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Abstract

Public-key encryption is a cryptographic primitive used for establishing a secure channel

between two parties. Depending on the situation and purpose, public-key encryption

schemes must satisfy appropriate security requirements.

Non-committing encryption (NCE) is a public-key encryption scheme that satisfies a

security notion essential to establish a secure channel in adaptively secure multi-party

computation (MPC) protocols. Informally, NCE can generate a dummy ciphertext. The

dummy ciphertext is indistinguishable from the real ciphertext. Moreover, we can explain

the dummy ciphertext as encryption of an arbitrary message by producing consistent

randomness. It has been a challenge in the theory of adaptively secure MPC to find

an NCE scheme with small ciphertext expansion (required ciphertext length per bit of

message). This thesis proposes the first NCE schemes with constant ciphertext expansion

in the standard model (i.e., without assuming the randomness used in the cryptosystem

can be securely erased or use of the random oracle). We show two instantiations of the

scheme, one from the Decisional Diffie-Hellman (DDH) problem and another from the

Learning with Errors (LWE) problem.

Before constructing the constant ciphertext expansion scheme, we demonstrate the new

approach to constructing NCE through the construction of a simpler NCE scheme based on

obliviously samplable key-encapsulation mechanism (KEM). The ciphertext expansion of

this simpler scheme is O(λ) for security parameter λ. In detail, we use KEM to construct

a weak NCE scheme with O(λ) ciphertext expansion. Weak NCE is NCE where its

correctness and security requirements are weakened. Then weak NCE is amplified to a

full-fledged NCE scheme using an information theoretical primitive called wiretap codes.

This amplification increases the cipher text expansion only by a constant factor. The

constant ciphertext expansion scheme is obtained by using a primitive called obliviously

samplable chameleon encryption, instead of KEM in the above construction. We show

instantiations of obliviously samplable chameleon encryption based on the DDH and the

LWE problems.
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Note on This Thesis

This thesis reorganizes two papers those construct non-committing encryption schemes[YKT19,

YKXT20].

Historically, the first paper introduced obliviously samplable chameleon encryption to

construct an NCE scheme with O(log λ) ciphertext expansion. This scheme is instantiated

based on the DDH problem.

The second paper improved the first paper by introducing the notion of weak NCE

and the use of wiretap codes. This work added instantiation based on the LWE problem,

which turned out to have a smaller public-key expansion than the DDH-based scheme.

Eventually, we achieved to construct NCE schemes with a constant ciphertext expansion.

This thesis excludes several obsolete parts in the above papers. For example, we do not

describe the construction of O(log λ) ciphertext expansion scheme because the constant

ciphertext expansion scheme is properly improved. Instead, we describe the construction

ofO(λ) ciphertext expansion scheme, that is constructed from obliviously samplable KEM.

This scheme is not very well in terms of ciphertext expansion, still, it contains the essence

of the proposed NCE construction. We also update several security definitions and related

proofs of NCE and its building blocks such as chameleon encryption. Especially, we start

to focus on the randomness used by the algorithms including the simulators which appear

only in the security definition. Security notions of the building blocks are defined similarly

to the definition of NCE. We hope these definitions give a new viewpoint to understanding

the nature of NCE.
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Chapter 1

Introduction

Public-key encryption, the most fundamental cryptographic primitive for realizing secure

message transmission, has a number of security notions, which are required depending on

the situations in which it is used. When it is used in adaptively secure multi-party com-

putation, we need adaptively secure public-key encryption, also known as non-committing

encryption.

1.1 Backgrounds

In secure multi-party computation (MPC) protocols, a group of parties can compute

some function of their private inputs by communicating with each other. The security

requirement of MPC protocols is that through the protocol, each party (possibly, some

of them collude) cannot obtain information on the other party’s input, except what is

trivially extracted from the output of the function. To model this security requirement,

we consider an algorithm called adversary. The adversary corrupts some parties and

tries to extract some non-trivial information about the inputs of non-corrupted parties.

Informally the protocol is secure if we can simulate what the adversary can see during

the protocol (in the case of public-key encryption, all the public keys and ciphertexts,

and secret keys and randomness used by the corrupted parties) only from what is trivially

clear to the adversary in an idealized world (i.e. input of corrupted parties).

Depending on when the adversary determines to corrupt parties, two types of adver-

sarial settings, called static and adaptive, have been considered for MPC. In the static

setting, an adversary is required to declare which parties it corrupts before the protocol

starts. On the other hand, in the adaptive setting, an adversary can choose which parties

to corrupt on the fly, and thus the corruption pattern can depend on the messages ex-

changed during the protocol. Security guarantee in the adaptive setting is more desirable

than that in the static setting since the former naturally captures adversarial behaviors

in the real world while the latter is somewhat artificial.

We premise there are authenticated channels between each pair of parties. Further-

more, if the provided channels are private, information-theoretically secure MPC protocols

1



1.1. Backgrounds

such as those proposed by Ben-Or et al. [BGW88] and Chaum et al. [CCD88] are secure

against adaptive adversaries. On the other hand, for the MPC protocols relying on com-

plexity assumption such as the one proposed by Goldreich et al. [GMW87], the security

proof fails against an adaptive adversary as observed by Damg̊ard and Nielsen [DN00].

In order to use adaptively secure protocols without private channels are provided, we

have to establish private channels by using a public-key encryption scheme. For this aim,

non-committing encryption (NCE) was introduced by Canetti et al. [CFGN96]. Infor-

mally, an encryption scheme is said to be non-committing if it can generate a dummy

ciphertext that is indistinguishable from real ones but can later be opened to any message

by producing a secret key and encryption randomness that “explain” the ciphertext as an

encryption of the message.

At first glance, it is weird to consider revealing a secret key to the adversary in a security

definition. But due to this property, NCE can be used to establish secure communication

on the adaptively secure MPC. This is because when the adaptive adversary corrupts

the sender and the receiver, it can obtain the secret key and encryption randomness. To

simulate such corruption, we must simulate the secret key and the randomness that is

consistent with the simulated public key and ciphertext, this is where the property of

NCE works. To summarize briefly, the security of NCE is not only for the confidentiality

of the messages between non-corrupted parties but also for the security of the entire MPC

protocol, although messages corrupted by the adversary are revealed.

Canetti et al. showed that the information-theoretically secure MPC protocols are still

adaptively secure if private channels are replaced by NCE over insecure channels (assumed

they are authenticated). Canetti, Lindell, Ostrovsky, and Sahai [CLOS02] also showed a

slightly augmented version of NCE is useful to achieve adaptive security in the universally

composable (UC) setting.

The ability to open a dummy ciphertext to any message is generally achieved at the

price of efficiency. This is in contrast to the ordinary public-key encryption for which we

can easily obtain schemes the size of whose ciphertext is n + poly(λ) through the hybrid

encryption methodology, where n is the length of an encrypted message and λ is the se-

curity parameter. Thus, many previous works have focused on constructing efficient NCE

schemes. Especially, they tried to improve ciphertext expansion which is the asymptotic

ratio of ciphertext length and message length since ciphertext length dominates the online

communication complexity of the protocol.

Indeed, a textbook on secure multiparty computation raised this as an open problem:

“Finding a non-committing encryption scheme that can encrypt κ bits using

the order of κ bits of ciphertext is an important open problem in the theory

of adaptive secure multiparty computation.”

— Cramer et al. , Secure Multiparty Computation and Secret Sharing [CDN15]

– 2 –



1.2. Existing Non-Committing Encryption Schemes

1.2 Existing Non-Committing Encryption Schemes

Canetti et al. [CFGN96] constructed the first NCE scheme, based on common-domain

trapdoor permutations which can be instantiated from the computational Diffie-Hellman

(CDH) or RSA problem. Ciphertext expansion of their scheme is O(λ2).

Choi, Dachman-Soled, Malkin, and Wee [CDMW09] constructed an NCE scheme with

ciphertext expansion O(λ) from trapdoor simulatable PKE. Their construction can be

instantiated under many computational problems including factoring problem, since many

existing (ordinary) PKE schemes satisfy trapdoor simulatability.

The first NCE scheme with sub-linear ciphertext expansion was proposed by Hemen-

way, Ostrovsky, and Rosen [HOR15]. They proposed an NCE scheme with ciphertext

expansion O(log n) for n-bit messages based on the Φ-hiding problem, which we can eas-

ily modify its ciphertext expansion to O(log λ) by dividing long messages to λ-bit blocks.

Hemenway, Ostrovsky, Richelson, and Rosen [HORR16] also showed constructions of NCE

with ciphertext expansion poly(log λ) from the learning with errors (LWE) and Ring-LWE

problems.

Canetti, Poburinnaya, and Raykova [CPR17] studied the construction of NCE in the

common reference strings (CRS) model. They achieved optimal ciphertext expansion 1 +

o (1) assuming the existence of indistinguishability obfuscation (iO) and one-way function.

Yoshida, Kitagawa, and Tanaka [YKT19] constructed an NCE scheme with ciphertext

expansion O(log λ) from a primitive called chameleon encryption (CE), which additionally

satisfies oblivious samplability. They showed an instantiation of obliviously samplable CE

based on the decisional Diffie-Hellman (DDH) problem.

Yoshida, Kitagawa, Xagawa, and Tanaka [YKXT20] improved their previous scheme

and constructed NCE scheme with constant ciphertext expansion from obliviously sam-

plable chameleon encryption. They also showed another instantiation of obliviously sam-

plable chameleon encryption based on the LWE problem, which reduces public-key size of

the constructed NCE scheme.

Concurrently to Yoshida et al. [YKXT20], Brakerski, Branco, Döttling, Garg, and

Malavolta [BBD+20] proposed NCE schemes with constant ciphertext expansion from the

LWE and DDH problems. Note that a previous version of their work claimed a con-

stant ciphertext-expansion NCE from the quadratic residuosity (QR) assumption. This

result was retracted due to a bug in the QR construction. They introduced a primitive

called Packed Encryption with Partial Equivocality (PEPE) as a building block to con-

struct their NCE scheme. Their construction basically follows the framework by Hemen-

way et al. [HORR16], whose origin further backs to Choi et al. [CDMW09].

We show the list of existing NCE schemes in Table 1.1.

Note on NCE Schemes on Composite Order Group. When constructing an NCE

scheme using a composite number N = pq, we should be careful in how keys are gen-

erated. In the key generation algorithm, if the composite number N = pq is sampled

– 3 –



1.2. Existing Non-Committing Encryption Schemes

Reference CT Expansion PK Expansion Assumption

Canetti et al. [CFGN96] O
(
λ2
)

O
(
λ2
)

Common-Domain TDP

Choi et al. [CDMW09] O(λ) O(λ) Trapdoor Simulatable PKE

Hemenway et al. [HOR15] O(log λ) λ · poly(log λ) Φ-hiding

Hemenway et al. [HORR16] poly(log λ) λ · poly(log λ) LWE

Hemenway et al. [HORR16] poly(log λ) poly(log λ) Ring-LWE

Canetti et al. [CPR17] (∗) 1 + o (1) 1 + o (1) Indistinguishability Obfuscation

Yoshida et al. [YKT19] O(log λ) O
(
λ2
)

Obliviously Samplable CE (DDH)

Brakerski et al. [BBD+20] O(1) O
(
λ2
)

PEPE (DDH)

Brakerski et al. [BBD+20] O(1) λ · poly(log λ) PEPE (LWE)

Yoshida et al. [YKXT20] O(1) O
(
λ2
)

Obliviously Samplable CE (DDH)

Yoshida et al. [YKXT20] O(1) λ · poly(log λ) Obliviously Samplable CE (LWE)

Table 1.1: Comparison of existing (2-round) NCE schemes in terms of their ciphertext

and public-key expansion. The security parameter is denoted by λ. (∗) This scheme uses

common reference strings.

straightforwardly, i.e. sampling two primes p, q and outputs its product, we cannot use

hardness assumptions over the composite number in the security proof of non-committing

encryption. This is because the adversary can obtain the randomness used in the key gen-

eration, which contains the factorization of N . A way to avoid this problem is to sample

a Blum integer N = pq without knowing its factorization, however, unfortunately, we do

not know such an algorithm.

For this reason, NCE schemes constructed based on the hardness of the RSA or fac-

torization of Blum integer [CFGN96, CDMW09] use Bach’s algorithm [Bac88, Kal03] to

generate a random (not necessarily Blum) integer N , together with its factorization. Since

N is a random integer, we can explain to the adversary that N is sampled obliviously.

However, the integer N sampled in this way may not be used as a public key for the RSA

or Rabin encryption because N may be a prime number, or it may be a composite number

that does not contain a large prime factor, such as a power of two. Therefore we generate

a sufficiently large number of {Ni}, so that we can expect that one of them will be a Blum

integer Ni = pq, which is a secure public key. We can use an amplification technique, that

executes number of encryption for each Ni, so that if one of the ciphertexts is encrypted

under secure public-key Ni, the entire scheme is secure. In this way, we can construct an

NCE scheme over the composite number, but this approach incurs O(λ2) overhead on the

ciphertext and public key. This is because the probability of a random integer being a

Blum number is Ω(1/λ2) [RS94, GM06].

For the case of NCE schemes constructed based on the hardness of the quadratic

residuosity problem [BBD+20, LCC06], it seems necessary to use the CRS model in which

a trusted party generates the composite number N = pq and put it to the CRS.

– 4 –
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1.3 Related Works

Multi-Round NCE Protocols. In this thesis, we focus on NCE in a narrow sense,

that is, public-key encryption that satisfies the non-committing security because it is a

simplest form of non-committing encryption. However, in order to realize secure channels

in adaptively secure MPC protocols, it is not necessarily for NCE to be a public-key

encryption, i.e. 2-round protocol. Indeed, in some literature, the terminology NCE was

also used in a broader sense to indicate multi-round adaptively secure message transmission

protocols.

Beaver [Bea97] proposed a 3-round NCE scheme with ciphertext expansion O(λ) based
on the decisional Diffie-Hellman (DDH) problem. Damg̊ard and Nielsen [DN00] general-

ized Beaver’s protocol and proposed a 3-round NCE scheme with ciphertext expansion

O(λ) based on a primitive called simulatable PKE, which can be instantiated based on

concrete problems such as the DDH, computational Diffie-Hellman (CDH), and learning

with errors (LWE) problems. Lei, Chen, and Chen [LCC06] proposed an instantiation

of 3-round NCE protocol based on the quadratic residuosity (QR) problem in order to

reduce computational costs of the protocol.

Zhu, Araragi, Nishide, and Sakurai [ZANS10] proposed 4-round NCE protocol and

analyzed it in the universally composable framework.

NCE in the Secure Erasure Model. Beaver and Haber [BH93] showed if honest par-

ties are assumed to be able to erase sensitive local information completely, then adaptively

secure MPC can be obtained efficiently. However, as discussed by Canetti et al. [CFGN96],

such trusted erasure may be unrealistic in many scenarios.

NCE in the Random Oracle Model. Nielsen [Nie01] pointed out constructing NCE

in the random oracle model is easy.

Nielsen [Nie02] show that NCE is a separation between the random oracle model and

the non-programable random oracle model.

Camenisch, Lehmann, Neven, and Samelin [CLNS17] proposed a UC secure NCE

scheme in the random oracle model.

1.4 This Thesis

We propose the first NCE schemes with constant ciphertext expansion without the use of

iO or CRS. Along the way, we propose an alternative paradigm to construct NCE, that

differs from the paradigm proposed by Choi et al. [CDMW09] and used by NCE schemes

to date [HOR15, HORR16, BBD+20]. By instantiating our paradigm with obliviously

samplable key-encapsulation mechanism, we obtain an NCE scheme that has similar pa-

rameter to the NCE scheme by Choi et al. . The NCE schemes with constant ciphertext

– 5 –



1.4. This Thesis

expansion are constructed by instantiating our new paradigm with obliviously samplable

chameleon encryption proposed as we described in [YKT19, YKXT20].

We show that obliviously samplable CE can be realized based on the DDH problem

and the LWE problem for super-polynomially large modulus. Thus, we obtain constant

ciphertext expansion NCE schemes based on the DDH problem and LWE problem.

One of the disadvantage of the DDH-based NCE scheme is its relatively large public-key

size. The size of public key for each message bit of the DDH-based scheme is O(λ2). Our

LWE based NCE scheme improves public-key size compared to the DDH-based scheme.

The size of the public key for each message bit of our LWE based scheme is λ · poly(log λ).
This is the same as that of NCE schemes proposed by Brakerski et al. [BBD+20] or Hemen-

way et al. [HORR16], which are also based on the LWE problem for super-polynomially

large modulus.

Weak Non-Committing Encryption. Our starting point is the observation that by

adjusting the parameters of an NCE scheme proposed in [YKT19], its ciphertext expansion

can be reduced to a constant, at the cost of its perfect correctness and security.

Specifically, the scheme only satisfies weak correctness, which means that each bit of

decrypted plaintext is flipped with constant probability. Moreover, the scheme only satis-

fies weak security that only guarantees the secrecy of some part of encrypted plaintexts. In

Section 3.3, we formally define weak correctness and weak security for NCE and introduce

the notion of weak NCE as NCE satisfying only those weak correctness and weak security.

As a demonstration, we construct a weak NCE scheme from obliviously samplable KEM.

In Section 4.5, we give the description of the above scheme and its building block,

obliviously samplable CE. Then we prove that the scheme is indeed a weak NCE scheme.

Amplification for Non-Committing Encryption. Next, we show that we can am-

plify a weak NCE scheme into a full-fledged NCE scheme in Section 3.2. As a tool of

amplification, we use a coding scheme called wiretap codes. More specifically, we define

a new security property, conditional invertibility for wiretap codes, which is essentially

a non-committing security for the wiretap codes. We show an instantiation of wiretap

codes constructed from randomness extractor and linear error-correcting codes satisfies

the conditional invertibility.

