T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	高層免震建物の風応答解析用等価弾塑性 1 質点系モデルの提案 その 2:免震層最大変位およびエネルギー入力の精度検証					
Title(English)	An equivalent elastic-plastic SDOF model for wind response analysis of base-isolated tall buildings (Part 2: Accuracy verification of maximum displacement of isolation story and energy input)					
著者(和文)						
Authors(English)	Tong Zhao, Xiaoxin Qian, Daiki Sato					
出典(和文)	日本建築学会大会学術講演梗概集, , , pp. 715-716					
Citation(English)	, , , pp. 715-716					
発行日 / Pub. date	2022, 9					
	一般社団法人 日本建築学会					

25

25

高層免震建物の風応答解析用等価弾塑性1質点系モデルの提案 その2:免震層最大変位およびエネルギー入力の精度検証

免震建物	縮約モデル	1 質点系モデル
風応答解析	エネルギー入力	アンサンブル

1 はじめに

本報その1では、弾塑性11質点系モデルの1次モード に基づく等価弾塑性1質点系モデルの作成方法を説明した。 本報その2では、等価弾塑性1質点系モデルの免震層最大 変位およびエネルギー入力の精度検証を行う。

2 縮約モデルの精度検証

2.1 免震層最大変位

弾塑性 11 質点系モデル(11DOF),上部構造を剛体とし た簡易な弾塑性1 質点系モデル(SDOF(st))と,弾塑性2 質点系モデル(2DOF)の免震層最大変位x_{bmax},stx_{max}と ^{2D}x_{hmax}は時刻歴応答解析から直接得られる。一方,等価 弾塑性1質点系モデル (SDOF(eq)) の最大変位^{eq}xmaxを用 いて、免震層最大変位 $^{eq}_{1x_{bmax}}$ は次式で算出できる。

 ${}^{eq}_{1}x_{bmax} = x_{by} + \left({}^{eq}_{1}x_{max} - {}^{eq}_{1}x_{y}\right)_{p1}\varphi_{b}$ (1)ここで、 x_{bv} : 11DOF における免震層の降伏変位、 ${}^{eq}_{1}x_{v}$: SDOF(eq)の降伏変位, $p_1 \varphi_b$: 塑性 1 次モード $\{p_1 \varphi\}$ におけ る免震層の固有ベクトルを表す。

Fig. 1 に風方向の ${}^{eq}_{1}x_{b,max}$, ${}^{st}x_{bmax}$, ${}^{2D}x_{bmax}$ (縦軸) と 11DOFより得られた*x_{bmax}*(横軸)の40波でアンサンブル 平均した結果を示す。Fig. 1(a)~(d)より, ほとんどの ^{eq}x_{hmax}の誤差は 10%以内となり, 精度が高いことが確認 できる。また、11DOF における上部構造の周期 T_u が ${}^{eq}_{1}x_{bmax}$ の精度に与える影響が小さい。 ${}^{2D}x_{bmax}$ の場合でも, 同様に精度が高いことが分かる。一方、stx_{bmax}の精度が 低いことが確認できる。Fig. 2 に風直交方向の $^{eq}_{1}x_{bmax}$, ${}^{st}x_{bmax}, {}^{2D}x_{bmax}$ (縦軸)と x_{bmax} (横軸)の 40 波でアン サンブル平均した結果を示す。Fig. 2(a)~(d)より,風方向 の誤差と比べて、風直交方向で一部の $e_1^{eq}x_{b,max}$ の誤差は 10%を超えている。これは、風直交方向の場合において免 震層平均変位が占める割合がほとんどなく、高次モード の影響が大きくなるためであると考えられる。^{2D}x_{bmax}の 場合では,風方向と同じ高い精度であることが確認でき る。 $st_{x_{bmax}}$ の場合では、その精度は依然として低い。

2.2 エネルギー入力

風力が建物に与えるエネルギーが安定した量であるこ とで、一見複雑な問題を極めて単純なものにすることが 可能となり、建物の耐風設計の信頼性が確保できる^{2,3)}。 そのため、本節では風力による高層免震建物へのエネル ギー入力の精度を検討する必要がある。

An equivalent elastic-plastic SDOF model for wind response analysis of base-isolated tall buildings (Part 2: Accuracy verification of maximum displacement of isolation story and energy input)

正会員

同

同

○趙桐*

銭暁鑫*

佐藤大樹**

Tong Zhao, Xiaoxin Qian, Daiki Sato

11DOF, SDOF(eq), SDOF(st)と2DOFの単位時間当たり のエネルギー入力 \dot{E}_{input} , ${}^{eq}\dot{E}_{input}$, ${}^{st}\dot{E}_{input}$ および ${}^{2D}\dot{E}_{input}$ はそれぞれ次式で求められる。

$$\dot{E}_{input} = \sum_{i=1}^{N} \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} F_i(t) \cdot \dot{x}_i(t) dt$$
⁽²⁾

$${}^{eq}_{1}\dot{E}_{input} = \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} {}^{eq}_{e1} F(t) \cdot {}^{eq}_{1} \dot{x}(t) dt$$
(3)

$${}^{st}\dot{E}_{input} = \frac{1}{t_1 - t_0} \int_{t_0}^{t_1 st} F(t) \cdot {}^{st}\dot{x}(t)dt \tag{4}$$

$${}^{2D}\dot{E}_{input} = \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} {}^{2D}F_u(t) \cdot {}^{2D}\dot{x}_u(t)dt$$
(5)

