T2R2 東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	間柱型粘弾性ダンパーの初期温度と性能低下を考慮した超高層建物の 応答評価 その 5 応答予測を用いた建物応答の評価
Title(English)	Response evaluation of high rise building considering initial temperature and performance degradation of Stud-type VE damper (Part5 Response evaluation using response prediction)
著者(和文)	樹下亮佑, 佐藤大樹, Alex Shegay, 戸張涼太, 安永隼平, 植木卓也, 金城 陽介
Authors(English)	Ryosuke Kinoshita, Daiki Sato, Alex Shegay, Ryota Tobari, Jumpei Yasunaga, Takuya Ueki, Yosuke Kaneshiro
出典(和文)	 日本建築学会大会学術講演梗概集, , , pp. 483-484
Citation(English)	, , , pp. 483-484
発行日 / Pub. date	2022, 9

間柱型粘弾性ダンパーの初期温度と性能低下を考慮した超高層建物の応答評価

その5 応答予測を用いた建物応答の評価

正会員	○樹下亮佑*1	同	佐藤大樹*2	同	Alex Shegay*2
同	戸張涼太* ³	同	安永隼平*4	同	植木卓也*4
同	金城陽介*4				

間柱型粘弾性ダンパー	長周期地震動	超高層建物
性能低下	等価線形化	応答予測

1. 序

本報その4では、粘弾性ダンパーの繰り返し加振による 性能低下を考慮した超高層建物の応答を、時刻歴応答解 析を用いて評価した。本報その5では、精算手法の応答を 安全側に評価できる簡易手法の建物応答を,時刻歴応答 解析を行わずに予測することで、粘弾性ダンパーの性能 低下を考慮した建物応答を簡易的に評価する手法を示す。

2. 応答予測の手順

予測には、本報その4のFig.3に示すせん断モデルを用い る。本報では、ダンパーと擬似ブレースを合わせて付加 系,擬似フレームと付加系を合わせてシステムと称する。 以下,予測の手順¹⁰⁾をFig.1に示すステップごとに概説する。

Step1 主架構の1次応答ベースシア,層間変位の算出

まず, 主架構の1次等価質量1Megfと, 主架構の1次固有周 期₁T_f, 1次構造減衰₁50に対応する加速度応答スペクトルの 値 $S_a(_1T_f,_1\xi_0)$ から,主架構の1次応答ベースシア $_1Q_{fB}$ を算出 する。また、各層の層せん断力 B_{si} ・1 Q_{fsB} と擬似フレーム剛 性 K_{fxi} から、主架構の応答層間変位 δ_{fxi} を算出する。

Step2 粘弾性ダンパーのせん断ひずみの仮定

 δ_{tsi} をもとに粘弾性ダンパーのせん断ひずみ γ_{dsi} ⁽⁰⁾を仮定す る。y_{ds}(⁰⁾は、Fig.2に示す粘弾性ダンパーの骨格曲線を Fig.3のようにトリリニア近似して算出する。トリリニア モデルの初期せん断弾性率 Ga は、原点とスケルトンカー ブ上のせん断ひずみ10%の点を結ぶ割線とし、せん断ひず み10%を第一折れ点 γ_{disv} とする。第三せん断弾性率 G_{d3} は、 層間変位と同一のダンパー変位が生じる場合の、層間変 形角1/100 rad.時点のスケルトンカーブ上のせん断ひずみ γ₄^{1/100}を接点とする直線の勾配とする。本報の建物モデル は、第1層を除くと各層高さ4.0 m、粘弾性ダンパーの厚さ 25 mmであることから、 $\gamma_{ds}^{1/100} = 1.6$ とする。また、 $\gamma_{ds}^{1/100}$ までのスケルトンカーブと横軸の囲む面積と, γ₄^{1/100}まで のトリリニアモデルと横軸の囲む面積が等しくなる点を 第二折れ点 $\overline{\gamma_{d2sy}}$ とし、第二せん断弾性率 G_{d2} を設定する。

Gdeq:振動数 0.33Hz, ひずみ 1.0, 温度 20℃の等価せん断弾性率 1ξeq:1次等価減衰定数 1Teq:1次等価周期 β:定常振動の1次等価減衰定数を積分平均値に変換する係数 f:振動数 K^*_{deqs} :温度,振動数,性能低下による剛性変化を考慮した,ひずみ1.0時のダンパーの等価剛性 $W_{si}: システムの弾性ひずみエネルギー \Delta W_{si}: 1 サイクルの吸収エネルギー¹⁴⁾$ $<math>Q_s: システムの層せん断力 \delta_s: システムの層間変位 1Q_{sb}: システムの1 次ベースシア 1M_{eq}: システムの1 次等価質量$ Fig.1 Flowchart of response prediction method and equation of each step