This amplification increases the ciphertext expansion by only a constant factor. Thus,

by applying this transformation to the weak NCE scheme shown in Section 4.5, we obtain

an NCE scheme with a constant ciphertext expansion.

DDH-Based Instantiation. We propose a DDH-based instantiation of obliviously

samplable CE in Section 4.3. The construction is similar to the chameleon encryption

scheme based on the CDH problem, proposed by Döttling and Garg [DG17b].

A natural question would be “why we need to rely on the DDH assumption, not CDH?”

This is because a hash key and a ciphertext of the chameleon encryption scheme together

– 6 –



1.5. Notations

form multiple Diffie-Hellman tuples. Thus, it seems difficult to sample them obliviously

unless we prove that the knowledge of exponent assumption [HT98, BP04] is false. In

order to solve this issue, we rely on the DDH assumption instead of the CDH assumption.

Under the DDH assumption, a hash key and a ciphertext of our chameleon encryption

are indistinguishable from independent random group elements, and thus we can perform

oblivious sampling of them in the above sense by sampling random group elements directly

from the underlying group.

Lattice-Based Instantiation. We propose a lattice-based instantiation of obliviously

samplable CE in Section 4.4. The construction is a natural composition of the lattice-

based hash encryption by Döttling et al. [DGHM18] and the lattice-based chameleon hash

functions by Cash et al. [CHKP10].

One drawback of our construction is that we need the modulus of lattices to be

super-polynomially large for the correctness of it. This seems unavoidable since the

chameleon encryption 1 implies non-interactive key exchange, which is considered diffi-

cult to be realized from lattice problems for polynomially large modulus as discussed by

Guo et al. [GKRS20].

1.5 Notations

In this paper, PPT denotes probabilistic polynomial time. x← X denotes an element x is

sampled from uniform distribution over a set X. y ← A(x; rA) denotes that probabilistic

algorithm A takes x as input, outputs y using internal randomness rA. ε(λ) = negl(λ)

denotes function ε(·) is negligible, that is, ε(λ) = λ−ω(1) holds.

For an integer n, [n] denotes a set {1, . . . , n}. For a subset I ⊂ [n] and a vector

x = (xi)1≤i≤n ∈ {0, 1}n, xI denotes (xi)i∈I . For a matrix M = (mi)1≤i≤n ∈ {0, 1}k×n,
MI ∈ {0, 1}k×|I| denotes the matrix composed from column vectors mi of M for i ∈ I.

h2(·) denotes the binary entropy function, h2(p) = −p log p−(1−p) log(1−p). H(Y |X)

denotes the conditional entropy.

1At least, for the current formalization of chameleon encryption, it implies non-interactive key ex-

change. There leaves the possibility of constructing NCE scheme from poly-modulus LWE via introducing

a relaxed version of chameleon encryption.
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Chapter 2

Basics and Definitions of NCE

2.1 Overview

In this chapter, we introduce the definition of non-committing encryption. Before describ-

ing concrete definitions, we briefly and informally explain how to define semantic security

for a general algorithm A, which we consider as a generalization of key generation or en-

cryption of primitives appear in this thesis. Then we show how to define non-committing

security and oblivious samplability as its extension.

Semantic Security Consider an execution of algorithm y ← A(x; rA), where we want to

define that the information on input x is hidden.

Semantic security (or static security as opposed to adaptive security) is defined in

the following style: There exists a simulator algorithm Sim, such that for all x,

A(x; rA)
c
≈ Sim(1λ; rSim)

holds. The left-hand side is often called real-life execution and the right-hand side

is ideal-world execution.

Oblivious Samplability We define oblivious samplability 1 in the following style: There

exists an obliviously sampling algorithm Â and an invert sampling algorithm InvA,

such that for all x,

(A(x; rA), InvA(rA))
c
≈ (Â(1λ; rÂ), rÂ)

holds. Oblivious samplability essentially says that the output y can be sampled

without using any randomness except y itself. In more detail, the real-life execution

y ← A(x; rA) can be simulated by oblivious sampling ŷ ← Â(1λ; rÂ), where rÂ does

not contains confidential information that affect the security, i.e. it can be revealed

to the adversary. Furthermore, we also need to explain to the adversary that as if

1This notion is also called “trapdoor simulatability” in [CDMW09]. “simulatability” in [DN00] is a

simpler notion where Inv take y as input instead of trapdoor rA. Actually, we only need simulatability

rather than trapdoor simulatability in this thesis.
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2.2. Public-Key Encryption

y is obliviously sampled by showing r′
Â
← InvA(rA) that satisfy y = Â(1λ; r′

Â
). Note

that since Â plays the role of Sim of the semantic security, oblivious samplability

implies semantic security.

In this thesis oblivious samplability is defined for key encapsulation mechanism and

chameleon encryption.

Non-Committing Security We define non-committing security or adaptive security in

the following style: There exists a simulator algorithm Sim and an opening algorithm

Open, such that for all x,

(A(x; rA), rA)
c
≈ (Sim(1λ; rSim),Open(rSim, x))

holds. Non-committing security captures a situation where the randomness rA is

revealed to the adversary after adaptive corruption. In the ideal world, the simulator

not only need to simulate the output y′ ← Sim(1λ; rSim), it need to explain y′ is

as if the outcome of real-life execution by opening a consistent randomness r′A ←
Open(rSim, x) that satisfy y′ = A(x; r′A). Note that non-committing security also

implies semantic security.

In this thesis, non-committing-style security is defined for public-key encryption

(thus, it is called non-committing encryption), wiretap codes, and hash function in

hash encryption (thus, it is called chameleon hash in chameleon encryption).

From the above, we can see duality between the definitions of oblivious samplability

and non-committing security. In oblivious samplability, Inv fakes the real-life execution

as if it is ideal-world execution by producing r′
Â
. In non-committing security, Open fakes

the ideal-world execution as if it is real-life execution by producing r′A. In general, ideal-

world execution is less structured than real-life execution since it does not need to consider

functional requirements such as correctness. Since it is easier to fake structured things

as less structured things than their opposite, oblivious samplability seems easier to be

achieved than non-committing security. Indeed natural instantiations of public-key en-

cryption based on the DDH or LWE satisfy oblivious samplability, while we do not know

a natural non-committing encryption scheme. Thus many studies including this thesis

tackle the problem of constructing non-committing encryption from obliviously samplable

cryptographic primitives. Although it might be meaningless in practice, we leave the op-

posite, constructing obliviously samplable encryption from non-committing encryption as

future work.

2.2 Public-Key Encryption

We proceed to concrete definitions from here. Since non-committing encryption can be

seen as public-key encryption that satisfies a non-committing security notion, we provide
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2.2. Public-Key Encryption

the definition of public-key encryption and its static security notion known as semantic

security for comparison.

Definition 2.1 (Public-Key Encryption). A public-key encryption scheme consists of the

following PPT algorithms (Gen,Enc,Dec), where Gen is the key-generation algorithm, Enc

is the encryption algorithm, and Dec is the decryption algorithm. We explicitly display

the randomness used in Gen and Enc as they are the target of attention in the study of

non-committing encryption.

• Gen
(
1λ; rGen

)
: Given the security parameter 1λ, it outputs a public key pk and a

secret key sk. The randomness used in this algorithm is denoted by rGen
2.

• Enc (pk,m; rEnc): Given a public key pk and a plaintext m ∈ {0, 1}µ, it outputs a

ciphertext CT . The randomness used in this algorithm is denoted by rEnc.

• Dec (sk, CT ): Given a secret key sk and a ciphertext CT , it outputs m or ⊥.

Public-Key/Ciphertext Expansion In this thesis, we measure the size of the public

key and ciphertext by its asymptotic ratio to the length of the message. Public-key ex-

pansion and ciphertext expansion of a public-key encryption scheme is defined by |pk|/|m|
and |CT |/|m|, respectively for a enough long message |m| = poly(λ).

Remark 1. It is rare to focus on the above asymptotic measure of public-key expansion

or ciphertext expansion if we only consider the static security of public-key encryption

schemes. Since we can encrypt any polynomially long message by a single public key, its

public-key expansion is trivially almost 0, or we can use the hybrid encryption technique

with an efficient secret-key encryption scheme, hence its ciphertext expansion is trivially

almost 1. However, in the context of non-committing encryption, we cannot reuse a single

public key to encrypt multiple messages, nor does there exist an efficient non-committing

secret-key encryption scheme. Essentially the most efficient non-committing secret-key

encryption scheme is the one-time pad, so it is useless to compress the ciphertext by the

hybrid encryption technique.

Definition 2.2 (Correctness). The correctness of a public-key encryption scheme is de-

fined as follows: For any message m, its ciphertext should be decrypted to the original

message with overwhelming probability.

Formally, we say that a public-key encryption scheme PKE = (Gen,Enc,Dec) is correct

if for all message m,

Pr [m ̸= Dec (sk,Enc (pk,m; rEnc))] = negl(λ)

holds, where (pk, sk)← Gen
(
1λ; rGen

)
and the probability is taken over the choice of rGen

and rEnc.
2Since we can reproduce the secret key sk from the key-generation randomness rGen, we can use rGen

as a secret key. In other words, we can understand the key-generation algorithm as pk ← Gen(1λ; sk).
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2.3. Non-Committing Encryption

Security Informally, a public-key encryption scheme is semantically secure (statically

secure) if the views of the static adversary in the real and ideal experiments are indistin-

guishable. In other words, the public key and ciphertext of the scheme can be simulated

without knowledge of the message.

Definition 2.3 (Semantic Security). For a public-key encryption scheme PKE = (Gen,Enc,Dec),

consider the following PPT simulator Sim:

• Sim
(
1λ; rSim

)
: Given the security parameter 1λ, it outputs a simulated public key

pk, a simulated ciphertext CT .

For a stateful PPT adversary A, we define the following real and ideal experiments.

ExpReal
PKE,A ExpIdealPKE,A

(pk, sk)← Gen
(
1λ; rGen

)
(pk, CT )← Sim

(
1λ; rSim

)
m← A (pk) m← A (pk)

CT ← Enc (pk,m; rEnc)

out← A (CT ) out← A (CT )

We say that PKE is semantically secure if there exist a PPT simulator Sim such that for

all PPT adversary A,

AdvPKE,A (λ) :=
∣∣Pr [out = 1 in ExpReal

PKE,A
]
− Pr

[
out = 1 in ExpIdealPKE,A

]∣∣ = negl(λ)

holds.

Note that this definition is equivalent to the well-known indistinguishability against

chosen plaintext attack (IND-CPA) security.

2.3 Non-Committing Encryption

Definition 2.4 (Non-Committing Encryption). A non-committing encryption scheme is

a public-key encryption scheme that satisfies the following non-committing security.

Informally, a non-committing encryption scheme is secure, or equivalently, a public-key

encryption scheme satisfies non-committing security or adaptive security, if the views of the

adaptive adversary upon the corruption of both sender and receiver are indistinguishable.

In other words, not only the public key and ciphertext of the scheme can be simulated

without knowledge of the plaintext, but also the randomness used in Gen and Enc can be

simulated given the corrupted message.

Definition 2.5 (Non-Committing Security). For a non-committing encryption scheme

NCE = (Gen,Enc,Dec), consider the following PPT simulators (Sim,Open):

• Sim
(
1λ; rSim

)
: Given the security parameter 1λ, it outputs a simulated public key

pk and a simulated ciphertext CT .
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2.3. Non-Committing Encryption

• Open(rSim,m): Given the simulation randomness rSim and a message m, it outputs

randomness for key generation rGen and encryption rEnc.

For a stateful adversary A, we define two experiments as follows.

ExpReal
NCE,A ExpIdealNCE,A

(pk, sk)← Gen
(
1λ; rGen

)
(pk, CT )← Sim

(
1λ; rSim

)
m← A (pk) m← A (pk)

CT ← Enc (pk,m; rEnc) (rGen, rEnc)← Open(rSim,m)

out← A (CT, rGen, rEnc) out← A (CT, rGen, rEnc)

We say that NCE is secure if there exist PPT simulators (Sim,Open) such that for all PPT

adversary A,

AdvNCE,A (λ) :=
∣∣Pr [out = 1 in ExpReal

NCE,A
]
− Pr

[
out = 1 in ExpIdealNCE,A

]∣∣ = negl(λ)

holds.

We also introduce a slightly weaker security notion of non-committing encryption,

where the message to be encrypted is chosen independently of the public key. We use this

style of security definition throughout this thesis because it is easier to define and prove

such security notions, especially, in the sentence of the obliviously samplable chameleon

encryption scheme constructed based on the LWE in Section 4.4.2.

Definition 2.6 (Non-Committing Security for pk-independent Messages). We say that

NCE is secure with respect to public-key independent message if there exist PPT simulators

(Sim,Open) such that for all PPT adversary A and message m, for the following modified

experiments

ExpReal′

NCE,A ExpIdeal
′

NCE,A

(pk, sk)← Gen
(
1λ; rGen

)
(pk, CT )← Sim

(
1λ; rSim

)
CT ← Enc (pk,m; rEnc) (rGen, rEnc)← Open(rSim,m)

out← A (CT, rGen, rEnc) out← A (CT, rGen, rEnc)

, the advantage AdvNCE,A (λ) is negligible.

Note that a non-committing encryption scheme NCE′ that is secure with respect to

a public-key independent message can be easily converted to NCE that satisfies the non-

committing security (Definition 2.5) via the hybrid encryption technique with one-time

pad, similarly in the sentence of semantically secure public-key encryption. In our NCE

schemes, the amplification presented in section 3.4 contains the one-time pad.

Limitations of NCE schemes Due to its security requirement, non-committing en-

cryption schemes have inherent limitations that standard public-key encryption schemes

do not have.
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Lemma 2.1. Let NCE be a non-committing encryption scheme for message m. Then its

secret key sk, key-generation randomness rGen and encryption randomness rEnc must be

larger than the message length, i.e., |sk| , |rGen| , |rEnc| ≥ |m|.

This is because of the ability of NCE that it can open the simulated ciphertext to an

arbitrary message. In detail, for any message, there exists a secret key that can decrypt

the ciphertext to the message, thus the space of secret key must be larger than the message

space. Similarly, there exists encryption randomness that can encrypt the message to the

ciphertext, thus space of encryption randomness must be larger than the message space.

Lemma 2.2. Non-committing encryption scheme in the standard model, which does not

use the random oracle nor common reference strings, cannot achieve the perfect correct-

ness, i.e., Pr [m ̸= Dec (sk,Enc (pk,m; rEnc))] ̸= 0.

Consider a simulated ciphertext is opened in two ways. Then there should exist two

pairs of the secret key and encryption randomness that satisfy

Enc(pk,m0; rEnc0) = CT, Dec(sk0, CT ) = m0,

Enc(pk,m1; rEnc1) = CT, Dec(sk1, CT ) = m1.

This causes the case where during an honest execution of the non-committing encryption

scheme, the receiver generates key pair (pk, sk0), and the sender encrypts message m1 with

encryption randomness rEnc1. In this case, the decryption fails as

Dec(sk0,Enc(pk,m1; rEnc1)) = m0.

– 13 –



Chapter 3

NCE with O(λ)
Ciphertext-Expansion

3.1 Overview

In this section, we show high-level ideas behind our construction of weak NCE.

As a starting point, we review the three-round NCE protocol proposed by Beaver [Bea97],

which contains a fundamental idea to build NCE from the DDH problem. Next, we observe

that the Beaver’s protocol can be transformed to a two-round NCE scheme. Although the

resulting scheme is not fully secure NCE, we can regard it as a weak variant of NCE which

we call weak NCE. Then we show a simple idea to transform a weak NCE scheme to a

secure NCE, whose ciphertext expansion is O(λ).

3.1.1 Starting Point: Beaver’s Protocol

Beaver’s NCE protocol essentially executes two Diffie-Hellman key exchange protocols in

parallel. This protocol can send a 1-bit message. Ciphertext expansion of this protocol is

O(λ). We describe the protocol below and in Figure 3.1.

Step1. Let G be a group of order p with a generator g. The sender picks a random bit

z ← {0, 1} and an exponent αz ← Zp, then sets Az = gαz . The sender also generates

a random group element A1−z ← G obliviously, i.e., without knowing the discrete log

of A1−z. The sender sends (A0, A1) to the receiver and stores the secret sk = (z, αz).

The random coin used in this step is (z, αz, A1−z).

Step2. The receiver picks a random bit x ← {0, 1} and an exponent ρx ← Zp, and

then sets Bx = gρx . The receiver also obliviously generates B1−x ← G. The re-

ceiver computes Kx = Ax
ρx and obliviously samples K1−x ← G. The receiver

sends ((B0, B1), (K0, K1)) to the sender. The random coin used in this step is

(x, ρx, B1−x, K1−x).
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3.1. Overview

Sender Receiver

Input: m ∈ {0, 1}
z ← {0, 1} x← {0, 1}
αz ← Zp ρx ← Zp

Az = gαz (A0, A1) Bx = gρx

A1−z ← G −−−−−−−−−−−−→ B1−x ← G
(K0, K1), (B0, B1) Kx = Ax

ρx

←−−−−−−−−−−−− K1−x ← G
if Bz

αz = Kz w

w := z ⊕m −−−−−−−−−−−−→ if w ̸= ⊥
else w := ⊥ Output: m = w ⊕ x

Figure 3.1: The description of Beaver’s protocol [Bea97].

Step3. The sender checks whether x = z holds or not, by checking if Bz
αz = Kz holds.

