSFs) of the vdP oscillator.
Each graph shows the estimated PSF (red solid curve) and the true
PSF (black dotted curve). (a) x1 component; (b) x2 component. Esti-
mated PSFs are obtained by numerical differentiation with ε = 10−5.
True PSFs are calculated by solving the adjoint equation.

PSFs, implying the accurate estimation of the phase func-
tion in the vicinity of the limit cycle. Figure 8 compares
the estimated nPRFs Gς, j (θ ) for finite-intensity impulses
with the true results. Again, the estimated nPRFs agree well
with the true results. Overall, the proposed method can esti-
mate the PSFs and nPRFs accurately (Table III): R2

Z � 0.9896
and R2

G � 0.9892 for PSF and nPRFs, respectively. These
results indicate that the proposed method accurately estimates
the phase function in the moderately nonlinear regime around
the limit cycle.

Next, we estimated the amplitude function R by the pro-
posed method (Sec. III C) from the same data [Fig. 6(a)]. The
hyperparameter γ is determined to be γ = 1.0×103 from the
L curve. The estimation result [Fig. 6(e)] is compared with
the true amplitude function [Fig. 6(f)] obtained directly from
the mathematical model, Eq. (35). As in the SL case, the
estimate agrees with the true function near the limit cycle, but
a discrepancy arises in the central and peripheral regions far
from the limit cycle.

We examined the estimation accuracy of the ASFs and
ARFs. Figure 9 compares the estimated ASFs with the true

FIG. 8. Normalized phase response functions (nPRFs) of the vdP
oscillator. Each graph shows the estimated nPRF (red solid curve)
and the true nPRF (black dotted curve). (a), (c) Impulses applied
in the x1 direction. (a) ς = −0.4, (c) ς = +0.4. (b), (d) Impulses
applied in the x2 direction. (b) ς = −0.4, (d) ς = −0.4.
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TABLE III. Coefficients of determination of the nPRFs and PSFs
of the vdP oscillator.

Z1 Z2 G−0.4,1 G−0.4,2 G0.4,1 G0.4,2

0.9971 0.9892 0.9980 0.9896 0.9979 0.9914

ASFs, showing a reasonable agreement. Figure 10 compares
the estimated nARFs with the true nARFs for finite-intensity
impulses. The estimates also agree well with the true nARFs.
Again, the proposed method can estimate the ASF and nARFs
accurately (Table IV): R2

I � 0.9792 and R2
H � 0.9694 for

ASF and nARFs, respectively. These results suggest that the
proposed method estimates the amplitude function around the
limit cycle accurately.

V. DATA-DRIVEN OPTIMAL ENTRAINMENT
WITH AMPLITUDE SUPPRESSION

In this section we apply the proposed method to the opti-
mal entrainment of the oscillator with amplitude suppression
using the PSF and ASF developed in Ref. [27]. We consider
a limit-cycle oscillator driven by an external periodic input.
The natural frequency of the oscillator is ω and the frequency
of the periodic input is �, where � is close to ω. When the
input is sufficiently weak, the reduced and averaged phase
equation for the phase difference φ between the oscillator and
the external periodic input is given by

d

dt
φ = � + �(φ), �(φ) = [Z(φ + �t ) · q(�t )]t , (36)

where � = ω − � is the frequency mismatch between the
periodic input and the oscillator, � is the phase cou-
pling function, q is the periodic input, and [ f (t )]t =
(�/2π )

∫ 2π/�

0 f (s) ds denotes the average of f over one pe-
riod of the external input. The optimal periodic input q can
be obtained by solving the following optimization problem as
discussed in Ref. [75]:

q = argmax
q

−�′(φ∗)

s.t. � + �(φ∗) = 0, [‖q‖2]t = Q, (37)

where �′ is the derivative of the phase coupling function at
the stable phase locking point φ∗; the first constraint is for the

FIG. 9. Amplitude sensitivity functions (ASFs) of the vdP os-
cillator. Each graph shows the estimated ASF (red solid curve) and
the true ASF (black dotted curve). (a) x1 component; (b) x2 compo-
nent. Estimated ASFs are obtained by numerical differentiation with
ε = 10−5. True ASFs are calculated by solving the adjoint equation.

FIG. 10. Normalized amplitude response functions (nARFs) of
the vdP oscillator. Each graph shows the estimated nARF (red solid
curve) and the true nARF (black dotted curve). (a, c) Impulses ap-
plied in the x1 direction. (a) ς = −0.2, (c) ς = +0.2. (b, d) Impulses
applied in the x2 direction. (b) ς = −0.2, (d) ς = +0.2.

system to have a phase-locked solution at φ∗, and the second
constraint is for the power of the periodic input to be Q > 0.
However, when the periodic input is not sufficiently weak, the
trajectory deviates from the limit cycle and the above method
based on the phase reduction may not work appropriately.

In the amplitude-penalty method [27], the amplitude equa-
tion is also used to suppress the deviations of the trajectory
from the limit cycle. It is formulated by adding a penalty term
characterizing the effect of the input on the amplitude variable
of the oscillator to the optimization problem (37) as follows:

q = argmax
q

−�′(φ∗) − k[{I(φ∗ + �t ) · q(�t )}2]t

s.t. � + �(φ∗) = 0, [‖q‖2]t = Q, (38)

where the second term in the objective function represents the
penalty for the amplitude deviation and k > 0 is the weight
of the penalty. By solving the modified optimization prob-
lem (38), the optimal input q that simultaneously improves
the stability of the phase-locked solution φ∗ and suppresses
the deviation of the amplitude from the limit cycle can be
obtained.

