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Noise can induce coherent oscillations in excitable systems without periodic orbits. Here, we establish a
method to derive a hybrid system approximating the noise-induced coherent oscillations in excitable systems
and further perform phase reduction of the hybrid system to derive an effective, dimensionality-reduced phase
equation. We apply the reduced phase model to a periodically forced excitable system and two-coupled excitable
systems, both undergoing noise-induced oscillations. The reduced phase model can quantitatively predict the
entrainment of a single system to the periodic force and the mutual synchronization of two coupled systems,
including the phase slipping behavior due to noise, as verified by Monte Carlo simulations. The derived phase
model gives a simple and efficient description of noise-induced oscillations and can be applied to the analysis of
more general cases.
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Introduction. Noise is ubiquitous in nature and is generally
considered to hinder ordered behaviors of systems. However,
counterintuitive phenomena in which noise brings order have
also been revealed and aroused much attention in diverse
fields. Indeed, noise can facilitate the formation of self-
organized structures in nonequilibrium systems in physics,
chemistry, and biology [1–3]. For example, synchronization
of nonlinear oscillators usually requires mutual coupling, but
common or correlated noise applied on them can induce syn-
chronization even when the oscillators are uncoupled [4–6].
In nonlinear systems, stochastic trajectories under the effect
of noise are not necessarily blurred versions of the determin-
istic trajectories [7]. Noise may induce coherent trajectories
that do not exist without noise, e.g., in stochastic reso-
nance, coherence resonance, noise-induced synchronization,
spatiotemporal patterns, etc. [8]. In particular, in excitable
systems, even if no periodic orbit exists in the absence of
noise, coherent oscillations can still occur when noise with
appropriate intensity is applied, which resemble deterministic
limit-cycle oscillations.

Phase reduction is a powerful tool for reducing the dimen-
sionality of limit-cycling systems under weak perturbations
[9,10]. Due to its simplicity and efficiency, this approach
has been widely employed in analyzing various systems
of coupled oscillators and also generalized to nonconven-
tional systems such as delay-induced oscillations [11,12],
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reaction-diffusion systems [13], stochastic limit-cycle oscilla-
tors [6,14,15], hybrid oscillators [16,17], relaxation oscillators
[18,19], quantum nonlinear oscillators [20,21], etc. The phase
reduction relies on the notion of the asymptotic phase
[9,10,22] of the limit cycle to characterize the dominant dy-
namical behaviors. However, it is not an easy task to establish
a phase reduction theory for noise-induced coherent excitable
systems due to the lack of a reference periodic orbit that char-
acterizes the coherent oscillations. Efforts have so far been
made mainly to develop a phenomenological phase model
based on numerical simulations and data processing [23–25],
or to define the stochastic version of the asymptotic phase and
amplitude by solving the eigenvalue problem of the backward
Kolmogorov operator for stochastic oscillators [26–28].

In this Letter, we construct a quantitative phase reduction
theory for noise-induced coherent excitable systems by (i)
finding a reference orbit which plays the role of the limit
cycle in deterministic oscillatory cases; (ii) establishing an ap-
proximate hybrid system for calculating the phase sensitivity
function; and (iii) constructing an effective phase equation and
applying it to the analysis of periodically forced or mutually
coupled oscillators.

Phase reduction of noise-induced coherent systems. We
consider a FitzHugh-Nagumo (FHN) system perturbed by
noise applied on the fast variable as a typical example:

εẋ = f (x) − y +
√

Dνν(t ),

ẏ = x + a, (1)

where x and y represent the fast membrane potential and
slow recovery variable, respectively, and y = f (x) = x − x3

3
is the nullcline of x. The Gaussian white noise ν(t ) satisfies
〈ν(t )〉 = 0 and 〈ν(t )ν(τ )〉 = δ(t − τ ), and Dν represents its
intensity. The timescale separation parameter ε and the bi-
furcation parameter a are fixed as ε = 0.0001 and a = 1.01.
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FIG. 1. Prediction of a stochastic periodic orbit γs (red bold
curve) approximating the stochastic trajectories (gray) obtained by
MC simulations of the excitable FHN system exhibiting SISR os-
cillations. The black circles are two transition positions on the left
and right branches obtained via DMC. The dashed curves are x
(blue) and y (black) nullclines, respectively. Left and right panels
show the distributions of the transition position on the left and right
branches obtained by MC simulations (green bars) and FPTD (blue
curves). Inset: Deterministic dynamics of the excitable FHN system
(1) without noise. The black dot is a stable fixed point (x0, y0 ).