With overwhelming probability, this equation holds if and only if x = z. If x = z,

the sender sends w := z ⊕m, otherwise quits the protocol.

Step4. The receiver recovers the message by computing w ⊕ x.

Next, we describe the simulator for this protocol.

Simulator The simulator simulates a transcript (A0, A1), ((B0, B1), (K0, K1)), and w as

follows. It generates α0, α1, ρ0, ρ1 ← Zp and sets

((A0, A1), (B0, B1), (K0, K1)) = ((gα0 , gα1), (gρ0 , gρ1), (gα0ρ0 , gα1ρ1)).

The simulator also generates w ← {0, 1}.

The simulator can later open this transcript to either message 0 or 1. In other words,

for both messages, the simulator can generate consistent sender and receiver random

coins. For example, when opening it to m = 0, the simulator sets x = z = w, and

outputs (w, αw, A1−w) and (w, ρw, B1−w, K1−w) as the sender’s and receiver’s opened

random coins, respectively.

Security Under the DDH assumption on G, we can prove that any PPT adversary A
cannot distinguish the pair of transcript and opened random coins generated in the

real protocol from that generated by the simulator. The only difference of them is

that K1−x is generated as a random group element in the real protocol, but it is

generated as A1−x
ρ1−x = gα1−xρ1−x in the simulation. If the real protocol proceeds

to Step.4, we have x = z with overwhelming probability. Then, the random coins

used by the sender and receiver (and thus given to A) does not contain exponents of

A1−x and B1−x, that is, α1−x and ρ1−x. Thus, under the DDH assumption, A cannot

distinguish randomly generated K1−x ← G from A1−x
ρ1−x = gα1−xρ1−x . Thus, this

protocol is a secure NCE protocol.
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3.1. Overview

This protocol succeeds in transmitting a message only when z = x, and otherwise

it fails. Note that even when z ̸= x, the protocol can transmit the message correctly

because in Step.3, the sender knows the receiver’s secret x. However, in this case, we

cannot construct a successful simulator. In order to proof the security based on the DDH

assumption, we have to ensure that either one of exponent pair (α0, ρ0) or (α1, ρ1) is not

revealed to the adversary. However, when z ̸= x, the exponents related to both 0 and 1 is

corrupted, hence we cannot use the DDH assumption, and the security proof fails.

Next, we show how to extend this protocol into a two-round weak NCE scheme and

obtain a scheme with ciphertext expansion O(λ).

3.1.2 Extension to Two-Round Weak NCE Scheme

As a first attempt, we consider an NCE scheme NCE1lin that is a natural extension of

Beaver’s three-round NCE protocol. Intuitively, NCE1lin is Beaver’s protocol in which the

role of the sender and receiver is reversed, and the sender sends a message even when z

and x are different. Specifically, the receiver generates the public key pk = (A0, A1) and

secret key (z, ρz), and the sender generates the ciphertext CT = ((B0, B1), (K0, K1), w),

where (A0, A1), (B0, B1), (K0, K1), and w := x ⊕ m are generated in the same way as

those in Beaver’s protocol. When decrypting the CT , the receiver first recovers the value

of x by checking whether Bρz
z = Kz holds or not, and then computes w ⊕ x.

Of course, NCE1lin is not a secure NCE scheme in the sense that we cannot construct a

successful simulator when z ̸= x for the same reason explained above. However, we can fix

this problem and construct a secure NCE scheme by running multiple instances of NCE1lin.

In NCE1lin, if z coincides with x, we can construct a simulator similarly to Beaver’s

protocol, which happens with probability 1
2
. Thus, if we run multiple instances of it, we

can construct simulators successfully for some fraction of them. Based on this observation,

we construct an NCE scheme NCElin as follows. We also describe NCElin in Figure 3.2.

Let the length of messages be µ = O(SP ) and n = O(µ). We later specify the concrete

relation of µ and n. The receiver first generates z1 · · · zn = z ← {0, 1}n. Then, for every

i ∈ [n], the receiver generates a pubic key of NCE1lin, (Ai ,0, Ai ,1) in which the single bit

randomness is zi. We let the exponent of Ai,zi be ρi, that is, Ai,zi = gρi . The receiver

sends these n public keys of NCE1lin as the public key of NCElin to the sender. The secret

key is (z, ρ1, . . . , ρn).

When encrypting a message m, the sender first generates x1 · · · xn = x ← {0, 1}n.
Then, for every i ∈ [n], the sender generates ((Bi,0, Bi,1), (Ki,0, Ki,1)) in the same way as

NCE1lin, where we “encapsulate” xi by using the i-th public key (Ai ,0, Ai ,1). We call it i-th

encapsulation. Finally, the sender generates w = m ⊕H(x), where H is a hash function

explained later in more detail.

– 16 –



3.1. Overview

Receiver Sender

Input: m ∈ {0, 1}µ

z ← {0, 1}n x← {0, 1}n

∀i ∈ [n], αi ← Zp ∀i ∈ [n], ρi ← Zp

Ai ,zi = gαi Bi ,xi = gρi

Ai ,1−zi ← G

(
A1,0, . . . , An,0

A1,1, . . . , An,1

)
Bi ,1−xi ← G

−−−−−−−−−−−−−−−−−−−−−−−−−→ Ki ,xi = Ai ,xi

ρi

Ki ,1−xi ← G

if Bi ,zi
αi = Ki ,zi

(
B1,0, . . . , Bn,0

B1,1, . . . , Bn,1

)
,

(
K1,0, . . . , Kn,0

K1,1, . . . , Kn,1

)
, w w = H(x)⊕m

xi := zi ←−−−−−−−−−−−−−−−−−−−−−−−−−

else xi := 1− zi

Output: m = w ⊕H(x)

Figure 3.2: The description of NCElin.

The resulting ciphertext is((
B1,0, . . . , Bn,0

B1,1, . . . , Bn,1

)
,

(
K1,0, . . . , Kn,0

K1,1, . . . , Kn,1

)
, w

)
.

Decryption is done by recovering each xi in the same way as NCE1lin and computing w ⊕
H(x).

The simulator for this scheme runs as follows. It first generates z1 · · · zn = z ← {0, 1}n

and x1 · · ·xn = x ← {0, 1}n. Then, for every index i ∈ [n] such that zi = xi, it simulates

the i-th public key and encapsulation in the same way as the simulator for NCE1lin (and

thus Beaver’s protocol). For every index i ∈ [n] such that zi ̸= xi, it simply generates

i-th public key and encapsulation in the same way as NCElin does in the real execution.

Finally, it generates w ← {0, 1}µ.
Although the ciphertext generated by the simulator is not “fully non-committing”

about x, still, it loses the information of bits of x such that xi = zi. Thus, if we can

program the output value of the hash function H freely by programming only those bits

of x, the simulator can later open the ciphertext to any message, and we see that NCElin

is a secure NCE scheme.

To realize this idea, we first set n > 2µ in order to ensure that the simulated cipher-

text loses the information of at least µ-bits of x with overwhelming probability. This is

guaranteed by the Chernoff bound. The ciphertext rate of NCElin is O(λ), that is already
the same as the best rate based on the DDH problem achieved by the construction of

Choi et al. [CDMW09].
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3.1.3 Compress Ciphertext

We compress the ciphertext of above scheme in two way. The first part of the ciphertext(
B1,0, . . . , Bn,0

B1,1, . . . , Bn,1

)
is compressed to a single group element by using chameleon encryption.

We will explain this compression in the next chapter.

In this section we focus on the compression of the second part of the ciphertext(
K1,0, . . . , Kn,0

K1,1, . . . , Kn,1

)
. Recall that each Ki,b is a group element of size λ. However its property

as a group element is not used in the scheme as only in the decryption algorithm, Ki,b is

compared with Bi ,zi
αi . We replace this comparison of group elements to the comparison

of hash value of them, i.e., HG(Ki,zi) vs. HG(Bi ,zi
αi ). Henceforth Ki,b denotes the hash

value of length ℓ, which we can choose arbitrary.

We want ℓ to be as small as possible as it directly reflects to the ciphertext size.

However if we choose too much small ℓ, the probability of Ki,1−zi = HG(Bi ,zi
αi ), hence the

probability of decryption error becomes large. We can fix this decryption error using error

correcting codes, but as the error probability increases, the rate of the codes decreases,

resulting in large ciphertext. Therefor we must choose appropriate constant ℓ that balances

ciphertext size and error probability. We also choose appropriate wiretap codes, whose

rate is as high as possible, to amplify the two problem of this weak NCE scheme: weak

security due to its construction, and weak correctness caused by compressing ciphertext.

3.1.4 Related Works on Amplification for Public-Key Encryp-

tion

Studies on security amplification have asked and answered the question:

“How far can we weaken a security definition so that schemes satisfying the

definition can still be transformed into those satisfying full-fledged security?”

Dwork, Naor, and Reingold [DNR04] first studied the amplification of public-key en-

cryption. They showed that a public-key encryption scheme that satisfies weak forms of

one-wayness and correctness can be transformed into one satisfies the ordinary correctness

and IND-CPA security. Holenstein and Renner [HR05] showed a more efficient amplifi-

cation method, starting from a scheme satisfying weak forms of IND-CPA security and

correctness. Lin and Tessaro [LT13] provided an amplification method for schemes with

IND-CCA security.

In this work, we show an amplification method for NCE, which can be seen as one of

this line of research.

– 18 –



3.2. Wiretap Channel and Amplification

3.2 Wiretap Channel and Amplification

In this section we introduce the wiretap channel model, wiretap codes, and its instantia-

tion.

3.2.1 Channel Model

When a sender transmits a message x ∈ {0, 1}n through a channel ChR, the receiver gets

a noisy version of the message x̃ ∈ {0, 1,⊥}n. We define the procedure of such channels as

probabilistic functions, x̃ ← ChR(x; rch). We review two channel models, Binary Erasure

Channel (BEC) and Binary Symmetric Channel (BSC).

Let Bn
p be the n-bit Bernoulli distribution with parameter p. In other words, rch ← Bn

p

is an n-bit string where for each i ∈ [n], Pr[rchi = 1] = p and Pr[rchi = 0] = 1− p.

Definition 3.1 (Binary Erasure Channel (BEC)). Through a binary erasure channel

BECp, each bit of input x ∈ {0, 1}n is erased with probability p.

BECp(x; rch) samples randomness rch ← Bn
p . Output of the channel is x̃ where x̃i = ⊥

if rchi = 1 and x̃i = xi if rchi = 0.

We also denote the output of BEC by xI ← BECp(x; rch) where I = {i ∈ [n] | rchi = 0}
is the set of non-erased indices.

Definition 3.2 (Binary Symmetric Channel (BSC)). Through a binary symmetric channel

BSCp, each bit of input x ∈ {0, 1}n is flipped with probability p.

BSCp samples randomness rch ← Bn
p . Output of the channel is x̃ = x⊕ rch.

We denote by BEC≤p, a binary symmetric channel with parameter p′ ≤ p.

3.2.2 Wiretap Codes

When weak NCE is used to communicate, roughly speaking, the receiver gets a noisy

version of the transmitted message x, and the adversary can see some partial information

of x. In fact, such a situation is very natural and studied as physical layer security in the

Information and Coding (I&C) community since the wiretap channel model was proposed

by Wyner [Wyn75]. Based on this observation, in this section, we show how to amplify a

weak NCE scheme into a full-fledged one by using wiretap codes. 1

Wiretap Codes As described in Figure 3.3, when the sender transmits a message x

over the wiretap channel, on one hand, the receiver gets the message affected by noise over

receiver channel ChR(x). On the other hand, an adversary can interrupt the transmission

and gets a noisier version of the message ChA(x).

1In literature, wiretap codes sometimes appeared in the name of “encryption” or “one-way secret-key

agreement”. It can be also interpreted as a kind of secret sharing scheme.
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Figure 3.3: Wiretap channel model.

In such a model, using the difference in the amount of noise the receiver and the

adversary are affected, wiretap codes WC enable us to transmit a message m correctly to

the receiver while keeping it information-theoretically secure against the adversary.

Wiretap codes have an encoding and a decoding algorithm similar to error-correcting

codes. Wiretap codes satisfy two properties. One is correctness, which ensures that the

receiver can decode codewords even if they are affected by some amount of noise. The

other is security, which guarantees that the adversary can get no information about the

message given some part of the codeword. It is known that the encoding algorithm must

use randomness to satisfy security.

Originally in the I&C community, the security of wiretap codes was defined by mutual

information. Bellare et al. [BTV12b, BT12, BTV12a] proposed several equivalent defini-

tions in a cryptographic manner. Among them, we recall one adopting the distinguishing

style of security below. Then we proposed a new security property, conditional invertibility

for wiretap codes, which we need in the security proof of our amplification for NCE.

Note that the following definition adopts the seeded version of wiretap codes also

proposed by Bellare et al. [BTV12b]. In the seeded wiretap channel, the sender, receiver,

and an adversary can see a public random seed. We adopt the seeded wiretap codes to

give a simple construction of the codes. The seed can be removed without increasing the

rate of the codes by a transformation shown in [BT12]. In this work, we put the seed into

a part of the public key when constructing NCE.

Definition 3.3 (Wiretap Codes). (Seeded) wiretap codes WC consist of the following PPT

algorithms (WC.Setup,WC.Encode,WC.Decode).

• WC.Setup(1λ): Given the security parameter 1λ, it samples a public seed p.

• WC.Encode(p,m; s): It encodes a message m ∈ {0, 1}µ with a public seed p and

randomness s← S, and outputs a codeword x ∈ {0, 1}n.

• WC.Decode(p, x): On input a noisy codeword x ∈ {0, 1}n and a public seed p, it

outputs a message m.

Rate of Wiretap Codes. The rate of WC is the length of messages over the length of

codewords µ/n ∈ (0, 1). The rate of WC is at most the secrecy capacity of the wiretap

channel. The secrecy capacity of wiretap channel, defined with symmetric channels ChR
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and ChA, is equal to H(U |ChA(U))−H(U |ChR(U)) for a uniformly random bit U [Leu77],

where H(Y |X) denotes the conditional entropy.

Usually, wiretap codes are required to satisfy the following correctness and security.

As a security property, we present a definition of distinguishing security adopted for

seeded wiretap codes. This is a natural extension of the distinguishing security for seedless

wiretap codes proposed by Bellare et al. [BTV12b].

Correctness: WC is correct over the receiver’s channel ChR if for all message m ∈ {0, 1}µ

and public seed p, we have

Pr[WC.Decode(p,ChR(WC.Encode(p,m))) ̸= m] = negl(λ) .

Note that correctness holds when the message length |m| = µ is enough large,

concretely, |m| = Ω(λ) is enough.

Security: WC is DS-secure against adversary’s channel ChA if for any unbounded stateful

adversary A, we have∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′

∣∣∣∣∣∣∣∣∣∣∣

p← WC.Setup(1λ), (m0,m1) = A(p),
b← {0, 1}, x← WC.Encode(p,mb),

x̃← ChA(x; rch),

b′ = A(x̃)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
= negl(λ) .

Next, we introduce a new security property for wiretap codes, conditional invertibility.

Intuitively, this security notion states that after the adversary sees the partial infor-

mation x̃ ← ChA(x) resulted from the codeword x of a message m′, we can efficiently

explain that x̃ has resulted from another message m. The security definition involves a

PPT inversion algorithm WC.Invert, which on inputs seed p, a condition x̃, and a message

m, outputs randomness s′ and rch
′ such that ChA(WC.Encode(p,m; s′); rch

′) is equal to the

condition x̃.

Conditional invertibility implies the ordinary distinguishing security. It can be seen as

non-committing security for wiretap codes. Note that wiretap codes are inherently non-

committing in the sense that they usually required to statistically lose the information of

messages. Thus, the only point conditional invertibility additionally requires is that the

inversion can be computed efficiently.

Definition 3.4 (Conditional Invertibility). For an unbounded stateful adversary A and

a PPT algorithm WC.Invert, define two experiments as follows:

ExpReal
WC,A ExpIdealWC,A

p← WC.Setup(1λ) p← WC.Setup(1λ)

(m,m′) = A(p) (m,m′) = A(p)
x← WC.Encode(p,m; s) x← WC.Encode(p,m′; s)

x̃← ChA(x; rch) x̃← ChA(x; rch)

(s′, rch
′)← WC.Invert(p, x̃,m)

out = A (x̃, s, rch) out = A (x̃, s′, rch
′)
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We say that WC is invertible conditioned on ChA if there exists a PPT inverter WC.Invert

such that for any unbounded adversary A,∣∣Pr [out = 1 in ExpReal
WC,A
]
− Pr

[
out = 1 in ExpIdealWC,A

]∣∣ = negl(λ)

holds.

3.2.3 Instantiation of Wiretap Codes

Overview. We recall a modular construction of wiretap codes proposed by Bellare et al. [BTV12b]

called Invert-then-Encode construction. The building blocks are error-correcting codes

and invertible extractors. This idea of composing error-correcting codes and extrac-

tors can be found also in the construction of a linear secret sharing scheme proposed

by Cramer et al. [CDD+15].

Consider an seeded extractor Ext : {0, 1}k → {0, 1}µ which on inputs X ∈ {0, 1}k

and a seed p, outputs m ∈ {0, 1}µ. The extractor is invertible if there is an efficient

inverter Inv, which on inputs m ∈ {0, 1}µ and seed p, samples a preimage X ∈ {0, 1}k

using randomness s. The Invert-then-Encode construction takes input m with seed p, first

inverts the extractor X ← Inv(m, p; s), then encodes X by the error-correcting code as

x = Encode(X).