The results of the amplitude penalty method for the vdP
oscillator using the PSF and ASF estimated under the obser-
vation noise are shown in Fig. 11. The parameters are set to
k = 2×104, Q = 0.05, φ∗ = 0, and � = 0.

Figure 11(a) shows the evolution of the phase differences
with and without the amplitude penalty, where results using
the PSF and ASF calculated by the adjoint method (theoreti-
cal) and those estimated from the observed data (data-driven)

TABLE IV. Coefficients of determination of the nARFs and
ASFs of the vdP oscillator.

I1 I2 H−0.2,1 H−0.2,2 H0.2,1 H0.2,2

0.9795 0.9792 0.9753 0.9694 0.9707 0.9736
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FIG. 11. Data-driven optimal entrainment of the vdP oscillator.
(a) Evolution of the phase differences for the case with periodic input
obtained from the estimated PSF and ASF (red solid), for the case
with input obtained from true PSF and ASF (green dotted), and for
the case without amplitude suppression (blue dashed). (b) Trajec-
tories of the oscillator state; the case with periodic input obtained
from the estimated PSF and ASF (red solid) and the case without the
amplitude penalty (blue dashed) are compared. Black dotted curve
shows the limit cycle without periodic input.

are compared. The amplitude penalty method leads to the
correct phase-locking point φ∗ = 0, where the results using
both PSFs and ASFs are almost indistinguishable, while the
conventional method without amplitude suppression leads to
incorrect phase-locking point different from φ∗ = 0 due to
amplitude deviations.

Figure 11(b) shows the trajectories driven by the periodic
inputs with and without amplitude penalty, where the esti-
mated PSF and ASF are used. It can be seen that the trajectory
driven by the periodic input with amplitude penalty is almost
the same as the limit cycle without perturbation, while the
trajectory without amplitude penalty deviates from the limit
cycle. This result suggests that the proposed method is a
promising approach to realize the optimal entrainment of the
oscillator in a data-driven manner without the knowledge of
the mathematical model.

VI. CONCLUDING REMARKS

In this study, we proposed a method for estimating the
phase and amplitude functions of limit-cycle oscillators only
from observed time series. Our method is based on the
polynomial regression, which is simple and computationally
efficient. The resulting optimization problems are convex and
can be easily solved. The numerical results based on two
limit-cycle oscillators (SL and vdP oscillator) showed that
our method can estimate the phase and amplitude function
accurately around the limit cycle under the observation noise.
Furthermore, we demonstrated that the proposed method en-
ables us to achieve the optimal entrainment with amplitude
suppression in a data-driven manner, and the performance was
comparable to the model-based case.

The proposed method cannot accurately estimate the phase
and amplitude functions in the phase-plane regions away from
the limit cycle (Figs. 1 and 6). In particular, it cannot es-
timate the singular behavior of the amplitude function near

the fixed point of the system. However, our method accu-
rately estimates the PSF and nPRFs (Figs. 2, 3, 7, and 8)
and ASF and nARFs (Figs. 4, 5, 9, and 10) for moderate
impulse intensities. In the phase-amplitude description, the
PSF, nPRFs, ASF, and nARFs are essential functions for the
phase-amplitude description of limit-cycle oscillators. Thus,
the discrepancy of the phase and amplitude functions away
from the limit cycle is not a serious problem for applications.
Indeed, we demonstrated that the proposed method is useful
for data-driven optimal entrainment of the limit-cycle oscilla-
tors (Fig. 11). The proposed method is potentially helpful also
for data-driven analysis and control of limit-cycle oscillators
subjected to pulsatile forcing or coupling [14,61,62].

As mentioned in the introduction, a major alternative to
our proposed method is the EDMD [31], which estimates
Koopman eigenvalues and eigenfunctions from the observed
data. The asymptotic phase function � and amplitude function
R are related to the Koopman eigenfunctions with Koop-
man eigenvalues iω and λ, respectively, namely, they satisfy
(d/dt )ei� = iωei� and (d/dt )R = λR [21–23,43,44].

The primary difference of the present method from those
based on EDMD is that the natural frequency ω and the Flo-
quet exponent λ are given as external parameters (measured
separately) and then the phase and amplitude functions are
estimated, while in the EDMD, the frequency and Floquet
exponents are estimated from the time series together with the
eigenfunctions.

In our simulations, EDMD often gives inaccurate values of
the Floquet exponent λ as compared to the present method,
which can pose a difficulty in using EDMD for estimating
the reduced phase-amplitude equations from the data since the
accuracy of λ is essentially important for the dynamics. The
reason for this may be interpreted as follows. Since EDMD
estimates the eigenvalues (iω and λ) and the associated eigen-
functions (ei� and R) simultaneously, estimation errors in the
eigenvalues can easily be absorbed in small change in the
eigenfunctions (and vice versa), leading to the difficulty in
the accurate simultaneous estimation of both quantities. In
contrast, our method avoids this problem by measuring ω and
λ separately by using a classical robust method for the Lya-
punov exponents and then estimating R and �. We thus think
that our proposed method is complementary to the EDMD
methods in the analysis of real-world oscillatory signals.

In this study, we applied the proposed method to limit-
cycle oscillators with known mathematical models in order to
evaluate its accuracy. Our future work is to apply the method
to real-world observed data such as ECGs [7]. To this end,
we plan to further develop a method of preprocessing for
the time series to mitigate the effect of stronger noise and
nonstationarity.
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