T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	ギャップブレースを取り付けた鉄骨架構の力学的挙動の検討 その 5 試 験体に生じる応力の評価
Title(English)	Study on mechanical behavior of steel frame with gap brace system , Part 5 : Evaluation of internal force and additional stress
著者(和文)	矢野将斗志, 佐藤大樹, 笠井和彦, Alex Shegay, 佐分利和宏, 前田達彦, 増田寛之
Authors(English)	Masatoshi Yano, Daiki Sato, Kazuhiko Kasai, Alex Shegay, Kazuhiro Saburi, Tatsuhiko Maeda, Hiroyuki Masuda
出典(和文)	日本建築学会大会学術講演梗概集, , , pp. 599-600
Citation(English)	, , , pp. 599-600
発行日 / Pub. date	2022, 9

ギャップブレースを取り付けた鉄骨架構の力学的挙動の検討

その5 試験体に生じる応力の評価

			正会員	○矢野 将斗志*1	同	佐藤 大樹*1	同	笠井 和彦*1
鉄骨架構	大振幅地震動	静的載荷実験	同	Alex Shegay ^{*1}	同	佐分利 和宏*2	同	前田 達彦*2
変形制御機構	ギャップブレース	付加応力	同	増田 寛之 ^{*2}				

1. はじめに

本報その5では、実験結果における試験体に生じる応力 の考察や上梁に生じる付加応力の評価を行う.

2. 荷重 - 層間変形角関係

Fig.1 に荷重 – 層間変形角関係を示す. Q_Fは主架構水平 力、 Q_B はブレース水平力を示しており、 Q_F と Q_B の和とし てシステム水平力 Qs が算出される.なお、本章では Qsと ジャッキ荷重 Q」の釣り合いを確認できることから(本報 その 4) Q_s による評価を行う.本実験において $Q_J =$ ±400kN サイクルでは、両試験体ともブレースは稼働せず、 $Q_J = \pm 600$ kN サイクル以降でギャップ間隔と概ね等しい層 間変形でブレースが稼働することによる主架構剛性 Ksの 上昇を確認できる.この時、 Q_F はブレース稼働とともに 低減するが、この理由については後述する(3章). B80 試験体においては(Fig.1(a)) $Q_J = \pm 1000$ kN サイクルまで ブレースは概ね弾性的挙動を示し,変形制御効果が得ら れる一方で, B60 試験体は(Fig.1(b)) Q_J = ±800kN サイク ルにおいても 600kN サイクル同様の傾向を示すが、ブレ ース材に降伏が生じ始めることからブレース剛性 K_B およ び K_S に非線形性が生じる. さらに, $Q_J = \pm 1000$ kN サイク ルにおける最大荷重時に圧縮側ブレースに座屈が生じる ことで Qs が頭打ちになり、システムが最大耐力を迎える ため,変形制御効果が得られなくなる.

3. 主架構とブレースの水平力

Fig.2 に荷重増大に伴う主架構とブレースの水平力を示 す.Fig.2(a)の B80 試験体に着目すると、ブレース稼働前 はジャッキ荷重増大に伴い *Q_F* は増加するが、ブレース稼 働後の 600kN サイクル以降では、*Q_F* の増加は抑えられ、 さらに 800kN サイクル以降で *Q_F* が低下傾向にある.これ は、600kN 時には上梁端部が降伏モーメントに達し、上梁 柱接合部の節点モーメントの上昇が見込めなくなること に加え、ブレースが稼働することで上梁に付加モーメン トが生じ、上梁のモーメント分布が不連続となることで 上梁端部のモーメントが減少していくためである.なお *Q_F* の低下傾向は、事前解析結果からも得られている³、続 いて Fig.2(b)の B60 試験体に着目すると、ブレース稼働後 の 600kN サイクル以降における *Q_F* の増加は抑えられるが、 B80 試験体と異なり 800kN 以降の低下傾向は見られない. *Q_F* が抑えられた要因としては、B60 試験体においても上

Study on mechanical behavior of steel frame with gap brace system, Part 5 : Evaluation of internal force and additional stress

梁端部に降伏が生じ、上梁柱接合部における節点モーメ ントの上昇は見込めなくなったためである。一方、 Q_F の 低下傾向が見られなかった要因としては、800kN サイクル 以降でブレース材に降伏が生じ、さらに 1000kN サイクル 時には座屈が生じたことで、上梁に作用する付加モーメ ントが増大しなくなったことに起因すると考えられる。 以上、ブレースが有効である場合、 Q_F に低下傾向が見ら れることを確認した。

4. 上梁における付加軸力の検討

ブレースが稼働すると,載荷ジャッキ側の上梁軸力は 急激に上昇する.これは,正載荷時には上梁に貼付した 歪計測結果より算出される上梁 L 断面と C 断面 (その 4.Fig.2)の軸力の差として,また負載荷時には上梁 R 断面 と C 断面の軸力の差として求まる付加軸力が上梁に作用す るためである.これらの上梁に作用する付加軸力および ブレース水平力 *Q*_B を Fig.3 に示す.これらの結果より,付 加軸力はブレース水平力 *Q*_B と概ね一致しており,上梁に 生じる付加軸力の大きさがブレース水平力 *Q*_B から評価可 能であることが分かる.