For a concrete instantiation, Bellare et al. suggested to use the polar codes [Ari09] as

error-correcting codes to achieve the optimal rate. Note that we can compute the encoding

of input m by mG where G is a generator matrix of the linear error-correcting code.

Invertible extractors can be instantiated using multiplication over GF(2k). Concretely,

the extractor takes inputs x ∈ {0, 1}k and seed p ∈ GF(2k), and outputs the first µ bit of

x⊙ p, where ⊙ denotes multiplication over GF(2k). The inverter Inv for this extractor is

obtained by Inv(m, p; s) = (m∥s)⊙ p−1.

Construction. We describe the construction of wiretap codes for µ = O(λ) bit mes-

sages. For a longer message, we can encode it by first dividing it into blocks of µ bit and

then encoding each block by the following codes (see [BT12]).

Let µ, k, n = O(λ). Let G ∈ {0, 1}k×n be a generator matrix of a linear error-correcting

code, and ECC.Decode a corresponding decoding algorithm. Choose a constant ϵ > 0 such

that the error-correcting code can be correct over ChR = BSC≤ϵ. We construct wiretap

codes which is correct over ChR = BSC≤ϵ and invertible conditioned on ChA = BEC0.5.

Thus, in this construction, the wiretap decoding algorithm takes as input x′ ← BSCϵ(x),

and the wiretap inverter algorithm takes as input xI ← BEC0.5(x; rch) where I ∈ [n] is the

set of non-erased indices determined by a uniformly random n-bit string rch.

• WC.Setup(1λ): Sample and output p← GF(2k) \ {0}.

• WC.Encode(p,m; s): For input m ∈ {0, 1}µ, sample s ← {0, 1}k−µ, output x =

((m∥s)⊙ p)G ∈ {0, 1}n.
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• WC.Decode(p, x′): Output the first µ bits of ECC.Decode(x′)⊙ p−1.

• WC.Invert(p, xI ,m): On input a condition xI ← BEC0.5(x; rch), sample and output

s′ which satisfies xI = ((m∥s′)⊙ p)GI .

Concretely, let
∑

i zici+c0 (ci ∈ {0, 1}k, zi ∈ {0, 1}) be the general solution of linear

equation xI = yGI . Then, uniformly sample a solution {zi}i of linear equation m =∑
i zi(ci⊙p−1){1,...,µ}+(c0⊙p−1){1,...,µ}. Finally, output s′ =

∑
i zi(ci⊙p−1){µ+1,...,k}+

(c0 ⊙ p−1){µ+1,...,k}.

It also outputs randomness for the channel rch
′ = rch, which is a uniformly random

n-bit string representing the non-erased indices I.

Rate of the Scheme. The rate µ/n of the scheme can be set to a constant smaller than

( k
n
− 1

2
). If the rate k/n of the error-correcting codes is close to its capacity 1− h2(ϵ), the

rate of WC can be close to its secrecy capacity 1/2 − h2(ϵ), which is the optimal rate of

wiretap codes.

Correctness. The correctness of the wiretap codes directly follows from the correctness

of the underlying error-correcting codes.

Conditional Invertibility. To show the invertibility conditioned on BEC0.5, we need to

show that distributions of (x̃, s, rch) are statistically indistinguishable in the real and ideal

experiments of the definition. We introduce the hybrid experiment defined as follows:

ExpReal
WC,A ExpHybrid

WC,A ExpIdealWC,A

p← WC.Setup(1λ) p← WC.Setup(1λ) p← WC.Setup(1λ)

(m,m′) = A(p) (m,m′) = A(p) (m,m′) = A(p)
x← WC.Encode(p,m; s) x← WC.Encode(p,m; s′) x← WC.Encode(p,m′; s)

x̃← ChA(x; rch) x̃← ChA(x; rch) x̃← ChA(x; rch)

(s′, rch
′)← WC.Invert(p, x̃,m) (s′, rch

′)← WC.Invert(p, x̃,m)

out = A (x̃, s, rch) out = A (x̃, s′, rch
′) out = A (x̃, s′, rch

′)

Before the proof we recall useful lemma, the Chernoff bound and the leftover hash

lemma.

Lemma 3.1 (Chernoff Bound). Let X be a binomial random variable. If E [X] ≤ µ, then

for all δ > 0, Pr [X ≥ (1 + δ)µ)] ≤ e−
δ2

2+δ
µ holds.

Lemma 3.2 (Leftover Hash Lemma). Let H := {h : {0, 1}n → {0, 1}ℓ} be a universal

hash family. If ℓ ≤ H∞(x)−ω(log λ), (h, h(x)) and (h, u) are statistically indistinguishable

where u← {0, 1}ℓ.

Claim 3.3. The distribution of output in the real and hybrid experiments are same.
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Proof. In general, for a function f : X → Y ,

{(x, y) | x← X , y = f(x)} ≡
{
(x′, y) | x← X , y = f(x), x′ ← f−1(y)

}
holds, where f−1(y) denotes the set of preimages of y.

By applying the above fact to fp,m(s, rch) = ChA(WC.Encode(p,m; s); rch), what we

need to show is that WC.Invert implements sampling (s′, rch
′)← f−1p,m(x̃).

Since we consider ChA = BEC0.5, WC.Invert can uniquely determine rch
′ = rch from

the representation of x̃ = xI . Recall that WC.Invert samples s′ satisfying xI = ((m∥s′)⊙
p)GI = BEC0.5(WC.Encode(p,m; s′); rch) uniformly at random. Hence, the claim follows.

Claim 3.4. The hybrid and ideal experiments are statistically close if the wiretap codes

are secure in the ordinarily sense.

Proof. Consider the adversary A that distinguished the two experiments. We can con-

struct another adversary A′ against the security of the wiretap codes as follows: Given

p, run A′ on p and obtain m,m′; send them to its challenger and receive x̃; compute

(s, rch)← WC.Invert(p, x̃,m); run A′ on x̃, s, rch and receive out; output out. The claim is

proven, since the simulation by A is perfect.

Claim 3.5. The wiretap codes are secure in the ordinarily sense.

Bellare et al. [BTV12b] show a detailed security proof of the wiretap codes for general

ChA. Below, we show a specific security proof for ChA = BEC0.5.

Proof. Recall that the parameter is selected to satisfy µ/n < (k/n − 1/2). Let 2δ :=

((k − µ)/n− 1/2) > 0 be a constant.

Since ChA = BEC0.5, the input for the adversary is xI = ((m∥s) ⊙ p)GI . By the

Chernoff bound, |I| < (1
2
+ δ)n holds except negligible probability.

Let us decompose the submatrix of the generator GI = PDQ, where P ∈ {0, 1}k×k

and Q ∈ {0, 1}|I|×|I| are invertible. Furthermore D = (di,j) ∈ {0, 1}k×|I| satisfies di,i = 1

for 1 ≤ i ≤ r := Rank(GI) and di,j = 0 for other elements. We interpret the multipli-

cation by D as getting the first r bits and concatenating 0|I|−r. Thus xI = ((((m∥s) ⊙
p)P )[r]∥0|I|−r)Q.

For input m∥s and seed p, hp(m∥s) := ((m∥s⊙ p)P )[r] forms a universal hash family.

Note that the input has min-entropy H∞(m∥s) = k − µ.

Since r ≤ |I| ≤ (1
2
+ δ)n ≤ k − µ− δn < H∞(m∥s)− ω(log λ) holds, by the left over

hash lemma, (p, hp(m∥s)) is statistically indistinguishable from (p, u) where u ← {0, 1}r.
Therefore xI is statistically indistinguishable from (u∥0|I|−r)Q, which is independent of

m. Thus, the claim is proven.

By combining the above three claims, conditional invertibility of the wiretap codes

follows.

– 24 –



3.3. Weak Non-Committing Encryption

3.3 Weak Non-Committing Encryption

In this section, we formalize the weak correctness and weak security for a non-committing

encryption scheme. Then, we show a simple construction of weak non-committing encryp-

tion scheme that has O(λ) public-key and ciphertext expansion.

3.3.1 Definition of Weak Non-Committing Encryption

Informally, we say that a public-key encryption scheme is weakly correct if it has decryption

error for each message bit.

Definition 3.5 (Weak Correctness). We say that an NCE scheme NCE = (Gen,Enc,Dec)

is weakly correct if it has non-negligible decryption error for each message bit. Specifically,

we say that NCE has ϵ-decryption error if for all message m ∈ {0, 1}µ and index i ∈ [µ],

Pr [mi ̸= Dec (sk,Enc (pk,m; rEnc))i] ≤ ϵ

holds, where (pk, sk)← Gen
(
1λ; rGen

)
and the probability is taken over the choice of rGen

and rEnc.

Note that the procedure of encryption and decryption of NCE works as the binary

symmetric channel

Dec(sk,Enc(pk, · )) = BSC≤ϵ(·).

Furthermore, we say that NCE satisfies correctness If ϵ = negl(λ), the weak correctness

corresponds to the correctness, Definition 2.2.

Definition 3.6 (Weak Non-Committing Security). Weak security allows an adversary

to learn some partial information of a plaintext Leak(m). Still, it guarantees that other

information of m remains hidden.

For an NCE scheme NCE = (Gen,Enc,Dec) and a probabilistic function Leak, consider

the following PPT simulators (SimGen, SimEnc,Open):

• SimGen(1λ; rSimGen): Given the security parameter 1λ, it outputs a simulated public

key pk.

• SimEnc(rSimGen, m̃ ← Leak(m; r); rSimEnc): Given the simulation randomness rSimGen

and a partial information of a plaintext m̃ which is computed by the probabilistic

function Leak with randomness r, it outputs a simulated ciphertext CT .

• Open(rSimGen, rSimEnc,m, r): Given the simulation randomness rSimGen, rSimEnc, a mes-

sagem and the randomness r used by Leak, it outputs randomness for key generation

rGen and encryption rEnc.
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For an adversary A and a message m, define two experiments as follows.

ExpWeak Real
NCE,A ExpWeak Ideal

NCE,A

(pk, sk)← Gen
(
1λ; rGen

)
pk ← SimGen(1λ; rSimGen)

CT ← Enc (pk,m; rEnc) CT ← SimEnc(rSimGen, Leak(m; r); rSimEnc)

(rGen, rEnc)← Open(rSimGen, rSimEnc,m, r)

out← A (pk, CT, rGen, rEnc) out← A (pk, CT, rGen, rEnc)

We say that NCE is weakly secure with respect to Leak if there exist PPT simulators

(SimGen, SimEnc,Open) such that for any PPT adversary A and any message m,

AdvWeak
NCE,A (λ) :=

∣∣Pr [out = 1 in ExpWeak Real
NCE,A

]
− Pr

[
out = 1 in ExpWeak Ideal

NCE,A
]∣∣

=negl(λ)

holds.

Remind that in this definition, following the style of Definition 2.6, the challenge

message is fixed in advance independently of the public key.

Weak security with respect to Leak = ⊥ in which the target message is chosen by the

adversary is exactly the same notion as the full-fledged security for NCE which we recall

below.

Definition 3.7 (Weak Non-Committing Encryption). We say NCE is a weak non-committing

encryption scheme if it satisfies the above weak correctness and weak security.

3.3.2 Construction from Key Encapsulation Mechanism

In this section we show a construction of weak non-committing scheme with O(λ) public-
key and ciphertext expansion. Before describe the construction, we define its building

block, key-encapsulation mechanism (KEM). Basically KEM is almost a public-key en-

cryption scheme, in which the encapsulation algorithm E, instead of taking message m as

input, outputs a session key K ∈ {0, 1}ℓ that is indistinguishable to a uniformly random

string. Furthermore we require KEM to satisfy oblivious samplability which guarantees

that we can sample random public-key and ciphertext without knowing corresponding

randomness rGen, rEnc.

Definition 3.8 (Key-Encapsulation Mechanism). A key-encapsulation mechanism KEM

consists of the following PPT algorithms (G,E,D), where G is the key-generation algorithm,

E is the encapsulation algorithm, and D is the decapsulation algorithm.

• G(1λ; rG): Given the security parameter 1λ, it outputs a public key pk and a secret

key sk.

• E(pk; rE): Given the public key pk, it outputs a ciphertext ct and a session key

K ∈ {0, 1}ℓ.
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• D(sk, ct): Given the secret key sk and the ciphertext ct, it outputs the session key

K.

Definition 3.9 (Correctness). The correctness for key-encapsulation mechanism means

that the session keys output by the encapsulation and decapsulation algorithms are the

same. In formal, we say a key-encapsulation mechanism is correct if after executing

(pk, sk)← G(1λ), (ct, K)← E(pk),

Pr[K ̸= D(sk, ct)] = negl(λ)

holds.

Definition 3.10 (Oblivious Samplability). Consider the following oblivious sampling al-

gorithms for key-generation and encapsulation (Ĝ, Ê), and an invert sampling algorithm

InvKEM.

• Ĝ(1λ; rĜ): Given the security parameter 1λ, it outputs a obliviously sampled public

key p̂k. The randomness used in this algorithm rĜ is essentially its output p̂k itself.

• Ê(p̂k; rÊ): Given a public key p̂k, it outputs a obliviously sampled ciphertext ĉt. The

randomness used in this algorithm rÊ is essentially its output ĉt itself.

• InvKEM(rG, rE): Given randomness for real-life execution of KEM (rG, rE), it outputs

randomness for oblivious sampling (rĜ, rÊ).

For a PPT adversary A, we define the following real and ideal experiments.

ExpReal
KEM,A ExpIdealKEM,A

(pk, sk)← G(1λ; rG) p̂k,← Ĝ(1λ; rĜ)

(ct, K)← E(pk; rE) ĉt← Ê(p̂k; rÊ)

(rĜ, rÊ)← InvKEM(rG, rE) K ← {0, 1}ℓ

out← A(pk, ct, K, rĜ, rÊ) out← A(p̂k, ĉt, K, rĜ, rÊ)

We say that KEM is obliviously samplable if there exist above algorithms such that for

all PPT adversary A,

AdvKEM,A (λ) :=
∣∣Pr [out = 1 in ExpReal

KEM,A
]
− Pr

[
out = 1 in ExpIdealKEM,A

]∣∣ = negl(λ)

holds.

If KEM satisfies the above oblivious samplability, its public-key is obliviously samplable.

Concretely, there exist InvG, such that{
pk, rĜ | (pk, sk)← G(1λ; rG), rĜ ← InvG(rG)

} c
≈
{
p̂k, rĜ | p̂k,← Ĝ(1λ; rĜ)

}
holds.
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Construction Let KEM = (G,E,D) be an obliviously samplable key-encapsulation mech-

anism as in the above. We construct a weak non-committing encryption scheme NCE =

(Gen,Enc,Dec) for single bit message x ∈ {0, 1}. Weak non-committing encryption scheme

for multiple number of bits can be obtained by repeating the scheme for single bit in par-

allel.

Gen
(
1λ; rGen

)
:

• Sample a uniformly random bit z ← {0, 1}.

• Generate a key pair of KEM: (pkz, skz)← G(1λ; rG).

• Obliviously sample a public key: pk1−z ← Ĝ(1λ; rĜ).

• Output pk := (pk0, pk1) and sk := (z, skz).

This key-generation algorithm uses randomness rGen = (z, rG, rĜ).

Enc(pk, x ∈ {0, 1}; rEnc) :

• Execute encapsulation: (ctx, Kx)← E(pkx; rE).

• Obliviously sample a ciphertext: ct1−x ← Ê(pk1−x; rÊ).

• Sample a uniformly random session key: K1−x ← {0, 1}ℓ.

• Output CT := (ct0, ct1, K0, K1).

This encryption algorithm uses randomness rEnc = (rE, rÊ, K1−x).

Dec (sk, CT ) :

• If Kz = D(skz, ctz), output x = z, otherwise x = 1 − z. Equivalently, output

x = z ⊕
∨ℓ

t=1(Kz ⊕ D(skz, ctz))t.

Theorem 3.6 (Weak Correctness). Let ℓ be a constant noticeably larger than log(1/ϵ)−1.
Suppose KEM is correct, then the above NCE has ϵ-decryption error.

Proof. Decryption error is caused either when x ̸= z and Kz = D(skz, ctz) happen or x = z

and the underlying KEM scheme causes decryption error.

Pr[x ̸= Dec (sk, CT )]

=Pr[z = x] Pr[x ̸= Dec (sk, CT ) |z = x] + Pr[z ̸= x] Pr[[x ̸= Dec (sk, CT ) |z ̸= x]

=
1

2
(Pr[Kx ̸= D(skz, ctx)|z = x] + Pr[K1−x = D(skz, ct1−x)|z ̸= x])

=
1

2

(
negl(λ) +

1

2ℓ

)
≤ ϵ
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Theorem 3.7 (Weak Security). If KEM is an obliviously samplable key-encapsulation

mechanism, then NCE is weakly secure with respect to Leak = BEC0.5.

Proof. We construct a tuple of simulators as follows.

SimGen(1λ; rSimGen) :

• Generate two KEM key pairs: (pk0, sk0)← G(1λ; rG,0) and (pk1, sk0)← G(1λ; rG,1).

• Output a simulated public key pk := (pk0, pk1).

SimEnc(rSimGen, x̃← BEC0.5(x; rch); rSimEnc) :

• Regenerate pk0 and pk1 from rSimGen.

• If x̃ = ⊥,

– Execute the encapsulation twice: (ct0, K0) ← E(pk0; rE,0) and (ct1, K1) ←
E(pk1; rE,1).

– Output a simulated ciphertext CT := (ct0, ct1, K0, K1).

• If x̃ = x ̸= ⊥, just execute CT ← Enc(pk, x; rEnc).

