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Frequency-domain Method for VE Systems with Frequency Sensitivity Subjected to Along-wind without Mean
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1. Introduction 1 o
—_ iw
Time-domain method (TDM) of the dynamic analysis on x(6) = 21 f_ ooX(w)e dw (3)

viscoelastic (VE) systems is a stable and reliable method to
obtain the response in the time domain. However, compared
with frequency-domain method (FDM), time-domain method
is complicated and costs time because it bases on the
convolution of the function of external force and the equation
of motion of the system ). In addition, VE system needs to
consider its frequency sensitivity 1. And, the along-wind
excitation includes a wide range of frequency contents ©.
However, the research on frequency-domain method of the
dynamic analysis on the frequency-sensitive VE systems is
limited in the seismic response. Therefore, the purpose of this
paper is to evaluate the wind-induced response subjected to
the along-wind without mean component by FDM. The results
compared the frequency-domain method and the time-domain
method of single-degree-of-freedom (SDOF) models of
fractional derivative (FD) model (Fig.1a), 4-Element model
(Fig.1b), and 6-Element model (Fig.1c).
2. Frequency-domain method

Frequency-domain method of the dynamic analysis is a fast
calculation method, which makes an inner product between
Fourier spectral of wind and transfer function of the system in
the frequency domain. Fourier spectral of the 1% modal
displacement response of the system is given by Eq. (1).

X(iw) = H(iw) - P(iw) 1)
Where, transfer function of displacement H(iw) is given by
Eq. (2).
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P (iw)= Fourier spectral of the 1% modal wind force.
The response in the time domain obtained by inverse

Fourier transform of Fourier spectral of the 1% modal
displacement x(t) response of the system, which is given by

Eq. (3).
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3. VE systems

Storage stiffness K',, loss factor 1y, and loss stiffness
K", of the added component are given by Eq. (4a, b, c),
which is composed of a series connection of damper and brace
stiffness K,. However, storage stiffness K'; and loss factor
nq of damper are different caused by different VE models,
which are discussed from Section 3.1 to Section 3.3.
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3.1. FD model
Storage stiffness K'; (w) and loss factor 74 (@) of FD model
(Fig. 1a) in the frequency domain are given by Eq. (5a, b).
1+aba™ +(a+b)w” coslar/2) A
1+a’0™ +2aw” coslar/2) d

K (0)=G (5a)

()= (—a+b)w”sin(az/2)
T ] abaw + (a+b)o” coslar/2)

Where, A, = area of VE damper, d = thickness of VE
material lamination. In this paper, the 3M material ISD111 is
adopted. Then, G = 3.92x10% a = 5.6x10°, b = 2.10, a =
0.558.

3.2. 4-Element model !

Storage stiffness Ky (@) and loss factor 74 (w) of 4-
Element system (Fig. 1b) in the frequency domain are given
by Eq. (6a, b, ¢).

(5b)
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Fig. 1. Viscoelastic systems: (a) FD system, (b) 4-Element system, (c) 6-Element system
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3.3. 6-Element model !
Storage stiffness Ky (w) and loss factor 7y (w) of 6-

Element system (Fig. 1¢) in the frequency domain are given
by Eq. (7a, b, ¢).
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4. Analytical wind

This paper employed wind forces with a return period of
500 years. Wind force was determined by using a wind tunnel
test . The airflow in the experiment was determined by
referring to the building design load in Japan I (terrain: III,
directional angle: 0 degree). The design wind velocities of the
100-year-return period is 57.9 m/s.

Fig. 2 shows power spectral density (PSD) of 1% modal
along-wind force obtained by 10 waves-ensemble average.
Where Sg(f)= power spectral of the 1* modal wind force.
op= standard deviation of the 1% modal wind force.

Fig. 3 shows one example of the 1* modal along-wind force
(600 s) without the mean component in the time domain. To
eliminate the extra transient response, the wind force (700 s)
was modified in the first 50 s and the end 50 s by envelope,
and add zeros of 150 s before the start and after the end (a total
analytical time = 1000 s). Thus, the response only 600 s

X [Cm] Ma*[rnm]IMax-;TnM-_1'DG X [Cm]
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considered in each case.
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Fig. 2. PSD of along- Fig. 3. Time history of the
wind along-wind without mean
component

5. Displacement response (along-wind without mean)

The 2H-HH system (K; = 2.467 [KN m™1], Ky /K; = o,
Kq/Ke = 2.0) and 2H-WS system (K; = 2.467 [kN m™1],
Ky /K = 3.0, damping ratio = 2%) were employed in the
analysis. Fig. 4 and Fig. 5 show that displacement response of
2H-HH systems and 2H-WS systems caused by frequency-
domain method has good agreements with that by time-
domain method. The error of the maximum response and
standard deviation is less than 1%.
6. Conclusions

This paper presented the displacement response among FD
system, 4-Element system, and 6-Element, by frequency-
domain method has good agreement with that by time-domain
method, subjected to the along-wind force without mean

component.
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Fig. 4. Comparison of the wind-induced displacement in the time domain (2H-HH) ( TDM FDM )
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Fig. 5. Comparison of the wind-induced displacement in the time domain (2H-WS) ( TDM FDM )
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