5. 上梁における付加モーメントの検討

Fig.4 に正載荷時における上梁に生じる付加モーメント

YANO Masatoshi, SATO Daiki, KASAI Kazuhiko, Alex Shegay, SABURI Kazuhiro, MAEDA Tatsuhiko, MASUDA Hiroyuki の検討概要を示す. ブレースが稼働すると,上梁ビーム ヘッジ取り付け箇所にブレース水平力 Q_B とビームヘッジ 腕の長さ H_{bh} の積で算出される付加モーメント M_{BH} が生 じ,上梁におけるモーメント分布は不連続となる(以下, 式(1)).

$$M_{BH} = Q_B \cdot H_{bh} \tag{1}$$

本章では、ビームヘッジにおける付加モーメント M_{BH} を適切に評価できる簡易力学モデルの構築を行うために、 実験結果をもとに力学モデルの L_{bh} と腕の長さ H_{bh} となる 位置の検討を行う.本検討では、力学モデルの L_{bh} をビー ムヘッジ端部から L/3、L/2 となるような点(Fig.4 中 1~5 の位置), 腕の長さ H_{bh} を上梁下フランジとビームヘッジ 接合部高さから H/3、H/2 となるような点(Fig.4 中 A~E の 位置)とし、計 25 箇所で検討を行う. 正載荷時において は、ビームヘッジ接合部の上梁左側モーメント M_{Gu}^{L} と M_{BH} の和 M_{BH}^{L} と、上梁右側モーメント M_{Gu}^{L} を比較する. 本検討では、 M_{BH}^{L} と M_{Gu}^{R} の結果に決定係数 R²を用いた評 価を行う. R² が1に近いほど誤差が小さいことを意味す る(以下、式(2)~(4)).

$$R^{2} = 1 - \left(\frac{\sum_{k=1}^{n} (\alpha(i))^{2}}{\sum_{i=1}^{n} (M_{BH}^{L}(i) - \overline{\alpha}(i))^{2}}\right) \qquad (i = \text{step}) \qquad (2)$$

$$M_{BH}^{L}(i) = M_{Gu}^{L}(i) + M_{BH}(i)$$
(3)

$$\alpha(i) = M_{BH}^L(i) - M_{Gu}^R(i) \tag{4}$$

また,負載荷時も正載荷時同様に検討を行う. Fig.5 に R²結果を示す. Fig.5 より正載荷時,負載荷時ともに検討 箇所 B3の位置で R²が最小となることが分かる. この位置 は,力学モデルの L_{bh}に着目すると,ビームヘッジ接合部 の中心に位置する.また,腕の長さ H_{bh}に着目すると, ビームヘッジ高さ H の 1/3 となり,三角形の形状をしてい るビームヘッジの重心に位置する高さとなることが分か る.また,B3の位置での付加モーメント結果を Fig.6 に示 す.Fig.6 からも上梁に生じる付加モーメントと B3の位置 でブレース水平力から算出される付加モーメントは概ね 一致しており,付加モーメントにおいてもブレース水平 力から評価可能であることが分かる.

6. まとめ

本報その5では、ギャップブレース試験体における静的 載荷実験を行った結果として、試験体に生じる応力状態 の考察、ブレース稼働に伴う付加応力の評価を行った.

参考文献

- (1) 矢野ほか: ギャップブレースを取り付けた鉄骨架構の力学的挙動の検討(その 1-3),日本建築学会大会学術講演梗概集,pp793-798, 2021.9
- 高橋ほか: ギャップブレースを有する鉄骨架構のブレース稼働に伴う影響(その1-3),日本建築学会大会関東支部研究報告集,pp.281-292, 2022.3
- 3) 美濃地ほか、ギャップブレースを取り付けた架構の静的載荷実験における事 前解析,日本建築学会大会関東支部研究報告集,pp.477-480,2020.3
- *1 東京工業大学
- *2 株式会社 竹中工務店

謝辞

本研究は東京工業大学と(株)竹中工務店との共同研究であり,一部はJST 産学共創 プラットフォーム共同研究推進プログラム (JPMJOP1723) によるものです.また, 本研究の一部は東京工業大学佐藤研究室(当時)高橋周吾氏の修士論文の成果によ るものです.ここに記して感謝の意を表します.

*1 Tokyo Institute of Technology

*2 Takenaka Corporation