T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	非線形粘弾性ダンパーを有する制振構造のエネルギー応答予測 その 2 等価繰返し数とダンパーの性能低下を考慮した応答の評価		
Title(English)	Energy response prediction of seismic control structure with nonlinear viscoelastic damper Part 2		
著者(和文)	戸張涼太, 佐藤大樹		
Authors(English)	Ryota Tobari, Daiki Sato		
出典(和文)	日本建築学会大会学術講演梗概集, , , pp. 485-486		
Citation(English)	, , , pp. 485-486		
発行日 / Pub. date	2022, 9		

非線形粘弾性ダンパーを有する制振構造のエネルギー応答予測 その2 等価繰返し数とダンパーの性能低下を考慮した応答の評価

正会員	○戸張	涼太*1
同	佐藤	大樹*2

制振構造	粘弾性ダンパー	非線形性
エネルギー法	応答予測	エネルギー分配

1. はじめに

著者らは、エネルギーの釣合に基づく応答評価法や長 時間地震動に対する制振構造の設計への展開を見据えて、 制振ダンパーのエネルギー応答の評価方法に関する研究 を行っている.前報¹⁾では、非線形の粘弾性ダンパーを配 置した制振構造を対象に、エネルギー応答の予測手法を 示したが、その中で等価繰返し数の算出を課題として残 した.本報ではまず、非線形の粘弾性ダンパーにおける 等価繰返し数の評価を行う.さらに、これを前報のエネ ルギー応答の予測手法に当てはめたダンパーの性能低下 率の評価と、ダンパーの性能低下を考慮して建物応答を 評価した結果について示す.

2. 本ダンパーにおける等価繰返し数の評価

2.1 検討の概要

既往研究^{2,3,4})では, 弾塑性ダンパーや線形粘性ダンパー の場合で等価繰返し数を評価した検討がある.等価繰返 し数はダンパーの種類や履歴形状によって傾向が異なっ てくると考えられる.本章では,非線形粘弾性ダンパー を主架構と並列に配置した1質点モデルを用いた時刻歴応 答解析により等価繰返し数の分布を評価する.検討パラ メータを表1に示す.文献⁴⁰では単位地震動の反復数f値 ⁵⁰を用いた等価繰返し数の整理を行っており,本報でも同 様の整理を考えてf値に差異のある地震動計8波を用いる.

表1 層間変形角の比較

Energy response prediction of seismic control structure with nonlinear viscoelastic damper Part 2

2.2 等価繰返し数の解析結果

時刻歴応答解析による粘弾性ダンパーの等価繰返し数*nd*は、ダンパーのエネルギー*wd*の解析値と、前報¹⁾でのダンパーの1ループのエネルギー*wd*の比とする.*wdl*算定の際、時刻歴応答解析によるせん断ひずみと、主架構のみの1次 固有振動数を用いる.

図1に地震動のf値と等価繰返し数 n_dの関係を線形粘性 ダンパーの場合と比較して示す.f値算定の周期帯は0-10s としている.図中の黒実線は文献⁴⁾の,線形粘性ダンパー と弾塑性ダンパーを並列に配置した場合の線形粘性ダン パーの等価繰返し数の評価式であり,参考に示す.

$$\begin{cases} n_d = 1.0 & (f < 0.5) \\ n_d = 2.0 \cdot f & (0.5 \le f) \end{cases}$$
(1)

図1より線形粘性ダンパーに比べて粘弾性ダンパーのほう がややばらつきが大きく、特にfが2.5以上の範囲でn_dの 値が大きい.式(1)は線形粘性ダンパーの場合の下限をよ く捉えており、同式を粘弾性ダンパーの場合に当てはめ ると、fが2.5以上の範囲でn_dの値と乖離する.本報では、 h_f=0.01の時の粘弾性ダンパーの等価繰返し数n_dの評価式 として、以下の近似式を作成する.

	$n_d = 6.5824 \cdot f - 0.7053$	(f < 0.2591)	(2)
Ì	$n_d = 1.0$	$(0.2591 \le f)$	(2)

上式は、n_dのデータ群を用いて、最小二乗法によって切片 ありの一次式に近似したものである.ただし、n_dが負値ま たは小さくなりすぎないように、式(1)と同様に下限を1と した.秋山ら²⁰は、n_dが小さくなると応答変位が大きくな り、変位の面では安全側の評価となるため、エネルギー の釣合に基づく応答評価の中では通常 n_dの下限をとるこ ととしている.一方で、n_dが小さくなると通常エネルギー 吸収量は小さくなるため、この観点では危険側の評価と なることから本報では n_dの下限を取らずに近似式とした.