Open(rSimGen, rSimEnc, x, rch) :

• Set z := x⊕ 1⊕ rch.
2

• If z = x (⇔ x̃ = ⊥),

– Execute the invert sampling: (rĜ,1−z, rÊ,1−z)← InvKEM(rG,1−z, rE,1−z).

– Output simulated randomness:

rGen :=
(
z, rG,z, rĜ,1−z

)
and rEnc :=

(
rE,x, rÊ,1−x, K1−x

)
.

• If z ̸= x (⇔ x̃ ̸= ⊥),

– Execute invert sampling for the key-generation: (rĜ,1−z)← InvG(rG,1−z).

– Output simulated randomness: rGen :=
(
z, rG,z, rĜ,1−z

)
and rEnc.

Let A be a PPT adversary against weak security of NCE. The message is set to x ∈
{0, 1}. We define the following sequence of experiments.

Exp 0: This experiment is exactly the same as ExpWeak Real
NCE,A . Specifically, the experiment

proceeds as follows.

1. Sample a uniformly random bit z ← {0, 1}.

2. Generate a key pair of KEM: (pkz, skz)← G(1λ; rG).

2Remind that rch = 1 ⇔ z = x means that message to the adversary is erased in BEC, and thus the

encryption is secure.
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3. Obliviously sample a public key: pk1−z ← Ĝ(1λ; rĜ).

4. Set pk := (pk0, pk1) and rGen := (z, rG, rĜ).

5. Execute encapsulation: (ctx, Kx)← E(pkx; rE).

6. Obliviously sample a ciphertext: ct1−x ← Ê(pk1−x; rÊ).

7. Sample a uniformly random session key: K1−x ← {0, 1}ℓ.

8. Set CT := (ct0, ct1, K0, K1) and rEnc := (rE, rÊ, K1−x).

9. Output of this experiment is out← A(pk, CT, rGen, rEnc).

Exp 1: This experiment is the same as Exp 0, except that the sampling z ← {0, 1} is

replaced to the followings:

• Compute x̃← BEC(x; rch).

• Set z := x⊕ 1⊕ rch.

Since rch is sampled from B0.5, z computed in Exp 1 is also uniformly random. Thus

Pr[out = 1] in Exp 0 and Exp 1 are the same.

Exp 2: This experiment is the same as Exp 1, except that if z = x, or equivalently x̃ = ⊥,
oblivious sample of the public key, the ciphertext, and the session key pk1−z ←
Ĝ(1λ; rĜ), ct1−x ← Ê(pk1−x; rÊ), K1−x ← {0, 1}ℓ is replaced to the followings:

• Generate public key by the key-generation: (pk1−z, sk1−z, )← G(1λ; rG,1−z),

• Generate ciphertext and session key by the encapsulation: (ct1−x, K1−x) ←
E(pk1−x; rE,1−x).

• The randomness is inverted as (rĜ,1−z, rÊ,1−z)← InvKEM(rG,1−z, rE,1−z).

We also rename (rG, rE) to (rG,z, rE,x).

Lemma 3.8. Assume the oblivious samplability of KEM, the difference of Pr[out =

1] between Exp 1 and Exp 2 is negligible.

Exp 3: This experiment is the same as Exp 2, except that if z ̸= x, or equivalently

x̃ = x ̸= ⊥, the oblivious sample of the public key pk1−z ← Ĝ(1λ; rĜ) is replaced to

the following:

• Generate public key by the key-generation: (pk1−z, sk1−z, )← G(1λ; rG,1−z).

• The randomness is inverted as (rĜ,1−z)← InvG(rG,1−z).

We also rename rG to rG,z.

Lemma 3.9. Assume the oblivious samplability of public key, the difference of

Pr[out = 1] between Exp 2 and Exp 3 is negligible.
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Now, Exp 3 is exactly the same as ExpWeak Ideal
NCE,A . Specifically, this experiment proceeds

as follows.

1. Generate two KEM key pairs: (pk0, sk0)← G(1λ; rG,0) and (pk1, sk0)← G(1λ; rG,1).

2. Set pk := (pk0, pk1).

3. If x̃ = ⊥, execute the encapsulation twice: (ct0, K0)← E(pk0; rE,0) and (ct1, K1)←
E(pk1; rE,1).

4. If x̃ = x ̸= ⊥, just execute Enc(pk, x; rEnc).

5. Set CT := (ct0, ct1, K0, K1).

6. Set z := x⊕ 1⊕ rch.

7. If z = x (⇔ x̃ = ⊥),

• Execute the invert sampling: (rĜ,1−z, rÊ,1−z)← InvKEM(rG,1−z, rE,1−z).

• Output simulated randomness:

rGen :=
(
z, rG,z, rĜ,1−z

)
and rEnc :=

(
rE,x, rÊ,1−x, K1−x

)
.

8. If z ̸= x (⇔ x̃ ̸= ⊥),

• Execute invert sampling for the key-generation: (rĜ,1−z)← InvG(rG,1−z).

• Output simulated randomness: rGen :=
(
z, rG,z, rĜ,1−z

)
and rEnc.

9. Output of this experiment is out← A(pk, CT, rGen, rEnc).

By combining the above lemma, the proof of Theorem 3.7 completes.

3.4 Full-Fledged NCE from Weak NCE

In this section, we amplify a weak NCE scheme into a full-fledged one using conditionally

invertible wiretap codes.

Construction. Let NCE = (Gen,Enc,Dec) be a weak NCE scheme which has ϵ-decryption

error and weak security with respect to BEC0.5, and wiretap codes WC = (WC.Setup,WC.Encode,

WC.Decode) which is correct over receiver channel BSC≤ϵ and conditionally invertible

against the adversary channel BEC0.5. We construct a full-fledged NCE scheme NCE′ =

(Gen′,Enc′,Dec′) as follows. Note that this construction includes the hybrid encryption

with one-time pad, thus the amplified scheme satisfies the non-committing security for

messages that is chosen depending on the public key.

Gen′(1λ) :

• Sample a public seed of the wiretap codes p← WC.Setup(1λ).
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• Generate a key pair of weak NCE (pk, sk)← Gen
(
1λ; rGen

)
.

• Output (pk′, sk′) := ((p, pk), sk).

The randomness for key generation rGen
′ is rGen.

Enc′(pk′,m) :

• Sample a key for one-time pad k ← {0, 1}µ.3

• Encode the key as x← WC.Encode(p, k; s) ∈ {0, 1}n.

• Compute CT ← Enc(pk, x; rEnc).

• Output ciphertext CT ′ = (CT,m⊕ k).

The randomness for encryption rEnc
′ is (rEnc, k, s).

Dec′(sk′, CT ′) :

• Parse CT ′ as (c1, c2).

• Compute k = WC.Decode(p,Dec(sk, c1)).

• Output m = c2 ⊕ k.

Ciphertext Expansion. The ciphertext expansion of NCE′ is

ciphertext expansion of NCE

rate of WC
+ 1. (3.1)

Since the rate of the wiretap codes is constant, this amplification increases cipher-

text expansion only by a constant factor. Combining the ciphertext expansion given in

Section 4.5, we will estimate its concrete value for our scheme in Section 5.

Public-key Expansion. The public-key expansion of NCE′ is

public-key expansion of NCE+ o(1) (3.2)

because this amplification only puts common random seed p into public-key, whose size is

independent to the message length, thus it dose not increase public-key expansion of the

amplified NCE scheme asymptotically.

Correctness. Due to the decryption error of NCE, each bit of the decrypted code word x

is flipped with probability at most ϵ. The wiretap codes correct this error as shown below.

Theorem 3.10 (Correctness). If NCE has ϵ-decryption error, and WC is correct over BSC≤ϵ,

then NCE′ is correct.

3Note that weak security of NCE requires the challenge message to be independent of the public key.

To address this issue, we use one-time pad in this amplification.
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Proof. The probability of NCE′ fails to decrypt is evaluated as

Pr[k ̸= WC.Decode(p,Dec(sk,Enc(pk, x)))]

= Pr[k ̸= WC.Decode(p,BSC≤ϵ(WC.Encode(p, k; s)))]

= negl(λ) .

Thus NCE′ is correct.

Security. We now show the non-committing security of NCE′.

Theorem 3.11 (Security). If NCE is weakly secure with respect to BEC0.5, and WC is

invertible conditioned on BEC0.5, then NCE′ is secure.

Proof. We first construct a simulator of NCE′ (Sim′,Open′) from the simulator (SimGen, SimEnc,

Open) of NCE, and the inverter WC.Invert of WC.

Sim′(1λ) :

• Sample p← WC.Setup(1λ).

• Generate pk ← SimGen(1λ; rSimGen).

• Sample k ← {0, 1}µ.

• Compute x̃← BEC0.5(WC.Encode(p, 0µ; s′); rch
′).

• Compute CT ← SimEnc(rSimGen, x̃; rSimEnc).

• Set pk′ = (p, pk), CT ′ = (CT, k).

• Output (pk′, CT ′).

Open′(rSim,m) :

• (s, rch)← WC.Invert(p, x̃,m⊕ k).

• (rGen, rEnc)← Open(rSimGen, rSimEnc,WC.Encode(p,m⊕ k; s), rch).

• Output (rGen
′, rEnc

′) = (rGen, (rEnc,m⊕ k, s)).

Let A be an adversary against the security of NCE′. We then define the following

experiments:

Exp 0 : This experiment is the same as ExpReal
NCE′A. Specifically,

1. Sample p← WC.Setup(1λ).

2. Generate the key pair (pk, sk)← Gen
(
1λ; rGen

)
.

3. Run the adversary to output plaintext m← A(p, pk).

4. Sample k ← {0, 1}µ and encoded it as x← WC.Encode(p, k; s).

5. Encrypt the codeword as CT ← Enc(pk, x; rEnc).
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6. Output of this experiment is out← A((CT,m⊕ k) , rGen, (rEnc, k, s)).

Exp 1 : In this experiment, we use the simulator (SimGen, SimEnc,Open) for NCE. The

ciphertext CT is simulated by SimEnc only given partial information of the message

x̃← Leak(x), where Leak = BEC0.5 and x← WC.Encode(p, k; s) now. Specifically,

1. Sample p← WC.Setup(1λ).

2. Simulate the public key as pk ← SimGen(1λ; rSimGen).

3. Run the adversary to output plaintext m← A(p, pk).

4. Sample k ← {0, 1}µ and encoded it as x← WC.Encode(p, k; s).

5. Compute partial information x̃← BEC0.5(x; rch).

6. Simulate the ciphertext as CT ← SimEnc(rSimGen, x̃; rSimEnc).

7. Explain the randomness for key generation and encryption as

(rGen, rEnc)← Open(rSimGen, rSimEnc,WC.Encode(p, k; s), rch).

8. Output of this experiment is out← A((CT,m⊕ k) , rGen, (rEnc, k, s)).

Exp 2 : In this experiment, we completely eliminate the information of k from the input

of SimEnc to simulate the ciphertext. Later WC.Invert determines the randomness s

used in the encode. Specifically,

1. Sample p← WC.Setup(1λ).

2. Simulate the public key as pk ← SimGen(1λ; rSimGen).

3. Run the adversary to output plaintext m← A(p, pk).

4. Sample k ← {0, 1}µ, but the codeword is x← WC.Encode(p, 0µ; s′).

5. Compute partial information x̃← BEC0.5(x; rch
′).

6. Simulate the ciphertext as CT ← SimEnc(rSimGen, x̃; rSimEnc).

7. Invert the randomness for encode as (s, rch)← WC.Invert(p, x̃, k).

8. Explain the randomness for key generation and encryption as

(rGen, rEnc)← Open(rSimGen, rSimEnc,WC.Encode(p, k; s), rch).

9. Output of this experiment is out← A((CT,m⊕ k) , rGen, (rEnc, k, s)).

Exp 3 : In this experiment, we completely eliminate m from the ciphertext by switching

k to m⊕ k. Specifically,

1. Sample p← WC.Setup(1λ).

2. Simulate the public key as pk ← SimGen(1λ; rSimGen).

3. Run the adversary to output plaintext m← A(p, pk).

4. Sample k ← {0, 1}µ, but the codeword is x← WC.Encode(p, 0µ; s′).
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5. Compute partial information x̃← BEC0.5(x; rch
′).

6. Simulate the ciphertext as CT ← SimEnc(rSimGen, x̃; rSimEnc).

7. Invert the randomness for encoding as (s, rch)← WC.Invert(p, x̃,m⊕ k).

8. Explain the randomness for key generation and encryption as

(rGen, rEnc)← Open(rSimGen, rSimEnc,WC.Encode(p,m⊕ k; s), rch).

9. Output of this experiment is out← A((CT, k) , rGen, (rEnc,m⊕ k, s)).

Note that the last experiment Exp 3 is identical to ExpIdealNCE′A.

We show the difference between each experiments are negligible.

Lemma 3.12. If NCE is weakly secure with respect to BEC0.5, the difference of Pr[out = 1]

in Exp 0 and Exp 1 is negligible.

This lemma directly follows from the weak security of NCE. Note that the message

encrypted by NCE is the key of one-time pad k, which is independent of the public key.

Lemma 3.13. If WC is invertible conditioned on BEC0.5, the difference of Pr[out = 1] in

Exp 1 and Exp 2 is negligible.

By the conditional invertibility of WC, the following items are statistically indistinguish-

able.

• (BEC0.5(WC.Encode(p, k; s); rch), (s, rch))

• (BEC0.5(WC.Encode(p, 0µ; s′); rch
′), (s, rch))

where (s, rch) is output of WC.Invert(p,BEC0.5(WC.Encode(p, 0µ; s′); rch
′), k)

The lemma follows because (CT ′, r′Gen, r
′
Enc), and hence out in Exp 1 are computed from

the former item, while those in Exp 2 are computed from the latter item.

Lemma 3.14. Pr[out = 1] is identical in Exp 2 and Exp 3.

This lemma holds unconditionally, because (k,m⊕ k) and (m⊕ k, k) distribute iden-

tically when k is sampled uniformly at random.

Combining the above lemmas, we complete the proof of Theorem 3.11.
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Chapter 4

NCE with Constant

Ciphertext-Expansion

In this chapter, we show the main contribution of this thesis, construction of a non-

committing encryption scheme with constant ciphertext expansion. First, in section 4.1,

we give a brief idea to compress ciphertext of the scheme presented in section 3.1. Then,

in section 4.2, we introduce obliviously samplable chameleon encryption, which is the

central building block of the NCE scheme with constant ciphertext expansion. Section 4.3

and 4.4 shows the instantiations of obliviously samplable chameleon encryption based on

the DDH and LWE problem, respectively. Finally, we construct a weak NCE scheme

with constant ciphertext expansion from obliviously samplable chameleon encryption in

section 4.5. Note that we can obtain a full-fledged NCE scheme with constant ciphertext

expansion via the transformation presented in section 3.4.

4.1 Idea Towards Constant Ciphertext-Expansion

We show how to achieve the ciphertext expansion O(1) by compressing the ciphertext of

NCElin. This is done by compressing the first part of the ciphertext of NCElin, that is,(
B1,0, . . . , Bn,0

B1,1, . . . , Bn,1

)
.

By this step, we compress it into just a single group element.

Compressing a matrix of group elements into a single group element. We

realize that we do not need all of the elements {Bi ,b}i∈[n],b∈{0,1} to decrypt the ciphertext.

Although the receiver gets both Bi ,0 and Bi ,1 for every i ∈ [n], the receiver uses only Bi ,zi .

Recall that the receiver recovers the value of xi by checking whether Bρi
i,zi

= Ki ,zi holds.

This recovery of xi can be done even if the sender sends only Bi ,xi , and not Bi ,1−xi .

This is because, similarly to the equation HG(B
ρi
i,zi

) = Ki ,zi , with overwhelming prob-

ability, the equation HG(B
ρi
i,xi

) = Ki ,zi holds if and only if zi = xi. For this reason, we can
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compress the first part of the ciphertext on NCElin into (B1,x1 , . . . , Bn,xn).

We further compress (B1,x1 , . . . , Bn,xn) into a single group element generated by mul-

tiplying them, that is, y =
∏

j∈[n] Bj,xj
. In order to do so, we modify the scheme so that

the receiver can recover xi for every i ∈ [n] using y instead of Bi,xi
. Concretely, for every

i ∈ [n], the sender computes Ki ,xi as

Ki ,xi = HG

∏
j∈[n]

A
αj

i,xi

 ,

where αj is the exponent of Bj,xj
for every j ∈ [n] generated by the sender. The sender still

generatesKi ,1−xi as a random ℓ bit string for every i ∈ [n]. In this case, with overwhelming

probability, the receiver can recover xi by checking whether Ki ,zi = HG(y
αi ) holds.

However, unfortunately, it seems difficult to prove the security of this construction.

In order to delete the information of xi for indices i ∈ [n] such that zi = xi as in the

proof of NCElin, we have to change the distribution of Ki,1−xi
from a random string to

HG(
∏

j∈[n] A
αj

i,1−xi
) so that Ki,0 and Ki,1 are symmetrically generated. However, we cannot

make this change by relying on the DDH assumption since all αj are given to the adversary

as a part of the sender random coin. Thus, in order to avoid this problem, we further

modify the scheme and construct an NCE scheme NCE as follows.