Without noise, the system (1) has a globally stable fixed point
(x0, y0), where x0 = −a and y0 = a3

3 − a (see the inset in
Fig. 1). When noise is applied, the system (1) can exhibit
noisy but coherent oscillations due to large timescale sepa-
ration, called self-induced stochastic resonance (SISR) [29].
Figure 1 illustrates the SISR oscillations observed at noise
intensity Dν = 0.01. We refer to the system (1) as the SISR
oscillator hereafter.

To determine the reference periodic orbit characterizing the
coherent oscillations, we apply the distance matching condi-
tion (DMC) that we developed in Ref. [30] to calculate the
transition positions (see Supplemental Material (SM) [31] for
details). The transition position yl of the stochastic trajectory
started from the initial state y0 on the left branch can be
determined from the following DMC:

∫ yl

y0

S(y)

ε
[

f −1
l (y) + a

]
Te(y)

dy = S(yl ), (2)

where f −1
l (y) is the value of x on the left branch at y and Te(y)

is the mean first passage time. The left-hand side of Eq. (2)
represents the accumulated effect of noise on the displacement
of the state away from the stable branch and S(y) on the
right-hand side is the distance between the middle and left
branches. This condition implies that the transition occurs
when the noise-induced displacement and the distance from
the left to the middle branch match. As shown in Fig. 1, the
transition positions on the left and right branches predicted
by Eq. (2) are in good agreement with the Monte Carlo (MC)
simulations. It is found that the transition position can also
be predicted by considering the first passage time distribution
(FPTD) [32–34], which can be calculated for the left branch

(and similarly for the right branch) as [31]

ρl (y) =
exp

( − ∫ y 1
ε[ f −1

l (y′ )+a]Te(y′ ) dy′)
ε
∣∣ f −1

l (y) + a
∣∣Te(y)

. (3)

The peak of FPTD agrees well with the transition position
predicted from DMC on each branch as shown in Fig. 1.

It is noted that the stochastic oscillations caused by SISR
possess a well-defined orbit and almost keep a deterministic
period. These features pave the way for applying the phase
reduction approach to this system. This stochastic periodic
orbit is completely different from the deterministic orbit in
the oscillatory regime of the system and cannot be approx-
imated by some limiting process of the latter. In particular,
the transition from one branch to the other happens before
reaching the tips of the x nullcline. In order to simplify our
analysis, we fix the noise intensity Dν = 0.01 in what follows.
However, we note that the SISR phenomenon can also be
induced at different noise intensities as shown in Ref. [30]
and the proposed reduction method is generally applicable to
a wide range of parameters.

Considering the fast-slow characteristics of the stochastic
periodic orbit, we approximate the SISR oscillator by using
the following hybrid (piecewise-continuous) dynamical sys-
tem:

Ẋ = F(X ), if X /∈ �i,

X (t + 0) = �i(X (t )), if X ∈ �i, i = l, r. (4)

Here, X = (x, y), F(X ) is the deterministic vector field of
the system (1), �i are switching surfaces on the left and
right branches, and �i are transition functions. That is, we
approximate the slow stochastic dynamics along the left
and right branches by the deterministic orbit of the orig-
inal system and the fast dynamics between the branches
by instantaneous discontinuous transitions. The transition
functions and the switching surfaces can be calculated as
�l (X ) = [2 cos(ϕ), y]�, �r (X ) = [2 cos(ϕ + 2π

3 ), y]�, and
�i = {X |L(X ) = yi}, where L(X ) = y, ϕ = 1

3 arccos(− 3
2 y),

and yl and yr are the transition positions on the left and right
branches obtained by DMC [31]. This system has a stable,
piecewise-continuous limit cycle, denoted as γs, of frequency
ωh, where ωh is nearly equal to the average frequency of the
stochastic oscillations.