Response evaluation of high rise building considering initial temperature and performance degradation of Stud-type VE damper (Part5 Response evaluation using response prediction)

Ryosuke Kinoshita, Daiki Sato, Alex SHEGAY, Ryota Tobari, Jumpei Yasunaga, Takuya Ueki, Yosuke Kaneshiro

Step3 システムの等価剛性の算出

 $\gamma_{dsi}^{(0)}$ より粘弾性ダンパーの等価剛性 $K_{deqsi}^{(n)}$ および付加系 の等価剛性 $K_{aeqsi}^{(n)}$ を算出する。また、 $K_{fsi} \geq K_{aeqsi}^{(n)}$ の和より、 システムの等価剛性 $K_{easi}^{(n)}$ を算出する。

Step4 システムの1次等価減衰定数,1次等価周期の算出

 $K_{eqsi}^{(n)}$ より得られるシステムの弾性ひずみエネルギー $W_{si}^{(n)}$ と粘弾性ダンパーの1サイクルのエネルギー吸収量 $\Delta W_{si}^{(n)}$ より、システムの1次等価減衰定数₁ $\xi_{eq}^{(n)}$ を算出する。 ここで、 $\Delta W_{si}^{(n)}$ はFig.4より算出し、性能低下を考慮する場 合はFig.4中の g'_{p1} , g'_{p2} , g'_{v} を変化させる¹⁵⁾。また、 $K_{eqsi}^{(n)}$ よりシステムの1次等価周期1 $T_{eq}^{(n)}$ を算出する。

Step5 新たな粘弾性ダンパーのせん断ひずみの算出

 $\gamma_{dsi}^{(0)}$ からダンパーによる付加減衰および周期変動を考慮し、新たな粘弾性ダンパーのせん断ひずみ $\gamma_{dsi}^{(n+1)}$ を算出する。 $\gamma_{dsi}^{(n)} \approx \gamma_{dsi}^{(n+1)}$ となるまでStep3~5の計算を繰り返す。

Step6 システムの応答層せん断力,層間変位の算出

安定した y_{dsi} が得られた後、 $_1Q_{fsb}$ からダンパーによる付加減衰、周期変動、1次等価質量の変動を考慮し、システムの1次応答ベースシア $_1Q_{sb}$ (***)を算出する。また、 $_1Q_{sb}$ (***)よりシステムの層せん断力 Q_{si} (****)、層間変位 δ_{si} (****)を算出する。

本報では,性能低下を考慮する場合は簡易手法の時刻 歴応答解析に用いる_cλ₂₀,_{*μ*λ₂を用いて以上の計算を行う。}

予測精度の検証

時刻歴応答解析結果と予測結果を比較し,予測精度を 検証する。建物モデルは本報その4と同様である。Fig.5 に層間変形角の高さ方向分布を示す。粘弾性ダンパーの 初期温度は10,30℃とし,入力地震動は20 modelにはSZ1, 50 modelにはOS1を入力した場合の結果を示す。Fig.5よ り,粘弾性ダンパーの性能低下の有無に関わらず,本予 測手法は時刻歴応答解析結果を精度よく予測できている。 また,粘弾性ダンパーの性能低下による建物応答の増大 を再現できていることがわかる。Fig.6 に横軸を解析値, 縦軸を予測値とした場合の層間変形角の比較を示す。 Fig.6より,本報の検討範囲では,建物モデル,粘弾性ダ ンパーの初期温度,粘弾性ダンパーの性能低下の有無に よらず,本予測手法は時刻歴応答解析結果を概ね誤差 20%以内で予測できる。

4. 結

本報その5では、粘弾性ダンパーの性能低下を考慮した 建物応答を予測する手法を示した。また、本報の検討範 囲では、時刻歴応答解析結果を概ね誤差 20%以内で予測 可能であった。今後の課題として、粘弾性ダンパーのエ ネルギー吸収量の予測手法の確立が挙げられる。 謝辞および参考文献は本報その4にまとめて示す。

*1元東京工業大学

- *2東京工業大学
- *³ JFE シビル株式会社
- *⁴ JFE スチール株式会社

- *1 Former Tokyo Institute of Technology
- *2 Tokyo Institute of Technology
- *³ JFE Civil Engineering & Construction Corporation
- *4 JFE Steel Corporation