The resulting NCE scheme NCE. In NCE, the receiver first generates z ← {0, 1}n and

{Ai,b}i∈[n],b∈{0,1} in the same way as NCElin. Moreover, instead of the sender, the receiver

obliviously generates Bi,b = gαi,b for every i ∈ [n] and b ∈ {0, 1}, and adds them into the

public key. Moreover, for every i ∈ [n], the receiver adds

{Bρi
j,b = A

αj,b

i,zi
}j∈[n],b∈{0,1} s.t. (j,b) ̸=(i,1−zi)

to the public key. In order to avoid the leakage of the information of z from the public

key, for every i ∈ [n], we have to add

{Aαj,b

i,1−zi}j∈[n],b∈{0,1} s.t. (j,b) ̸=(i,zi)

to the public key. However, the receiver cannot do it since the receiver generates Ai,1−zi

obliviously. Thus, instead, the receiver adds the same number of random group elements

into the public key. At the beginning of the security proof, we can replace them with

{Aαj,b

i,1−zi}j∈[n],b∈{0,1} s.t. (j,b) ̸=(i,zi) by relying on the DDH assumption, and eliminate the in-

formation of z from the public key. For simplicity, below, we suppose that the public key

includes {Aαj,b

i,1−zi}j∈[n],b∈{0,1} s.t. (j,b) ̸=(i,zi) instead of random group elements.

When encrypting a message m by NCE, the sender first generates x ← {0, 1}n and

computes y =
∏

j∈[n] Bj,xj
. Then, for every i ∈ [n], the sender computes Ki,xi

as

Ki,xi
= HG

∏
j∈[n]

A
αj,xj

i,xi

 = HG(y
ρi)

– 37 –



4.1. Idea Towards Constant Ciphertext-Expansion

just multiplying A
α1,x1
i,xi

, . . . , A
αn,xn
i,xi

included in the pubic key. Recall that Ai,xi
= gρi . Note

that A
αi,1−zi
i,zi

is not included in the public key, but we do not need it to compute Ki,xi
.

The sender generates Ki,xi
as a random string for every i ∈ [n] as before. The resulting

ciphertext is (
y,

(
K1,0, . . . , Kn,0

K1,1, . . . , Kn,1

))
.

The receiver can recover xi by checking whether Ki ,zi = HG (yαi ) holds, and decrypt the

ciphertext.

By defining the simulator appropriately, the security proof of NCE proceeds in a similar

way to that of NCElin. In NCE, for indices i ∈ [n] such that zi = xi, we can eliminate the

information of xi. We can change Ki,1−xi
from a random string to HG

(∏
j∈[n] A

αj,xj

i,1−xi

)
by

relying on the fact that A
αi,xi
i,1−xi

is indistinguishable from a random group element by the

DDH assumption. By this change, Ki,0 and Ki,1 become symmetric and the ciphertext

loses the information of xi. Then, the remaining part of the proof goes through in a

similar way as that of NCElin except the following point. In NCE, the first component of

the ciphertext, that is, y =
∏

j∈[n] Bj,xj
has the information of x. In order to deal with the

issue, in our real construction, we replace y with gr
∏

j∈[n] Bj,xj
, where r ← Zp. Then, y

no longer leaks any information of x. Moreover, after y is fixed, for any x′ ∈ {0, 1}n, we
can efficiently find r′ such that y = gr

′∏
j∈[n] Bj,x′

j
. This is important to ensure that the

simulator of NCE runs in polynomial time.

4.1.1 Abstraction by Chameleon Encryption

We can describe NCE by using obliviously samplable chameleon encryption. Informally,

chameleon encryption is public-key encryption whose public key corresponds to the output

of a chameleon hash function, and whose secret key corresponds to the preimage of that

hash. In the construction of NCE, gr
∏

j∈[n] Bj,xj
can be seen as an output of the chameleon

hash function

H(x; r) = gr
∏
j∈[n]

Bj,xj
,

where {Bi,b}i∈[n],b∈{0,1} is the hash key. Moreover, by defining chameleon encryption as

key encapsulation mechanism instead of public-key encryption1, group elements con-

tained in the public key and {Ki,b}i∈[n],b∈{0,1} together form multiple ciphertexts of an

chameleon encryption scheme. Oblivious samplability of chameleon encryption makes it

possible to deal with the above stated issue of sampling random group elements instead

of {Aαj,b

i,1−zi}j∈[n],b∈{0,1} s.t. (j,b)̸=(i,zi) for every i ∈ [n].

1In other words, we define it so that it satisfies a property called recyclability introduced by Garg and

Hajiabadi [GH18]. For more details, see Remark 2 in the next section.
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Relation with trapdoor function of Garg and Hajiabadi. We finally remark that

the construction of NCE can be seen as an extension of that of trapdoor function (TDF)

proposed by Garg and Hajiabadi [GH18].

If we do not add the random mask gr to y =
∏

j∈[n] Bj,xj
, the key encapsulation part

of a ciphertext of NCE, that is, (
y,

(
K1,0, . . . , Kn,0

K1,1, . . . , Kn,1

))

is the same as an output of the TDF constructed by Garg and Hajiabadi. The major

difference between our NCE scheme and their TDF is the secret key. A secret key of their

TDF contains all discrete logs of {Ai,b}i∈[n],b∈{0,1}, that is, {ρi,b}i∈[n],b∈{0,1}. On the other

hand, a secret key of our NCE scheme contains half of them corresponding to the bit

representation of z, that is, {ρi,zi}i∈[n]. Garg and Hajiabadi already stated that their TDF

can be inverted with {ρi,zi}i∈[n] for any z ∈ {0, 1}n, and use this fact in the security proof

of a chosen ciphertext security of a public-key encryption scheme based on their TDF. By

explicitly using this technique in the construction, we achieve non-committing property.

We observe that construction techniques for TDF seem to be useful for achieving NCE.

Encryption schemes that can recover an encryption random coin with a message in the

decryption process, such as those based on TDFs, is said to be randomness recoverable.

For randomness recoverable schemes, receiver non-committing property is sufficient to

achieve full (that is, both sender and receiver) non-committing property. This is because

an encryption random coin can be recovered from a ciphertext by using a key generation

random coin.

4.2 Obliviously Samplable Chameleon Encryption

Chameleon encryption (CE) was proposed by Döttling and Garg [DG17b]. Since then,

variant of chameleon encryption is appeared in studies on identity based encryption[DG17a,

DGHM18, BLSV18], secure MPC [CDG+17, GS18a], adaptive garbling schemes [GS18b,

GOS18], and so on. We define its obliviously samplable variant, obliviously samplable

chameleon encryption as a building block of NCE schemes with constant ciphertext ex-

pansion. Note that in order to give a unified view of oblivious samplability, the following

definition of obliviously samplable chameleon encryption is further modified from the pre-

vious definition [YKT19, YKXT20]. We show an instantiation of obliviously samplable

chameleon encryption based on the DDH problem in Section 4.3. The instantiation based

on the LWE problem is described in Section 4.4.

Definition 4.1 (Obliviously Samplable Chameleon Encryption). An obliviously sam-

plable chameleon encryption scheme CE consists of the following PPT algorithms (G,H,E1,E2,D),

where key-generation algorithm G and hash function H compose a family of probabilistic
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hash functions, (E1,E2) is the associated encapsulation algorithm, and D is the algorithm

for its decapsulation.

G
(
1λ; rG

)
: Given the security parameter 1λ, it outputs a hash key hk.

H (hk, x; rH) : Given a hash key hk and an input x ∈ {0, 1}n, it outputs a hash value y.

E1 (hk, (i, b); rE) : Given a hash key hk, an index i ∈ [n], b ∈ {0, 1}, it outputs a ciphertext

ct.

E2 (hk, (i, b), y; rE) : Given a hash key hk, an index i ∈ [n], b ∈ {0, 1}, and a hash value y,

using the same randomness as E1, it outputs K ∈ {0, 1}ℓ.

D (hk, (x, rH), ct) : Given a hash key hk, a preimage of the hash function (x, rH), and a

ciphertext ct, it outputs K ∈ {0, 1}ℓ.

An obliviously samplable CE scheme satisfies the following correctness, trapdoor collision

property, oblivious samplability of hash keys, and security with oblivious samplability.

Definition 4.2 (Correctness). We say that a obliviously samplable chameleon encryption

scheme is correct if for all x ∈ {0, 1}n and i ∈ [n], after execution of

hk← G
(
1λ; rG

)
, y ← H (hk, x; rH) ,

ct← E1(hk, (i, xi); rE), K ← E2(hk, (i, xi), y; rE),

Pr[K ̸= D (hk, (x, rH), ct)] = negl(λ)

holds, where xi denotes the i-th bit of x.

Definition 4.3 (All-in-One Security). We give an all-in-one security definition for oblivi-

ously samplable chameleon encryption, which is required to construct the proposed NCE

scheme. This definition contains non-committing security for the hash function of chameleon

encryption and oblivious samplability for the associated encryption scheme.

Consider the following PPT algorithms for simulation and opening of chameleon hash

and oblivious sampling and invert of associated encryption (SimCH,OpenCH, Ê1, InvCE).

We introduce an obliviously sampling algorithms for ciphertexts.

• SimCH(1λ; rSimCH): Give a security parameter 1λ, it simulates a hash key hk and a

hash value y.

• OpenCH(rSimCH, x): Give an input x to the chameleon hash, it outputs randomness

for key-generation and hash (rG, rH).

• Ê1

(
hk, (i, b); rÊ

)
: Given a hash key hk, an index i ∈ [n], and b ∈ {0, 1}, it outputs a

ciphertext ĉt without using any randomness except ĉt itself.

• InvCE(hk, rE): Give a hash key hk and randomness for encryption rE, it outputs

randomness for oblivious sampling ciphertext rÊ.
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For a chameleon encryption scheme and a stateful adversary A, we define two experi-

ments as follows.

ExpReal ExpIdeal

hk← G
(
1λ; rG

)
(hk, y)← SimCH(1λ; rSimCH)

y ← H (hk, x; rH) (rG, rH)← OpenCH(rSimCH, x)

ct← E1(hk, (i, 1− xi); rE) ct← Ê1(hk, (i, (1− xi); rÊ))

K ← E2(hk, (i, 1− xi), y; rE) K ← {0, 1}ℓ

rÊ ← InvCE(hk, rE)

out = A
(
hk, y, ct, K, rG, rH, rÊ

)
out = A

(
hk, y, ct, K, rG, rH, rÊ

)
We say that CE is secure if there exist above algorithms such that for all x ∈ {0, 1}n, i ∈
{0, 1}, and for all PPT adversary A,

AdvCE,A (λ) :=
∣∣Pr [out = 1 in ExpReal

]
− Pr

[
out = 1 in ExpIdeal

]∣∣ = negl(λ)

holds.

The above all-in-one security captures the required security notion at once. However

when we use it in the security proof of NCE scheme, it is useful to separate it into the

chameleon hash part and the associated encryption part. We give separated security

definitions below.

Definition 4.4 (Security of Chameleon Hash). As an extension of hiding property of

chameleon hash function, we define a non-committing style security notion for chameleon

hash function. Note that this security notion is different from the one usually defined for

chameleon hash functions. Usually, the hash algorithm with another input H(hk, x′; rH)

plays the role of generating the hash value y in the ideal world. Non-committing property

is somewhat weaker than the usual chameleon property, still, it is enough for construction

of the NCE scheme.

Furthermore, this security notion captures oblivious samplability of the hash key. This

means that in the real world, we can sample a hash key without knowing trapdoor in-

formation contained in rSimCH which is used in the opening in the ideal world. So, this

primitive can be called non-committing hash function with oblivious key generation, rather

than chameleon hash function.

ExpReal ExpIdeal

hk← G
(
1λ; rG

)
(hk, y)← SimCH(1λ; rSimCH)

y ← H (hk, x; rH) (rG, rH)← OpenCH(rSimCH, x)

out = A (hk, y, rG, rH) out = A (hk, y, rG, rH)

We say that CE is secure if there exist above algorithms such that for all x ∈ {0, 1}n, and
for all PPT adversary A,

AdvCE,A (λ) :=
∣∣Pr [out = 1 in ExpReal

]
− Pr

[
out = 1 in ExpIdeal

]∣∣ = negl(λ)

holds.
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Next, we focus on the obliviously samplable security of the associated encryption under

simulated chameleon hash.

Definition 4.5 (Oblivious Samplability of Associated Encryption). We say ciphertext of

the chameleon encryption scheme is obliviously samplable (under simulated chameleon

hash) if for any x ∈ {0, 1}n, i ∈ [n], and PPT adversary A, define two experiments as

follows.

ExpReal ExpIdeal

(hk, y)← SimCH(1λ; rSimCH) (hk, y)← SimCH(1λ; rSimCH)

ct← E1(hk, (i, 1− xi); rE) ct← Ê1(hk, (i, (1− xi); rÊ))

K ← E2(hk, (i, 1− xi), y; rE) K ← {0, 1}ℓ

rÊ ← InvCE(hk, rE)

out = A
(
hk, y, ct, K, rÊ

)
out = A

(
hk, y, ct, K, rÊ

)
Then, we have

AdvCE,A (λ) :=
∣∣Pr [out = 1 in ExpReal

]
− Pr

[
out = 1 in ExpIdeal

]∣∣ = negl(λ) .

Remark 2 (On the Recyclability). The above syntax of chameleon encryption is different

from that of original chameleon encryption proposed by Döttling and Garg [DG17b].

We define chameleon encryption to satisfy a property called recyclability introduced by

Garg and Hajiabadi [GH18], in which recyclability is defined for one-way function with

encryption, that is a similar primitive to chameleon encryption.

More specifically, in our definition, there are two encryption algorithms E1 and E2. E1

outputs only a ciphertext and E2 outputs only a session key. In the original definition by

Döttling and Garg, there is a single encryption algorithm that outputs the key encapsula-

tion part and a message masked by the session key part at once. What is important here

is that, an output of E1 does not depend on a hash value y. This makes it possible to

relate a single output of E1 with multiple hash values. (In other words, a single output of

E1 can be recycled for multiple hash values.) We need this property in the construction

of NCE and thus adopt the above definition.

4.3 Instantiation based on the DDH Problem

We show an instantiation of obliviously samplable chameleon encryption scheme based on

the DDH problem. The main idea for this construction is based on the original construction

of chameleon encryption proposed by Döttling and Garg [DG17b].

4.3.1 Preliminaries on the Decisional Diffie-Hellman Problem

We give a definition of the decisional Diffie-Hellman (DDH) assumption and its variants

used in the proof of Theorem 4.3. Below, we let G be a cyclic group of prime order p with

a generator g.
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Let H = {HG : G → {0, 1}ℓ} be a family of universal hash functions for the group

elements. We use this hash function in the construction of chameleon encryption scheme

to compress the session key size to constant ℓ.

We start with the standard DDH assumption.

Definition 4.6 (Decisional Diffie-Hellman Assumption). We say that the DDH assump-

tion holds if for any PPT adversary A,

|Pr [A (g1, g2, g
ρ
1 , g

ρ
2) = 1]− Pr [A (g1, g2, u1, u2) = 1]| = negl(λ)

holds, where g1, g2, u1, u2 ← G and ρ← Zp.

We also define a generalized version of the DDH assumption. This generalized version

is useful in the proof of oblivious samplability of the chameleon encryption scheme.

Definition 4.7 ( n-Generalized DDH Assumption). We say that the n-Generalized DDH

assumption holds if for any PPT adversary A,

|Pr
[
A
(
{gi}i∈[n], {gρi }i∈[n]

)
= 1
]
− Pr

[
A
(
{gi}i∈[n], {ui}i∈[n]

)
= 1
]
| = negl(λ)

holds, where gi, ui,← G for all i ∈ [n] and ρ← Zp.

Note that the 2-generalized DDH assumption is exactly same as the standard DDH

assumption. Moreover n-generalized DDH assumption with n ≥ 2 is equivalent to the

standard DDH assumption.

Lemma 4.1. Assume the DDH assumption holds, the n-generalized DDH assumption

also holds.

Proof. Let A be an adversary against the n-generalized DDH problem. We construct a

reduction algorithm A′ that solves the DDH problem.

At first, the reduction algorithm receives (g1, g2, u1, u2) where (u1, u2) = (gρ1 , g
ρ
2) or

uniformly random group elements. Then samples {(si, ti)}i∈{3,...,n} ← Z2×(n−2)
p and set gi =

gsi1 g
ti
2 , ui = usi

1 u
ti
2 for i = 3, ..., n. The reduction algorithm executes A

(
{gi}i∈[n], {ui}i∈[n]

)
and output its result.

We have

log

(
g3 g4 . . . gn

u3 u4 . . . un

)
=

(
1 log(g2)

log(u1) log(u2)

)(
s3 s4 . . . sn

t3 t4 . . . tn

)
,

where the first logarithm is applied to each component, and the base of these logarithm

is g1.

In case (u1, u2) = (gρ1 , g
ρ
2) holds, we have {gi}i∈[n] are uniformly and independently

random and ui = usi
1 u

ti
2 = gρsi1 gρti2 = (gsi1 g

ti
2 )

ρ = gρi holds.

In case (u1, u2) are random group elements, The matrix

(
1 log(g2)

log(u1) log(u2)

)
is non-

singular with overwhelming probability. Therefore
(
{gi}i∈[n], {ui}i∈[n]

)
are uniformly and

independently random with overwhelming probability.
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In each case, the reduction algorithm simulates the n-generalized DDH problem for A.
Thus it solves the DDH problem with the same but negligible loss of advantage as A.

4.3.2 Construction

We construct a chameleon encryption scheme CE = (G,H,E1,E2,D) based on the hardness

of the DDH problem.

Let G be a cyclic group of order p with a generator g. The description of the group

G is generated in G and shared among other algorithms with its generator g. Strictly

speaking, the randomness used to generate the group description should be described in

rG. We omit is because this does not matter if the group is oblivious samplable.