Through the above approximation, we have transformed
the original stochastic system (1) to the hybrid system (4).
We now apply the phase reduction method for hybrid systems
[16] to further reduce the system (4) into the phase equation of
the form θ̇ (t ) = d�(X (t ))

dt = ∂�(X )
∂X · F(X ) = ωh, where ωh is

the frequency of Eq. (4) and θ (t ) = �(X (t )) is the phase of
the system. Here, the phase function �(X ) gives the asymp-
totic phase [9,10,22] of the state X within the basin of attrac-
tion of the limit cycle γs. When the SISR oscillator is addition-
ally subjected to a weak perturbation P(X , t ), the first-order
approximate phase dynamics is given by θ̇ (t ) = ωh + ∂�(X )

∂X ·
P(X , t ) ≈ ωh + Z(θ ) · P(θ, t ), where we have approximated
the system state X (t ) by the state X 0(θ (t )) on γs sharing
the same asymptotic phase, and Z(θ ) = ∂�(X )

∂X |X=X0(θ ) is the
phase sensitivity function of γs, which can be obtained via the
adjoint method for hybrid limit cycles [31]. The y component
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FIG. 2. Phase sensitivity function [y component Zy(θ )]. The
black curve shows the theoretical result obtained by solving the
adjoint equation of the hybrid system (4). Symbols are the results
obtained by directly applying impulses of strength δ on the SISR
oscillator (1) and measuring the resulting phase differences after
Th = 2πω−1

h [31]; the error bars are their standard deviations. Inset:
Linear fitting of the standard deviation σg versus δ−1 [31]; circles
are results by the direct measurement and the black line is the linear
fitting with σg = 0.2300δ−1 − 0.0084.

of the phase sensitivity functions Zy(θ ) is illustrated in Fig. 2,
which has discontinuities at the two transition positions.

In the above derivation of the phase equation, we omitted
the stochastic fluctuations of the SISR oscillator. To better
describe the stochastic dynamical behaviors and quantitatively
evaluate the accuracy of our prediction, we further incorporate
the stochasticity of the system into the phase equation as an
effective additive noise [25,35],

θ̇ (t ) = ωe + Z(θ ) · P(θ, t ) + √
Deξ (t ), (5)

where ωe denotes the effective frequency of the stochastic os-
cillations, ξ (t ) is the Gaussian-white noise satisfying 〈ξ (t )〉 =
0 and 〈ξ (t )ξ (τ )〉 = δ(t − τ ), and De represents the effective
noise intensity. The effective frequency and noise intensity
are evaluated by the ensemble average [35] as ωe = 〈[θ (t ) −
θ (0)]/t〉 and De = 〈([θ (t ) − θ (0)]/t − ωe)2〉t , respectively,
by MC simulations of the original system (1), which are
obtained as ωe = 2.5161 and De = 0.0104. As discussed in
SM [31], the approximate theoretical value of the effective
frequency can be obtained from DMC as ω̃e = ωh = 2.5266
and that of the effective noise intensity can be evaluated from
FPTD as D̃e = 0.0095, which agree well with the values of ωe

and De and quantitatively validate the hybrid system (4).
We can also evaluate the effective noise intensity by direct

measurement of the phase sensitivity function [31]. The y
component of the phase sensitivity functions Zy(θ ) evalu-
ated using several different perturbation intensities is shown
in Fig. 2. As discussed in SM [31], as the perturbation in-
tensity δ used for the measurement becomes smaller, the
mean value of the measured Zy(θ ) approaches the theoretical
result for infinitesimal perturbation intensity calculated by

the adjoint method, while its standard deviation increases as
σg = δ−1

√
2Det . From the inset of Fig. 2, the effective noise

intensity is evaluated as De = 0.0106, which is also consis-
tent with the values obtained by the other methods. In the
following analysis, we fix the parameters as ωe = 2.5161 and
De = 0.0104 in the effective phase equation (5). As we will
demonstrate, the simple reduced phase equation (5) that we
have derived can accurately predict the dynamical behaviors
of the SISR oscillator (1) under general weak perturbations,
such as the periodic forcing and mutual coupling.

