**T2R2** 東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

# 論文 / 著書情報 Article / Book Information

| 論題(和文)            | 地震応答時における剛体球式感震器搭載ガスメーターの感震遮断性能<br>評価のための振動台実験                                                                                                                     |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Title(English)    | Shaking table experiment for evaluation of seismic shut off performance<br>of gas meter equipped with rigid ball type seismic sensor during<br>earthquake response |  |  |  |  |
| 著者(和文)            | 久田翔俊, 佐藤大樹, Alex Shegay                                                                                                                                            |  |  |  |  |
| Authors(English)  | Takatoshi Hisada, Daiki Sato, Alex Shegay                                                                                                                          |  |  |  |  |
| 出典(和文)            | 日本建築学会大会学術講演梗概集, , , pp. 869-870                                                                                                                                   |  |  |  |  |
| Citation(English) | , , , рр. 869-870                                                                                                                                                  |  |  |  |  |
| 発行日 / Pub. date   | 2022, 9                                                                                                                                                            |  |  |  |  |
| 権利情報              |                                                                                                                                                                    |  |  |  |  |

地震応答時における剛体球式感震器搭載ガスメーターの感震遮断性能評価のための振動台実験

| ○久田翔俊*         |
|----------------|
| 佐藤大樹**         |
| Alex Shegay*** |
|                |

剛体球式感震器搭載ガスメーター 震度 振動台実験 時刻歴応答解析

## 1 はじめに

現行普及している剛体球式ガスメーターに搭載される 感震器の遮断機能は、震度5相当以上で作動するように設 計されており、振動を受けた剛体球の移動によるプレー トとの ON/OFF 信号により地震を判定している<sup>1)</sup>。本報で は、地震応答時における剛体球式感震器搭載ガスメータ 一の感震遮断性能の評価を目的とし、振動台実験を行う。

#### 2 正弦波での実験

図1のようにガスメーターを設置したときを,加振角度 0°とする。振動台に設置した加速度計で得られた加速度デ ータからガスメーターの遮断加速度の推定をする。また, 実験に用いるガスメーターは3つ(それぞれ No.1, No.2, No.3)である。4 種類の周期(0.3 s, 0.5 s, 0.7 s, 1.0 s) で1周期に1 cm/s<sup>2</sup>ずつ漸増する正弦波を作成し,1つのガ スメーターにつき 50 回の加振を行う。遮断したサイクル における最大値を遮断加速度とする。



図1 実験概要(加振角度 0°)

図 2(a)に周期 1.0 s の正弦波におけるガスメーターごと の遮断加速度の累積分布,図 2(b)に各周期における 3 つの ガスメーターの平均の遮断加速度の累積分布を示す。図 2(a),(b)より正弦波での加振時においては,ガスメーター は設計通り 150~250 cm/s<sup>2</sup>の加速度が感知された場合に全 数遮断するとともに<sup>1)</sup>,遮断加速度のガスメーターごとの 個体差および正弦波の周期の違いによる影響は小さいこ とがわかる。



## 3 建物の地震応答解析による実験用入力波の導出

ランダム波での実験には、建物モデルの地震応答解析 から得られた応答加速度波形を用いる。本解析には構造 計算プログラムである RESP-D を用いる。

#### 3.1 建物モデル概要<sup>2)</sup>

建物モデルは、地上 14 階,高さ 43.7 mの共同住宅を想 定した 14 層 RC 造建物とする。柱はファイバーモデル、 梁は材端剛塑性ばねモデル、耐震壁は間柱部分にファイ バーモデルとしてモデル化し、また、バルコニーや開口 部もモデル化する。桁行方向を解析対象とし、建物モデ ルの桁行方向の 1 次固有周期は 0.84s である。構造減衰は 減衰定数  $\zeta$ =0.02 の瞬間剛性比例型とする。

#### 3.2 入力地震動概要

入力地震動は、気象庁で公開されている強震波形デー タのうち最も震度が大きい地点での震度が 6 弱以上の 33 の地震動を対象として選定する。式(1)より地震動の周期 を評価し<sup>3</sup>,地震動の周期が長いもの、建物モデルの X 方 向の1 次固有周期に近いもの、短いもの(以降,それぞれ 長周期モデル、1 次固有周期モデル、短周期モデル)をそ れぞれ 2 つずつ選ぶ。