In the construction, we use a universal hash family H = {HG : G → {0, 1}ℓ}. Below,

let HG be a hash function sampled from H uniformly at random, and it is also shared to

all the algorithms implicitly.

G
(
1λ; rG

)
:

• For all i ∈ [n] and b ∈ {0, 1}, sample gi ,b ← G.

• Output hk :=

(
g,

(
g1,0, . . . , gn,0

g1,1, . . . , gn,1

))
.

The randomness used in this algorithm is rG :=

(
g1,0, . . . , gn,0

g1,1, . . . , gn,1

)
.

H (hk, x; rH) :

• Sample r ← Zp.

• Output

y = gr
∏
i∈[n]

gi ,xi .

The randomness used in this algorithm is rH := r.

E1 (hk, (i, b); rE) :

• Parse hk as

(
g,

(
g1,0, . . . , gn,0

g1,1, . . . , gn,1

))
.

• Sample ρ← Zp and compute c := gρ.

• Compute ci ,b := (gi ,b)
ρ and ci ,1−b := ⊥.

• For all j ∈ [n] such that j ̸= i , compute cj,0 := (gj,0)
ρ and cj,1 := (gj,1)

ρ
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• Output

ct :=

(
c,

(
c1,0, . . . , cn,0

c1,1, . . . , cn,1

))
.

E2 (hk, (i, b), y; rE) :

• Output K ← HG (yρ).

The randomness commonly used in the above two algorithm is rE := ρ.

D (hk, (x, rH), ct) :

• Parse ct as

(
c,

(
c1,0, . . . , cn,0

c1,1, . . . , cn,1

))
.

• Output K ← HG

(
cr
∏

i∈[n] ci ,xi

)
.

Size of Parameters The group elements is represented in λ bit string. The length of

the hash key and ciphertext are both (2n+ 1)λ.

Theorem 4.2 (Correctness). This DDH-based chameleon encryption scheme is correct.

Proof. Since the hash function on the group HG is common for all algorithm, it is enough

to show the equivalence of the inputs to HG in E2 and D, that is examined as

yρ =

gr
∏
i∈[n]

gi ,xi

ρ

= (gρ)r
∏
i∈[n]

(gi,xi
)ρ = cr

∏
i∈[n]

ci,xi
.

Theorem 4.3. This obliviously samplable chameleon encryption scheme is secure assum-

ing the hardness of the DDH problem.

Proof. First, we construct algorithms appear in the security definition.

SimCH(1λ; rSimCH) :

• For all i ∈ [n], and b ∈ {0, 1}, sample αi ,b ← Zp and set gi ,b := gαi,b .

• Sample r ← Zp and compute y = gr.

• Output hk :=

(
g,

(
g1,0, . . . , gn,0

g1,1, . . . , gn,1

))
and y.

The randomness used in this algorithm is rSimCH :=

((
α1,0, . . . , αn,0

α1,1, . . . , αn,1

)
, r

)
.

OpenCH(rSimCH, x) :
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• Recompute gi,b = gαi,b for all i and b.

• Output

rG :=

(
g1,0, . . . , gn,0

g1,1, . . . , gn,1

)
and rH := r −

∑
i∈[n]

αi,xi
.

Ê1

(
hk, (i, b); rÊ

)
:

• Set ci ,1−b := ⊥, and sample c← G and ci ,b ← G.

• For all j ∈ [n] such that j ̸= i, sample cj,0 ← G and cj,1 ← G.

• Output ct :=

(
c,

(
c1,0, . . . , cn,0

c1,1, . . . , cn,1

))
.

The randomness used in this algorithm is rÊ =

(
c,

(
c1,0, . . . , cn,0

c1,1, . . . , cn,1

))
.

InvCE(hk, rE) :

• Recompute c and ci,b for all i ∈ [n], b ∈ {0, 1} from gi,b and ρ in the same way

as E1.

• Output rÊ :=

(
c,

(
c1,0, . . . , cn,0

c1,1, . . . , cn,1

))
.

Lemma 4.4 (Non-Committing Security of Hash). The chameleon hash function in the

above chameleon encryption scheme satisfies Definition 4.4 unconditionally.

Proof. To proof this lemma, we need to check the distribution of (hk, y, rG, rH) is identical

in the real and ideal experiments. Especially, it is enough to check the randomness (rG, rH)

is identically distributed and (hk, y) is determined from these randomness.

The randomness for key generation rG appears in the real experiment is random 2n

group elements gi,b. In the ideal experiment, the group elements gi,b are computed from

their uniformly random exponent αi,b, which are eventually uniformly random group ele-

ments. Thus rG distributes identically in the both experiments. Since The hash key hk is

determined by rG, it is also identically distributed in the experiments.

The randomness for hash rH is sampled from Zp in the real experiment. In the ideal

experiment, rH = r−
∑

i∈[n] αi,xi
where r is uniformly random, hence rH is also uniformly

random and distributed identically to the real experiment. Since we can compute y from

hk, x, rH as

y = gr = gr−
∑

i∈[n] αi,xi

∏
i∈[n]

gi ,xi = H(hk, x; rH)

in the ideal experiment, thus y is also identically distributed.
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Lemma 4.5 (Oblivious Samplability of Ciphertext). Assume the 2n+1-generalized DDH

problem is hard, the associated encryption part of the chameleon encryption scheme sat-

isfies the oblivious samplability (Definition 4.5).

Proof. Let A be an adversary that attacks the oblivious samplability of the chameleon

encryption. We construct a reduction algorithm A′ that solves the 2n + 1-generalized

DDH problem.

Given the generalized DDH instance
(
{g∗i }i∈[2n+1], {u∗i }i∈[2n+1]

)
, the reduction algo-

rithm simulates
(
hk, y, ct, K, rÊ

)
as follows.

1. Set g := g∗1 and (g1,0, . . . , gn,0, g1,1, . . . , gn,1) := (g∗2, . . . , g
∗
2n) except gi,xi

is uniformly

sampled. The hash key is set to hk :=

(
g,

(
g1,0, . . . , gn,0

g1,1, . . . , gn,1

))
.

2. The hash value is set to y := g∗2n+1.

3. Set c = u∗1, and (c1,0, . . . , cn,0, c1,1, . . . , cn,1) := (u∗2, . . . , u
∗
2n) except ci,xi

is set to ⊥.

The ciphertext is set to ct :=

(
c,

(
c1,0, . . . , cn,0

c1,1, . . . , cn,1

))
.

4. The session key is set to K := HG(u
∗
2n+1).

5. The inverted randomness for encryption rE is set to the same as ct.

The reduction algorithm executes A with input
(
hk, y, ct, K, rÊ

)
and output its result.

In case the received tuple
(
{g∗i }i∈[2n+1], {u∗i }i∈[2n+1]

)
is the generalized DDH instance,

i.e. it satisfies u∗i = g∗i
ρ for all i ∈ [2n + 1], the reduction algorithm perfectly simulates

the view of A in the real experiment of oblivious samplability.

In case the received tuple is uniformly and independently random, the reduction al-

gorithm simulates the view of A in the ideal experiment of oblivious samplability except

the session key K is hash of a random group element, not uniformly random string. This

gap closes if we choose the hash HG to satisfies that if its input is uniformly random, its

output is also uniformly random. More concretely, we can use a universal hash family as

HG.

Remind that 2n+ 1-generalized DDH problem is as hard as the DDH problem.

Combining the above two lemma, the proof of Theorem 4.3 completes.

4.4 Instantiation based on Lattices

We propose a lattice-based construction of obliviously samplable CE. The public-Key

length of the proposed scheme is λ · poly(log λ), which is smaller than O(λ2) of the con-

struction from the DDH problem.
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The construction is similar to the construction of hash encryption from LWE proposed

by Döttling et al. [DGHM18]. However we need a super-polynomially large modulus Zq

for the scheme to satisfy correctness. Although security of the hash encryption is claimed

to be proved from a valiant of the LWE assumption, called extended-LWE, we prove the

security directly from the LWE assumption.

Before describing our construction, we recall preliminaries on lattices.

4.4.1 Preliminaries on Lattices

Notations Let A,B be matrices or vectors. [A|B] and [A;B] denotes concatenation

of columns and rows respectively. A\i denotes the matrix obtained by removing the i-th

column of A.

The n-dimensional Gaussian function with parameter s is defined as

ρs(x) := exp(−π∥x∥2/s2).

For positive real s and countable set A, the discrete Gaussian distribution DA,s is defined

by

DA,s(x) = ρs(x)/
∑
y∈A

ρs(y).

We note that, if s = ω(logm),

Pr
r←DZm,s

[∥r∥ ≤ s
√
m] ≥ 1− 2−m+1.

(See [MR07].)

Parameters. We let n = λ, m = O(n log q) (e.g., m = 2n log q), q = 2poly(log λ). Let χ be

the discrete Gaussian distribution over Z with parameter s = ω(
√
m log n), that is, DZ,s.

Rounding function round : Zq → {0, 1} is defined as round(v) = ⌊2v/q⌉. If input for

round is a vector v ∈ Zℓ
q, the rounding is applied to each component. Let ℓ be a constant.

Definition 4.8 ((Decisional) Learning with Errors [Reg05]). The LWE assumption with

respect to n dimension, m samples, modulus q, and error distribution χ over Zq states

that for all PPT adversary A, we have∣∣Pr[A(A,STA+E) = 1]− Pr[A(A,B) = 1]
∣∣ = negl(λ) ,

where A← Zn×m
q ,S ← Zn×ℓ

q ,E ← χm×ℓ,B ← Zm×ℓ
q .

Definition 4.9 (Lattice Trapdoor [GPV08, MP12]). There exists following PPT algo-

rithms TrapGen and Sample.

TrapGen(1λ) : Output a matrix AT ∈ Zn×m
q together with its trapdoor T .

Sample(AT ,T ,u, s) : Given a matrix AT with its trapdoor T , a vector u ∈ Zn
q , and a

parameter s, output a vector r ∈ Zm.
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These algorithms satisfy the following two properties.

1. AT is statistically close to uniform in Zn×m
q .

2. If s ≥ ω(
√
m · log n), then r ∈ Zm output by Sample(AT ,T ,u, s) is statistically

close to DZm,s conditioned on r ∈ Λu(AT ) := {r ∈ Zm | ATr ≡ u (mod q)}.

4.4.2 Construction

We construct an obliviously samplable CE scheme from the LWE problem on super-

polynomially large modulus. Note that only in this section, we denotes the length of x by

|x| = N .

G
(
1λ; rG

)
:

• Sample

A← Zn×(N+m)
q .

• Output hk := A.

The randomness used in this algorithm is rG := A.

H (hk, x; rH) :

• Sample r ∈ Zm
q according to distribution RH = χm.

• Output

y := A · [x; r] ∈ Zn
q .

The randomness used in this algorithm is rH := r.

E1 (hk, (i, b); rE) :

• Sample S ← Zn×ℓ
q and E ← χℓ×(N+m).

• Output

ct := STA\i +E\i ∈ Zℓ×(N+m−1)
q .

E2(hk, (i, b), y; rE) :

• Compute v = ST(y − b · ai) + ei, where ai and ei are the i-th rows of A and

E.

• Output K := round(v).

The randomness commonly used in the above two algorithm is rE := (S,E).

D (hk, (x, rH), ct) :

• Compute v′ = ct · [x\i; r].

• Output K := round(v′).
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Size of Parameters The ciphertext space of this chameleon encryption is Zℓ×(N+m)
q ,

where q = 2poly(log λ), ℓ = O(1), m = O(n log q) = λ · poly(log λ). We set N = O(λ), i.e.,
when weak NCE is constructed from this chameleon encryption scheme, it can encrypt

message of length O(λ). Thus the length of ciphertexts is

|ct| = poly(log λ) · O(1) · (O(λ) + λ · poly(log λ)) = λ · poly(log λ).

The length of the hash key is

|hk| = poly(log λ) · λ · (O(λ) + λ · poly(log λ)) = λ2 · poly(log λ).

Theorem 4.6 (Correctness). This LWE-based chameleon encryption scheme is correct.

Proof. Let ∆ :=
∣∣vj − v′j

∣∣, where vj and v′j are the j-th component of the inputs to the

rounding function in the computation of E2 and D respectively.

∆ =
∣∣(sjT(y − xi · ai) + ei,j

)
−
(
ctj · [x\i; r]

)∣∣
=
∣∣sjT(A · [x; r]− xi · ai) + ei,j −

(
sj

TA\i + e\i,j
)
[x\i; r]

∣∣
=
∣∣ei,j − e\i,j[x\i; r]

∣∣
≤ ∥ej∥ · ∥[x; r∥
≤ s
√
N +m ·

√
N + s2m ≤ s2(N +m),

holds with overwhelming probability. The probability of decryption error on j-th bit is

bounded by

Pr[round(vj) ̸= round(v′j)] ≤ 2∆/q = negl(λ) ,

which is negligible since the modulus q is super-polynomially large. Thus, by taking the

union bound for all |v| = ℓ bits, the probability of decryption error is bounded by

Pr[round(v) ̸= round(v′)] ≤ 2ℓ∆/q = negl(λ) .

Theorem 4.7. This obliviously samplable chameleon encryption scheme is secure assum-

ing the hardness of the LWE problem.

Proof. First, we construct algorithms appear in the security definition.

SimCH(1λ; rSimCH) :

• Sample R← Zn×N
q and (AT ∈ Zn×m

q ,T )← TrapGen(1λ).

• Sample y ← Zn
q .

• Output hk := A = [R | AT ] and y.

The randomness used in this algorithm is rSimCH := (R,T ,y).
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OpenCH(rSimCH, x) :

• Set y′ := y −Rx.

• Using the lattice trapdoor, sample a short vector

r ← Sample(AT ,T ,y′, s).

• Output rG := A and rH := r.

Ê1

(
hk, (i, b); rÊ

)
:

• Sample and output

ct← Zℓ×(N+m−1)
q .

The randomness used in this algorithm is rÊ = ct.

InvCE(hk, rE) :

• Recompute ct := STA\i +E\i ∈ Zℓ×(N+m−1)
q .

• Output rÊ := ct.

Lemma 4.8 (Non-Committing Security of Hash). The chameleon hash function in the

above chameleon encryption scheme satisfies the security in Definition 4.4 unconditionally.

Proof. This directly follows form the properties of lattice trapdoor. First, R distributes

uniformly at random, and the distribution ofAT output by TrapGen(1λ) is also statistically

close to uniform. Thus the entire hash key generated by the simulator is statistically

indistinguishable from uniformly random matrix. This is the same distribution as the

hash key generated by the key generation algorithm.

Second, the opened randomness for the hash rH for x, H(hk,x; rH) = y holds, because

the lattice trapdoor samples r such that ATr ≡ y′ (mod q) where y′ = y −Rx mod q.

Moreover the distribution of r is statistically close to χm conditioned on y ≡ Rx+ATr

(mod q).

Lemma 4.9 (Oblivious Samplability of Ciphertext). Assume the LWE problem is hard,

the associated encryption part of the chameleon encryption scheme satisfies the oblivious

samplability (Definition 4.5).

Proof. Let A be an adversary that attacks the oblivious samplability of the chameleon

encryption. We construct a reduction algorithm A′ that breaks the LWE assumption with

(N +m) samples by using A as follows:

1. A′ receives
(
A = [R | AT ] ∈ Zn×(N+m)

q ,B ∈ Zℓ×(N+m)
q

)
, where B is either STA+E

or uniformly random.
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2. A′ sets

a′ := (2xi − 1)
(
ai −A\i[x\i; r]

)
,

R′ := [a1 | · · · | ai−1 | a′ | ai+1 | · · · | aN ].

Remind that the matrix R′ is the same as the received matrix R except for the i-th

column is replaced by vector a′. Furthermore, A′ set s

hk := [R′ | AT ],y := hk · [x; r], ct := B\i,

K := round(bi), and rÊ := ct.

3. Finally, A′ returns A(hk,y, ct, K, rÊ).

In the LWE case, that is, B = STA + E and bi = STai + ei, A′ statistically simulates

the real experiment of the oblivious samplability:

1. The hash key hk = [R′ | AT ] generated by the reduction perfectly simulates the hash

key since the only different element, i-th column of R′ is also distributes uniformly

random.

2. The distribution of ct is perfectly correct.

3. The distribution of K = round(bi) is also perfectly correct. This is because by our

reduction algorithm, we have y = H(hk,x; r) = hk · [x; r] = A\i[x\i; r]+xia
′. Thus,

in the computation of K ← E2(hk, (i, 1− xi),y; rE), we compute

vi = ST(y − (1− xi) · a′) + ei

= ST(A\i[x\i; r] + xia
′ − (1− xi) · a′) + ei

= ST(A\i[x\i; r] + (2xi − 1)a′) + ei

= ST
(
A\i[x\i; r] + (2xi − 1)(2xi − 1)

(
ai −A\i[x\i; r]

))
+ ei

= ST
(
A\i[x\i; r] +

(
ai −A\i[x\i; r]

))
+ ei

= STai + ei = bi,

where we use the fact (2xi − 1)(2xi − 1) = 1 for xi ∈ {0, 1} to move forth line to

fifth line. Therefore, K = round(vi) = round(bi) has the correct distribution.

Also in the random case, A′ perfectly simulates the ideal experiment of the oblivious

samplability.

Therefore, assuming the LWE assumption, the associated encryption satisfies oblivious

samplability.

Combining the above two lemma, the proof of Theorem 4.7 completes.
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4.5 Construction of Weak NCE

In this section, we show a construction of weak NCE scheme NCE based on an obliviously

samplable chameleon encryption scheme CE. The constructed weak NCE scheme can

encrypt n bit message. It satisfies weak security with respect to Leak = BEC0.5. Decryption

error of this scheme is ϵ, where we can set ϵ to be arbitrarily small constant by appropriately

choosing the constant parameter ℓ; we require that ϵ ≥ 1/2ℓ+1 + negl(λ). Its ciphertext

expansion is constant, 2ℓ+ o(1).