ここで, $F_i(t)$: 11DOF におけるi層の風力, ${}_{e1}^{eq}F(t)$: SDOF(eq)の風力, ${}^{st}F(t)$: SDOF(st)の風力, ${}^{2D}F_u(t)$: 2DOF における上部構造の風力, $\dot{x}_i(t)$: 11DOF におけるi層の応答速度, ${}_{1}^{eq}\dot{x}(t)$: SDOF(eq)の応答速度, ${}^{st}\dot{x}(t)$: SDOF(st)の応答速度, ${}^{2D}\dot{x}_u(t)$: 2DOF における上部構造の 応答速度を表す。また, 積分範囲について $t_0 = 50$ s, $t_1 = 650$ s とする。

Fig. 3 に風方向の^{eq}Ė_{input}, stĖ_{input}, ^{2D}Ė_{input} (縦軸) と \dot{E}_{input} (横軸) の 40 波でアンサンブル平均した結果を示す。 Fig. 3(a)~(d)より, すべての^{eq}Ė_{input}の誤差は 10%以内とな り, 精度が高いことが確認できる。^{2D}Ė_{input}の場合では, 一部の誤差は 10%を超え, ^{eq}₁ $x_{b,max}$ の精度と比べて^{2D}Ė_{input} の精度は相対的に低いと言える。stĖ_{input}の場合では,精 度は全体的に低い。これは、SDOF(st)の上部構造が剛体の ため, エネルギーを吸収できないことが原因であると考 えられる。Fig. 4 に風直交方向の^{eq}Ė_{input}, stĖ_{input}, ^{2D}Ė_{input} (縦軸) とĖ_{input} (横軸) の 40 波でアンサンブル 平均した結果を示す。Fig. 4(a)~(d)より, ^{eq}Ė_{input} $6^{2D}Ė_{input}$ も,高い精度であることが確認できる。stĖ_{input}の場合で は, Fig. 3 と同じ原因でその精度も低い。

Table 1 に 2.1 節と本節の精度評価のまとめを示す。ここでは、各縮約モデルの平均誤差*Err*.により、3 段階(A~C Rank)に分け精度を評価する。Table 1 より、免震層最大変位の精度について、SDOF(eq)と 2DOF は優劣の差がなく、高い精度を示している。一方、エネルギー入力の精度について、SDOF(eq)の場合は全部 A Rank となった。以上より、本報で提案する SDOF(eq)の優位性を示すことができたと考えられる。

3 まとめ

本報その2では、提案した等価弾塑性1質点系モデルの 免震層最大変位およびエネルギー入力の精度検証を行っ た。免震層最大変位についての平均誤差は10%以内とな り、エネルギー入力についての平均誤差は5%以内となる ことから、本報で提案した等価弾塑性1質点系モデルは高 い精度を有することが確認できた。

Fig. 4 Accuracy of energy input (across-wind direction)

1	abl	le	14	Accuracy	summary	of	three	reduced	models	5

					-						
	Along	Acro	Across-wind direction								
	Model	Influence of parameters			Model		Influence of parameters				
77	Widdei	T_{μ}	T_{h}	α_{dv}	x_{hv}	Widdei		T_{μ}	T_{h}	α_{dv}	x_{bv}
m	SDOF(eq)	Α	Α	Α	В	SDOF(e	q)	В	В	В	В
x'	SDOF(st)	С	С	С	С	SDOF(s	t)	×	×	×	×
	2DOF	В	В	Α	Α	2DOF		В	Α	В	Α
	Model	Influence of parameters					Influence of parameters				
ut	Widder	T_{μ}	T_{h}	α_{dv}	x_{hv}	Model		T_{μ}	T_{h}	α_{dv}	x_{bv}
du	SDOF(eq)	Α	Α	Α	Α	SDOF(e	q)	Α	Α	Α	Α
\vec{E}_i	SDOF(st)	×	×	×	×	SDOF(s	t)	×	×	×	×
	2DOF	В	В	В	В	2DOF		В	Α	Α	Α
A Rank : Excellent accuracy (Err.≤5%) B Rank : Good accuracy (Err.≤10%)											
C Rank : Fair accuracy (Err.≤20%) × : Poor accuracy (Err.>20%)											

* 東京工業大学 大学院生

**東京工業大学 准教授・博士(工学)

* Graduate Student, Tokyo Institute of Technology

** Assoc. Prof., Tokyo Institute of Technology, Dr. Eng.