3. 非線形粘弾性ダンパーの性能低下を考慮した応答評価 3.1 G_{eq}とH_{eq}の低下率

前章で定めた等価繰返し数の評価式が,粘弾性ダンパ ーの $G_{eq} \ge H_{eq}$ の低下率の予測に及ぼす影響を確認する. $G_{eq} \ge H_{eq}$ の低下率 $_{G\lambda\Omega\theta, H\lambda\Omega}$ は下式で算定する^の.

$${}_{G}\lambda_{\Omega\theta} = \frac{0.074}{\Omega_{\theta}^{0.595} + 0.070} - 0.056$$
(3)

Ryota TOBARI, Daiki SATO

$$_{H}\lambda_{\Omega} = \frac{11.258}{\Omega^{0.585} + 4.194} - 1.684$$

 Ω :エネルギー密度, Ω_{θ} :温度基準化エネルギー密度で, *Ω*_θの算定には, *θ* =20℃を用いる. ここでは, 前報のエネ ルギー応答の予測法または時刻歴応答解析を用いた方法 により、Geg と Heg の低下率を算定し、これらの対応関係 を確認する. それぞれ予測値および解析値と称し, 具体 的には図 2 のステップ A2 と B2 までの計算手順を踏む. 解析モデルは等価せん断型の 10 質点モデルとし、諸条件 は前報表1と同じである.図3にダンパーのエネルギーwdi と層間変形δ,図4にGegとHegの低下率の予測値と解析値 の対応を示す. 凡例は地震動で, f 値が大きいほどプロッ トの色が濃くなっている.図3より、エネルギーの予測値 は解析値よりも 20%以上小さく見積るケースもあるが, 図4の GA20は概ね20%以内, HA2は概ね10%以内に分布す る結果となっている. 次節でこの誤差が時刻歴応答に与 える影響を確認する.

3.2 性能低下を考慮した建物応答

図 5(a)に、図2のフローにおけるステップ A3 と B3 で得 た層間変形角 R の比較を示す.図 5(b)には、性能低下を考 慮しない場合 ($_{G}\lambda_{\Omega\theta}=_{H}\lambda_{\Omega}=1$) の R をステップ B3 との比 で示す. 横軸はいずれもステップ B3のRである.

図 5(a)より、予測値は解析値と一部対応しないケースが あるものの、概ね精度良くかつ安全側に評価しており, 前章で示したような±20%程度の Geq と Heq の低下率の誤 差は応答に大きな影響を与えていない.また図 5(b)より, 性能低下を考慮しない場合は縦軸が1を大きく下回り,危 険側の応答になることがわかる.

4. まとめ

(4)

非線形粘弾性ダンパーの場合の等価繰返し数 nd の評価 式を示した.また、これを用いた粘弾性ダンパーの性能 低下率と建物応答を計算した.本報の検討ケースでは, 概ね精解に近い応答を得られることを確認した.

参考文献

- 1) 戸張涼太,佐藤大樹:非線形粘弾性ダンパーを有する制振構造の エネルギー応答予測,日本建築学会大会学術講演梗概集, pp.697-698, 2021.9
- 秋山宏:エネルギーの釣合に基づく建築物の耐震設計,技報堂出 2) 版. 1999.11
- 東野さやか,北村春幸:粘性ダンパーを付与した免震構造のエネ 3) ルギーの釣合に基づく応答評価法,日本建築学会構造系論文集,第 588号, pp.79-86, 2005年2月
- 4) 佐藤大輔,他:履歴ダンパーと粘性ダンパーを併用した制振構造 のエネルギーの釣合に基づく応答予測法、日本建築学会構造系論 文集, 第 79 巻, 第 699 号, pp.631-640, 2014.5
- 5) 秋山宏,北村春幸:エネルギースペクトルと速度応答スペクトル の対応, 日本建築学会構造系論文集, 第 608 号, pp.37-43, 2006.10
- 6) 樹下亮佑,他:間柱型粘弾性ダンパーの初期温度と性能低下を考 慮した超高層建物の応答評価 その2超高層建物の応答評価,日 本建築学会大会学術講演梗概集, pp.705-706, 2021.9

*1 JFE シビル株式会社

*2 東京工業大学

80

60

40

20

0

1.4

1.2

1

0.8

0.6

0

0

w_{di}予測

20

*1 JFE Civil Engineering & Construction Corporation

*2 Tokyo Institute of Technology