This construction is similar to the construction from obliviously samplable KEM de-

scribed in section 3.3.2. It is also similar to the construction of trapdoor function proposed

by Garg and Hajiabadi [GH18].

Gen
(
1λ; rGen

)
:

• Sample a uniformly random string z ← {0, 1}n.

• Generate a hash key: hk← G
(
1λ; rG

)
.

• For all i ∈ [n] and b ∈ {0, 1}, compute and obliviously sample ciphertexts:

cti,b ←

E1 (hk, (i, b); rEi) (if b = zi)

Ê1

(
hk, (i, b); rÊi

)
(otherwise)

.

• Output

pk :=

(
hk,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
and sk := (z, (rE1, . . . , rEn)) . (4.1)

The key generation randomness rGen is
(
rG, z, {rEi}i∈[n],

{
rÊi
}
i∈[n]

)
.

Enc(pk, x ∈ {0, 1}n; rEnc) :

• Parse public key pk as the equation 4.1.

• Compute the hash function: y ← H(hk, x; rH).

• For all i ∈ [n] and b ∈ {0, 1}, compute the decapsulation or sample uniformly

random session keys:

Ki,b ←

D (hk, (x, rH), cti,b) (if b = xi)

{0, 1}ℓ (otherwise)
.

• Output

CT :=

(
y,

(
K1,0, . . . , Kn,0

K1,1, . . . , Kn,1

))
. (4.2)

– 53 –



4.5. Construction of Weak NCE

The encryption randomness rEnc is
(
rH, {Ki,1−xi

}i∈[n]
)
.

Dec (sk, CT ) :

• Parse sk and CT as the equations 4.1 and 4.2, respectively.

• For all i ∈ [n], compute

xi :=

zi (if Ki,zi = E2 (hk, (i, zi), y; rEi))

1− zi (otherwise)
.

• Output x.

Ciphertext Expansion. Ciphertext length of this scheme is |CT | = |y| + 2nℓ, where

length of output of the chameleon hash |y| does not depend on n. Therefore ciphertext

expansion of this scheme is

|CT | /n = 2ℓ+ o(1).

Public-key Expansion. Public-key length is |hk|+ 2n |ct|.
Next, we show that NCE is a weak NCE scheme. Concretely, we show that NCE has

ϵ-decryption error and satisfies weak security with respect to BEC0.5.

Theorem 4.10 (Weak Correctness). Let ℓ be a constant noticeably larger than log(1/ϵ)−
1. If CE satisfies correctness, then NCE has ϵ-decryption error.

Proof. Let x ∈ {0, 1}n be a message encrypted by NCE and z ∈ {0, 1}n a random string

sampled when generating a key pair of NCE.

We fail to decrypt xi if the underlying chameleon encryption causes correctness er-

ror when zi = xi, or uniformly random ℓ bit string Ki,1−zi accidentally coincides with

E2 (hk, (i, zi), y; rEi) when zi ̸= xi. The probability of the former is negligible since CE is

correct, and that of the later is 1/2ℓ. Thus, the probability of failure to decrypt xi is

evaluated as

Pr [xi ̸= (Dec (sk, CT ))i]

= Pr

[(
zi = xi ∧ D

(
hk, (x, r), cti,xi

)
̸= E2

(
hk, (i, zi), y; rEi

))
∨
(
zi ̸= xi ∧Ki,1−xi

= E2

(
hk, (i, zi), y; rEi

)) ]

=
1

2

(
negl(λ) +

1

2ℓ

)
≤ ϵ .

Theorem 4.11 (Weak Security). If CE is an obliviously samplable CE scheme, then NCE

is weakly secure with respect to Leak = BEC0.5.

Proof. We construct a tuple of simulators as follows.
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SimGen
(
1λ; rSimGen

)
:

• Generate (hk, y)← SimCH(1λ; rSimCH).

• For all i ∈ [n] and b ∈ {0, 1}, compute ciphertexts: cti,b ← E1

(
hk, (i, b); rEi,b

)
.

• Output a simulated public key pk :=

(
hk,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
.

The randomness used in simulating public key rSimGen is
(
rSimCH, {rEi,b}i∈[n],b∈{0,1}

)
.

SimEnc(rSimGen, xI ← BEC0.5(x; rch); rSimEnc) :

• Regenerate (hk, y) from rSimGen.

• For all i /∈ I, compute Ki,b ← E2

(
hk, (i, b), y; rEi,b

)
for b ∈ {0, 1}.

• For all i ∈ I, compute

Ki,b ←

E2

(
hk, (i, b), y; rEi,b

)
(if b = xi)

{0, 1}ℓ (otherwise)
.

• Output a simulated ciphertext CT :=

(
y,

(
K1,0, . . . , Kn,0

K1,1, . . . , Kn,1

))
The randomness used in simulating ciphertext rSimEnc is ({Ki,1−xi

}i∈I). z

Open(rSimGen, rSimEnc, x, rch) :

• Open randomness (rG, rH)← OpenCH(rSimCH, x).

• Set z = x⊕ 1n ⊕ rch.

• For all i ∈ [n], invert randomness to oblivious sampling rÊi,1−zi ← InvCE(hk, rEi,1−zi).

• Output simulated randomness

rGen :=

(
rG, z,

{
rEi,zi

}
i∈[n],

{
rÊi,1−zi

}
i∈[n]

)
and rEnc :=

(
rH, {Ki,1−xi

}i∈[n]
)
.

Let A be a PPT adversary against weak security of NCE and x ∈ {0, 1}n. We define

the following sequence of experiments.

Exp 0: This experiment is exactly the same as ExpWeak Real
NCE,A . Specifically, the experiment

proceeds as follows.

1. Generate hk← G
(
1λ; rG

)
and z ← {0, 1}n.

2. For all i ∈ [n] and b ∈ {0, 1}, compute

cti,b ←

E1 (hk, (i, b); rEi) (if b = zi)

Ê1(hk, (i, b); rÊi) (otherwise)
.
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3. Set

pk :=

(
hk,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
and rGen :=

(
rG, z, {rEi}i∈[n],

{
rÊi
}
i∈[n]

)
.

4. Compute y ← H(hk, x; rH).

5. For all i ∈ [n] and b ∈ {0, 1}, compute

Ki,b ←

D (hk, (x, r), cti,b) (if b = xi)

{0, 1}ℓ (otherwise) .

6. Set

CT :=

(
y,

(
K1,0, . . . , Kn,0

K1,1, . . . , Kn,1

))
and rEnc :=

(
rH, {Ki,1−xi

}i∈[n]
)
.

7. Output of this experiment is out← A(pk, CT, rGen, rEnc).

Exp 1: In this experiment, instead of sampling z ← {0, 1}n, we first compute xI ←
BEC0.5(x; rch) and set z = x⊕ 1n ⊕ rch.

Notice that z distributes uniformly at random over {0, 1}n also in Exp 1 since rch ← Bn
0.5.

Thus, Pr[out = 1] in Exp 1 is identical to that in Exp 0. Also notice that i ∈ I iff zi ̸= xi

holds by the setting of z.

Exp 2: This experiment is the same as Exp 1 except for executing (hk, y)← SimCH(1λ; rSimCH)

and (rG, rH)← OpenCH(rSimCH, x) instead of hk← G
(
1λ; rG

)
, y ← H (hk, x; rH).

From the security of the chameleon hash in CE, the difference of Pr[out = 1] between

Exp 1 and Exp 2 is negligible.

In the following experiments, we eliminate information of xi for i /∈ I from the cipher-

text CT = (y, {Ki,b}i∈[n],b∈{0,1}).

Exp 3.j: This experiment is defined for j = 0, . . . , n. Exp 3.j is the same experiment as

Exp 2 except that we modify the procedures 2. and 5. as follows.

2. For all i ≤ j, compute cti,b for b ∈ {0, 1} as cti,b ← E1

(
hk, (i, b); rEi,b

)
. Then,

execute invert sampling as rÊi ← InvCE(hk, rEi,1−zi).

For all i > j, compute them in the same way as Exp 2.

5. For all i ≤ j, if i /∈ I, compute Ki,0, Ki,1 as Ki,xi
← D (hk, (x, rH), cti,xi

) and

Ki,1−xi
← E2

(
hk, (i, 1− xi), y; rEi,1−xi

)
.

For all i ≤ j, if i ∈ I, compute them in the same way as Exp 2.

Also, for all i > j, compute them in the same way as Exp 2 regardless of whether

i ∈ I or not.
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Note that Exp 3.0 is exactly the same as Exp 2.

Lemma 4.12. If CE satisfies security with oblivious samplability, the difference of Pr[out =

1] between Exp 3.(j − 1) and Exp 3.j is negligible for every j ∈ [n].

Proof. Using A, we construct a reduction algorithm A′ which attacks the oblivious sam-

plability of associated encryption in CE with respect to x and j.

What differ in Exp 3.(j − 1) and Exp 3.j are ctj,1−zj and Kj,1−xj
if j /∈ I. For j ∈ I,

only ctj,1−zj differ. We consider the following two cases.

Case 1. j /∈ I (zj = xj) : ctj,1−zj is output of Ê1

(
hk, (j, 1− zj); rÊj

)
in Exp 3.(j−1) or

E1

(
hk, (j, 1− zj); rEj,1−zj

)
in Exp 3.j. Kj,1−xj

is uniformly random string or output

of E2

(
hk, y; rEi,1−xj

)
, respectively. In this case, the reduction algorithm A′, given

(hk∗, y∗, ct∗, K∗, r∗
Ê
), embed hk = hk∗, y = y∗, ctj,1−zj = ct∗, Kj,1−xj

= K∗, rÊj = r∗
Ê

and simulate other parts of the experiment.

Case 2. j ∈ I (zj ̸= xj) : ctj,1−zj is output of either Ê1

(
hk, (j, 1− zj); rÊj

)
in Exp 3.(j−

1) or E1

(
hk, (j, 1− zj); rEj,1−zj

)
in Exp 3.j. Kj,xj

= D(hk, (x, rH), ctj,xj
) is computed

in the same way in both experiments.

In this case, the reduction algorithm A′, given (hk∗, y∗, ct∗, K∗, r∗
Ê
), embed hk =

hk∗, y = y∗, ctj,1−zj = ct∗, rÊj = r∗
Ê
and simulate other parts of the experiment.

In both cases, A′ returns output out← A(pk, CT, rGen, rEnc).

Depending onA′ playing in either ExpReal or ExpIdeal, A′ perfectly simulates Exp 3.(j−1)
or Exp 3.j for A.

Hence assuming the associated encryption of the chameleon encryption scheme satisfies

security, the difference of Pr[out = 1] in Exp 3.(j − 1) and Exp 3.j is negligible.

Exp 4: This experiment is the same as Exp 3.n except that Ki,xi
is generated by Ki,xi

←
E2

(
hk, (i, xi), y; rEi,xi

)
instead of Ki,xi

← D (hk, (x, rH), cti,xi
) for every i ∈ [n].

From the correctness of chameleon encryption scheme, the difference of Pr[out = 1]

between Exp 3.n and Exp 4 is negligible.

This experiment is exactly the same as ExpWeak Ideal
NCE,A in which Leak = BSC0.5 is used. In

detail, the experiment proceeds as follows.

1. Generate (hk, y)← SimCH(1λ; rSimCH).

2. For all i ∈ [n], b ∈ {0, 1}, compute cti,b ← E1

(
hk, (i, b); rEi,b

)
.

3. Set

pk :=

(
hk,

(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

))
.
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4. For all i /∈ I, compute Ki,b ← E2

(
hk, (i, b), y; rEi,b

)
for b ∈ {0, 1}.

5. For all i ∈ I, compute

Ki,b ←

E2

(
hk, (i, b), y; rEi,b

)
(if b = xi)

{0, 1}ℓ (otherwise)
.

6. Set

CT :=

(
y,

(
K1,0, . . . , Kn,0

K1,1, . . . , Kn,1

))
.

Note that this CT can be computed only from xI , where I = {i ∈ [n] | zi ̸= xi}.

7. Compute (rG, rE)← OpenCH(rSimCH, x).

8. Set z = x⊕ 1n ⊕ rch.

9. Set the randomness as

rGen :=
(
rG, z,

{
rEi,zi

}
i∈[n],

{
rÊi
}
i∈[n]

)
rEnc :=

(
rH, {Ki,1−xi

}i∈[n]
)
.

10. out← A(pk, CT, rGen, rEnc)

From the above arguments, we see that NCE satisfies weak security with respect to

Leak = BSC0.5. This completes the proof of Theorem 4.11.

4.6 Size and Expansion of the NCE Schemes

Finally, we summarize up ciphertext and public-key expansion of the proposed NCE

scheme. Remind that the expansion of ciphertext and public-key is the length of them

per message length for enough long messages.

Ciphertext Expansion The ciphertext expansion of the amplified NCE scheme is

ciphertext expansion of weak NCE

rate of wiretap codes
+ 1,

where the rate of the wiretap codes is constant. We need “+1” in hybrid encryption with

one-time pad, which makes NCE satisfy non-committing security for public-key dependent

messages.

The ciphertext expansion of the weak NCE scheme is,

|CT | /n =
|y|
n

+ 2ℓ,
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where n = Θ(|m|) is length of the code word.

When instantiated based on the DDH, the size of hash |y| = λ. Thus the ciphertext

expansion is constant for messages longer than |m| = Ω(λ)

When instantiated based on the LWE, the size of hash |y| = λpoly(log λ). Thus the

ciphertext expansion is constant for messages longer than |m| = Ω(λpoly(log λ)).

Now we estimate concrete ciphertext expansion of the resulting NCE scheme for mes-

sages longer than |m| = ω̃(λ). For such a long enough message, ciphertext expansion of

the weak NCE scheme approaches 2ℓ. Suppose the wiretap codes used in the amplification

achieve the secrecy rate

1/2− h2(ϵ) =
1

2
+ ϵ log ϵ+ (1− ϵ) log(1− ϵ),

where ϵ is error rate of each message bit 1
2ℓ+1 . The ciphertext expansion of the resulting

NCE scheme has a minimum value appropriately 27 when ℓ = 5.

Public-Key Expansion Public-key expansion of the amplified NCE scheme is

|p|+ |hk|+ 2n |ct|
|m|

,

where the length of public seed for the wiretap codes is |p| = O(λ). When instantiated from

the DDH-based chameleon encryption scheme, the hash key has length |hk| = (2n + 1)λ

and the ciphertext length |ct| = (2n+ 1)λ. The resulting public-key expansion is O(λ2).

When instantiated from the LWE-based chameleon encryption scheme, the hash key

has length |hk| = λ2 · poly(log λ) and the ciphertext length |ct| = λ · poly(log λ). The

resulting public-key expansion is λ · poly(log λ).
Note that these lengths of the hash key and ciphertext of the chameleon encryption

schemes are evaluated for messages length |m| = O(λ). If we need to construct an NCE

scheme for messages of length ω(λ), we first divide the message into λ bit blocks, then

encrypt each block using the NCE scheme for λ bit message.

Expansion Trade-Off between Public-key and Ciphertext The public-key expan-

sion of the DDH-based NCE scheme is O(λ2). We can reduce it at expense of larger cipher-

text expansion. In concrete, we set message length to |m| = λc for constant 0 ≤ c ≤ 1.

Then the ciphertext expansion becomes O
(
λ(1−c)) and public-key expansion O

(
λ(1+c)

)
.

This trade-off technique allows us to freely bridge the gap between the schemes with

constant ciphertext expansion and O(λ) ciphertext expansion.
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Chapter 5

Conclusion

In this thesis, we constructed NCE schemes with constant ciphertext expansion based on

the DDH or LWE problem.

In Chapter 2, we observe that the target of this thesis, non-committing security, and

its building block, oblivious samplability can be defined in a similar manner through the

focus on the randomness used by algorithms and simulators.

In Chapter 3, we proposed an NCE scheme with O(λ) ciphertext expansion which

is constructed from obliviously samplable KEM. Along the way, we defined weak NCE.

Given that the full-fledged NCE is a tool to establish private channels in adaptively secure

MPC, weak NCE can be interpreted as a tool to establish wiretap channels in adaptively

secure MPC. Through wiretap channels, we can securely transmit a message by encoding

with wiretap codes that satisfy conditional invertibility.

This construction contains a fundamental idea to realize NCE. We believe it will help

us further understand non-committing encryption, oblivious samplability, and possibly

other security notions related to randomness used by algorithms.

In Chapter 4, We proposed a weak NCE scheme that has constant ciphertext expansion,

which is amplified to an NCE scheme with constant ciphertext expansion. This weak NCE

is constructed from obliviously samplable chameleon encryption. This thesis aims to find

a suitable form of definition for chameleon encryption. As a result, the security definition

of chameleon encryption can be regarded as a combination of non-committing security of

hash function and oblivious samplability of the associated encryption. We believe this

definition makes it easy to understand what security notion is essentially required in the

construction of NCE schemes.

We also showed the public-key expansion of our NCE scheme can be reduced to λ ·
poly(log λ) if it is instantiated from the LWE problem. One may think that the use

of the ring-LWE problem may further reduce public-key expansion similar to the LWE-

based NCE scheme by Hemenway et al. [HORR16]. However, unfortunately, it seems

that the ring-LWE problem is not helpful to reduce the public-key size asymptotically.

Constructing an NCE scheme with constant ciphertext expansion and better public-key

expansion is a natural future direction.
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