Periodic forcing. We first consider a periodically forced
SISR oscillator described by

εẋ = f (x) − y +
√

Dνν(t ),

ẏ = x + a + μ sin(�t ), (6)

where the forcing frequency � is close to the effective fre-
quency ωe and μ characterizes the strength of the periodic
forcing, which is weak in the sense that the frequency dif-
ference is given by ωe − � = μ� where |μ| 	 1 and �

is of O(1). By applying the reduction method described
above, we obtain the reduced phase equation θ̇ = ωe +√

Deξ (t ) + μZy(θ ) sin(�t ). By further introducing the slow
relative phase φ(t ) = θ (t ) − �t , we obtain φ̇ = ωe − � +√

Deξ (t ) + μZy(φ + �t ) sin(�t ). Since φ(t ) varies much
more slowly than �t because ωe − � is of O(μ), we can
average this equation via the corresponding Fokker-Planck
equation over one period of fast oscillation [9]. This yields
a further simplified phase equation

φ̇ = μ[� + �p(φ)] + √
Deξ (t ), (7)

where �p(φ) = 1
2π

∫ 2π

0 Zy(φ + ψ ) sin(ψ )dψ is a phase cou-
pling function representing the effect of the periodic forcing
on the phase dynamics.

The phase coupling function �p(φ) is plotted in Fig. 3(a),
which is smooth despite that the phase sensitivity function
is discontinuous because �p(φ) is a convolution of Zy with
a smooth function. The solution to �p(φ) = −� gives the
phase-locked state and it is linearly stable (unstable) when
�′

p(φ) < 0 [�′
p(φ) > 0] if the noise is not considered. Fig-

ure 3(b) shows the time evolution of the relative phase φ

converging to the stable phase-locked state for the cases with
� = 0.5 and � = −0.5. The results of MC simulations of the
system (6) are in good agreement with the theoretical predic-
tion by the noiseless phase model with the phase coupling
function in Fig. 3(a). When the frequency difference is above
the critical value, i.e., |�| > |�c| ≈ 1.2596, the relative phase
will continue to increase or decrease with time because the
noiseless system does not have stable phase-locked states, and
phase drift will occur [36]. Figure 3(c) shows that this can also
be well predicted by using the reduced phase model.

When |�| is slightly below the critical value, noise-induced
phase slipping [10,36–38] can be observed. Figure 3(d) shows
the results of MC simulations of Eq. (6). The relative phase
φ converges to the stable phase-locked state, but it can occa-
sionally cross the unstable phase-locked state due to noise and
exhibits phase slips. This phenomenon can also be well repro-
duced by the reduced phase equation (7) as shown in Fig. 3(e),
plotting the results of MC simulations for the averaged phase
model. The discrepancy of Fig. 3(e) from Fig. 3(d) mainly
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FIG. 3. (a) Phase coupling function �p(φ). Two red dashed lines are for the cases of � = 0.5 (below) and � = −0.5 (above), respectively.
The blue dot-dashed line is for the case � = 1.2. (b) Dynamics of the relative phase φ for � = 0.5 and � = −0.5. Colored curves: MC
simulations; black curves: Eq. (7) without noise. (c) Dynamics of φ for � = 2 and � = −2. Colored curves: MC simulations; black curves:
Eq. (7). (d)–(f) Dynamics of φ for � = 1.2 of the original perturbed system (6), averaged phase equation (7), and phase equation before
averaging, respectively. The insets display 100 realizations of MC simulations. The solid and dashed lines represent the stable and unstable
phase-locked states predicted in (a). The shaded areas and error bars represent standard deviations of the results. The coupling strength is
μ = 0.05.

originates from the averaging approximation. By directly per-
forming simulations of the reduced phase equation before
averaging, the discrepancy from the original model can be
significantly reduced as shown in Fig. 3(f).