$$T = 2\pi \frac{PGV}{PGA} \tag{1}$$

ここで, *PGA*: 地震動の最大加速度, *PGV*: 地震動の最大 速度である。

選んだ地震動の NS 成分と EW 成分を建物モデルの最上 階の応答震度が5強程度となるように倍率を変更し,建物 モデルに入力する(表1)。

| 云·八月纪成功成文 |            |              |                 |    |      |      |             |  |  |  |
|-----------|------------|--------------|-----------------|----|------|------|-------------|--|--|--|
| タイプ       | 名称         | 地震動          | 観測点名            | 方向 | 倍率   | 地動震度 | 14層<br>応答震度 |  |  |  |
| 長周期       | L1         | 熊本県熊本地方地震    | 能士田大学哲师国        | NS | 0.1  | 4.2  | 5.5         |  |  |  |
|           | L2         | (2016年4月16日) | 熊平州並或可呂圖        | EW | 0.08 | 4.5  | 5.4         |  |  |  |
|           | L3         | 能登半島地震       | 石川県輪島市鳳至町       | NS | 0.15 | 4.3  | 5.3         |  |  |  |
|           | L4         | (2007年)      |                 | EW | 0.15 | 4.3  | 5.3         |  |  |  |
| 1次固有周期    | F1         | 兵庫県南部地震      | ら中国地営の中区の小ぶ     | NS | 0.08 | 4.0  | 5.2         |  |  |  |
|           | F2         | (1995年)      | 共庫県仲戸中央区中山手     | EW | 0.1  | 4.1  | 5.3         |  |  |  |
|           | F3         | 茨城県北部地震      | 本种用言共主て工程       | NS | 0.3  | 4.1  | 5.3         |  |  |  |
|           | F4         | (2016年)      | <u> </u>        | EW | 0.2  | 4.0  | 5.2         |  |  |  |
| 短周期       | S1         | 福島県浜通り地震     | 复合用于自持温油        | NS | 0.7  | 4.7  | 5.3         |  |  |  |
|           | S2         | (2011年4月11日) | 偷 局 県 中 局 村 有 伴 | EW | 0.6  | 5.2  | 5.2         |  |  |  |
|           | <b>S</b> 3 | 淡路島付近地震      | 茨城県高萩市下手綱       | NS | 0.3  | 4.1  | 5.3         |  |  |  |
|           | S4         | (2013年)      |                 | EW | 0.2  | 4.0  | 5.2         |  |  |  |

表1入力地震動概要4)

Shaking table experiment for evaluation of seismic shut off performance of gas meter equipped with rigid ball type seismic sensor during earthquake response Takatoshi HISADA, Daiki SATO, Alex SHEGAY

### 4 ランダム波(地震応答加速度波)での実験

## 4.1 遮断加速度での評価

3 章より得られた各地震動における最上階の応答加速度 波(以降, ランダム波)を用いて、2 章の正弦波実験と同 様に加振角度0°において、1 つのガスメーターにつき10 回の加振を行う。図3に示すようにほぼリアルタイムに加 速度計で計測された加速度波形が表示される画面とガス メーターを動画で撮影し、遮断加速度を推定する。正弦 波1周期の波を入力したところ、振動台に出力されてから 加速度計で計測された加速度波形が画面に表示されるま では、およそ0.2 秒から0.3 秒後であることを確認してい る。そのため、図4に示すように動画上でガスの遮断が確 認されたタイミングから0.3 秒後までの最大加速度を遮断 加速度としている。



図5に入力波ごとの遮断加速度の累積分布を示す。図5 よりランダム波加振では、ガスメーターが遮断する加速 度は正弦波加振時と比較してばらつきが大きいことがわ かる。

また,入力地震動のタイプが異なる 3 つのランダム波 (L1, F1, S1)を用いて,加振方向に対するガスメータ 一の設置角度を 45°回転させた実験を行う。

図6にガスメーターの設置角度が0°と45°の場合の遮断 加速度の累積分布の比較図を示す。図6より,加振角度に よる遮断加速度の累積分布に大きな差は見られない。

#### 4.2 遮断速度での評価

図7にそれぞれのタイプの地震動の入力波ごとの遮断速 度の累積分布を正弦波の遮断速度の累積分布と比較した 図を示す。

2 章に示した正弦波での実験の結果より,遮断加速度の 正弦波の周期による影響は小さいため,遮断速度で評価 すると正弦波の周期ごとにばらつきが出ることがわかる。

また,図7よりすべてのランダム波の遮断速度の累積分 布は,おおむね周期0.3 sから1.0 sの正弦波の遮断速度の 累積分布の間に入っていることがわかる。また,図8に示 した入力波ごとの遮断加速度の累積分布では,一つのラ ンダム波でも遮断したタイミングで遮断加速度に大きな ばらつきがあるが,遮断速度の累積分布では一つのラン ダム波でばらつきは小さく評価しやすい形になっている といえる。



#### 5 まとめ

本報では,地震応答時における剛体球式感震器搭載ガ スメーターの感震遮断性能の評価を目的に振動台実験を 行い,以下の知見を得た。

- (1) 正弦波加振では,遮断加速度の正弦波の周期による影響は小さい。
- (2) ランダム波加振では正弦波加振と比較すると、遮断加速度のばらつきが大きく、振動の特徴の違いがガスメ ーターの感震遮断性能に影響すると考えられる。
- (3) ガスメーターの感震遮断性能の加振角度の違いによる 影響は小さい。
- (4) ガスメーターの遮断速度で評価すると、正弦波ではばらつきが出るが、すべてのランダム波の遮断速度の累積分布はおおむね周期が 0.3 s から 1.0 s の正弦波の遮断速度の累積分布の間にあり、遮断加速度で評価したときと比較してばらつきが小さい。

#### 参考文献

- 1) 東京ガス HP: https://home.tokyo-gas.co.jp (2021.12.03 参照)
- 2) 財団法人 日本建築防災協会『構造設計·部材断面事例集』, 2007
- 3) 矢野嘉久,丸山喜久,山崎文雄,山内亜希子,菜花健一:振動台 実験と実地震データに基づくマイコンメーター遮断特性の評価, 土木学会論文集 A, pp248-257, 2008.4
  4) 気象庁:強震観測データ(2021.11.04 参照)
- 気象庁:強震観測データ(2021.11.04 参照) http://www.data.jma.go.jp/svd/eqev/data/kyoshin/jishin/index.html

\*東京工業大学環境・社会理工学院 大学院生

- \*\*東京工業大学未来産業技術研究所 准教授・博士(工学)
- \*\*\*東京工業大学未来産業技術研究所 助教 Ph.D
- \* Graduate Student, School of Environment and Society, Tokyo Institute of Technology
- \*\* Associate Prof., FIRST, Tokyo Institute of Technology, Dr. Eng
- \*\*\*Assistant Prof., FIRST, Tokyo Institute of Technology, Ph.D