Two-coupled SISR oscillators. Next, we consider two
weakly coupled identical SISR oscillators described by

εẋ1 = f (x1) − y1 +
√

Dνν1(t ), ẏ1 = (x1 + a) + μ(y2 − y1),

εẋ2 = f (x2) − y2 +
√

Dνν2(t ), ẏ2 = (x2 + a) + μ(y1 − y2),
(8)

where μ (0 < μ 	 1) represents weak coupling strength. The
Gaussian white noise terms in Eq. (8) are mutually indepen-
dent and satisfy 〈νi(t )〉 = 0 and 〈νi(t )ν j (τ )〉 = δi jδ(t − τ ).
The diffusive coupling Gy(yi, y j ) = μ(y j − yi ) is introduced
only between the slow variables. Similarly to Eq. (7), the
reduced phase equation for each oscillator is given by θ̇i =
ωe + √

Deξi(t ) + μZy(θi)Gy(θi, θ j ). By considering the phase
difference φ = θ1 − θ2, which is a slow variable, and applying
the averaging procedure, we can derive the equation for φ

FIG. 4. (a) Phase coupling function �d (φ). The dots represent stable synchronized states (φ = 0, ±π ). (b), (c) Dynamics of the phase
difference φ for two identical SISR oscillators with mutual coupling. Left panel: Time series of the phase difference for coupling strengths
μ = 0.05 and μ = 0.1 from uniformly distributed initial conditions obtained by MC simulations of the system (8). Right panel: Phase-
difference distribution (400 � t � 500). Green bars: Results of MC simulations of the system (8); pink curves: prediction of the reduced
phase equation (9).
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as [9]

φ̇ =
√

2Deξ (t ) + μ�d (φ), (9)

where �d (φ) = �(φ) − �(−φ) is the antisymmetric part
of the phase coupling function �(φ) = 1

2π

∫ 2π

0 Zy(φ +
ψ )Gy(φ + ψ,ψ )dψ . The solution of �d (φ) = 0 represents
a synchronized state of the two SISR oscillators, which is
stable (unstable) when �′

d (φ) < 0 [�′
d (φ) > 0]. As the two

oscillators are identical and the coupling is symmetric, the
in-phase (φ = 0) and antiphase (φ = ±π ) synchronized states
are always the solutions as shown in Fig. 4(a). It is notable that
both synchronized states are stable in the parameter regime
considered here (although the stability of the antiphase syn-
chronization is weaker).

Since noise is present in our coupled system (8), the
phase difference φ does not converge to a fixed value but
forms a stationary distribution with peaks corresponding to
the stable synchronized states [39]. This distribution depends
on both the noise intensity and the coupling strength. We
performed MC simulations of the coupled system (8) with
initial phase differences uniformly distributed in [−π, π ].
As shown in Figs. 4(b) and 4(c), the phase difference tends
to localize around the in-phase and antiphase synchronized
states. Increasing the coupling strength can enhance the local-
ization and more clearly separate the two states, which shows
the competing relationship between the coupling-induced
synchronization and noise-induced desynchronization. The
distributions of the phase difference obtained by MC sim-
ulations of the original system can be well reproduced by
the reduced phase equation (9) with the coupling function
�d (φ) obtained theoretically, wherein a higher peak is ob-
served at the more stable in-phase state than at the less
stable antiphase state. As expected, for smaller coupling

strength, the phase-difference distribution is more accurately
predicted.

Conclusion. We have investigated the phase dynamics of
the SISR oscillator exhibiting noise-induced coherent oscilla-
tions. The transition positions on each branch were accurately
obtained via DMC or FPTD, and an approximate hybrid sys-
tem was established by connecting the dynamics on the two
slow branches by discontinuous transitions. We performed
phase reduction on the hybrid system and obtained the re-
duced phase equation by further incorporating the effective
frequency and effective noise intensity. The reduced equa-
tions were applied to the analysis of a periodically forced
SISR oscillator and a pair of mutually coupled identical
SISR oscillators. The good agreement between the predicted
dynamics and the results of the original model proved the
accuracy and efficiency of our reduction method. The analysis
in this Letter can be readily extended to more complex situa-
tions such as nonidentical coupled oscillations and networks.
Also, more accurate results would be obtained by considering
higher-order approximations [40,41]. Moreover, despite that
the considered SISR oscillator has only one-dimensional slow
dynamics, the present approach can also be extended to sys-
tems with higher-dimensional slow dynamics as long as the
oscillation is coherent. More details will be reported in our
future works.
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