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Abstract

It is well known that soils are prone to spatial non-uniformity, which affects evaluations of slope stability and failure mechanisms.
This paper presents a probabilistic slope stability evaluation, considering the 3D spatial variation in the soil properties, by the random
limit equilibrium method (RLEM). Specifically, 3D random fields of cohesion c, friction angle /, and soil unit weight c are generated
using a fast Fourier transform. The RLEM is applied to evaluate the effects of the 3D spatial variability of the soil properties on slope
stability and failure mechanisms. A Monte Carlo simulation is used to interpret the slope reliability and variation in slope failure dimen-
sion. Based on the critical slip surface passing different portions of a slope (slope base, inclined face, and crest), four main failure mech-
anisms (two base failures and two face failures), and one additional failure mechanism (toe failure), are identified for spatially variable
slopes, and the corresponding distributions of the stability number (Ns) and sliding volume (V) are investigated in detail. The results show
that the large variation in the soil properties induces changes in the failure mechanisms, and a threshold of c-/ values is found for a shift
from base failure to toe failure. Lastly, associated sensitivity studies are performed to explore the effects of the uncertainties of the input
parameters on the uncertainty of the output. The results estimated by partial Spearman correlation coefficients show that cohesion has
the greatest influence on the stability number, and that a positive influence of the unit weight, contributing to slope stability, is found for
a base failure mechanism.
� 2022 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

There are three primary sources of uncertainties in
geotechnical engineering, namely, inherent variability,
measurement errors, and transformation uncertainty. In
addition to the spatial variability of the soil properties,
https://doi.org/10.1016/j.sandf.2022.101225
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the shear strength and unit weight are well known to be
inherent in the nature of soils, along with geotechnical
uncertainties, due to complex geological processing
throughout their formation. Phoon and Kulhawy (1999)
reported that most soil mechanics parameters can be trea-
ted as random variables characterized statistically by a nor-
mal or log-normal distribution, and that soil variability can
be described by the coefficient of variation (COV) and the
scale of fluctuation (referred to as the correlation length
(h)). When uncertainties are quantified, a reliability analy-
sis can be used, and the influence of the spatial variability
of the soil properties on slope stability can be examined.
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The uncertainty and spatial variability of the soil param-
eters for a two-dimensional slope have been analyzed in
detail. Mellah et al. (2000) used the stochastic finite element
method (SFEM) to evaluate the uncertainty of the soil
parameters as it relates to the reliability of an earth dam.
They found that, for the dam core, the standard deviations
in vertical displacement and strain show maximum values.
Low et al. (2007) developed a spreadsheet platform using a
limit equilibrium method (LEM) and Monte Carlo simula-
tion (MCS) to account for the horizontal spatial variation
in the soil properties. Griffiths and Fenton (2004) used the
random finite element method (RFEM) to calculate the
probability of failure, considering the spatial variability.
They found that the failure probability increases with the
correlation length (i.e., reduced spatial variability) when
the coefficient of variation in cohesion (COVc) is smaller
than 0.65, and that there is an opposite trend in failure
probability when the COVc is larger than 0.65. Moreover,
they noted that ignoring the spatial variation leads to the
underestimation of the probability of failure when the
mean Fs for a spatially variable slope is below 1.12. Fur-
thermore, Huang et al. (2013) and Kasama and Whittle
(2015) developed the random field numerical limit analysis
(RFNLA), for use together with a MCS, to evaluate the
distribution of the stability number and the probability of
failure.

There is no information on the third dimension (slope
length) of a 2D slope, which represents a spatial average
over that dimension. Hence, a 2D analysis implicates
unconservative results from an optimistic scenario of the
correlation condition or conservative results from the
worst-case scenario when compared with a 3D analysis.
To tackle the slope probabilistic analysis in 3D,
Vanmarcke (1977) firstly evaluated the 3D slope stability
within a probabilistic framework, using a simplified 3D
LEM. He pioneered the use of the mean Fs through the first
order second moment (FOSM) method and investigated
the failure probability for a cylindrical failure mechanism.
It has only been in recent years, and with the help of an
improved numerical method and greater computational
capacity, that the 3D problem has been studied in detail
(Hicks et al., 2008; Griffiths et al., 2009; Hicks and
Spencer, 2010; Hicks et al., 2014; Varkey et al., 2017). In
particular, Hicks et al. (2008) and Hicks and Spencer
(2010) explored the long slope (long length in the third
dimension) stability under the influence of the anisotropic
correlation length of undrained shear strength using the
3D RFEM. They discovered that a discrete failure mecha-
nism is typical for a long slope with an intermediate level
for the anisotropic correlation length. However, as later
discussed by Hicks and Spencer (2010), an analysis for a
short or representative slope section is also useful and
can be applied for a long slope reliability assessment by
means of the basic probability theory.

In addition to the failure probability and factor of
safety, the area or volume of a sliding mass is also an
important index that is widely used as a measure of failure
2

consequence in risk assessments (Huang et al., 2013;
Kasama et al., 2021b). Kasama and Whittle (2015) used
random limit analyses to evaluate the 2D slope failure
dimension for the failure depth and width. They suggested
that increasing the spatial variability results in a decrease in
the dimension of the slope failure, but an increase in the
variability of the dimension. Hicks et al. (2008) used both
the 2D RFEM and the 3D RFEM to evaluate 2D and
3D problems. They stated that there was no obvious link
between the probability of failure and the slide volume
and area, but that a trend of higher Fs accompanying a
smaller volume was observed. Although valuable attempts
were made in the above studies to evaluate the failure
mechanism for 2D and 3D spatially variable slopes, by
assessing the dimension of a collapsed slope, a clear under-
standing and discussion of the slope failure dimension,
such as the failure mechanism and sliding volume, are still
needed. Moreover, the relationship between the factor of
safety and the sliding volume, in terms of failure mecha-
nisms, has rarely been studied, although it is important
and effective to assess the effect of spatial variability on
slope stability. Firstly, this study presents a probabilistic
analysis for a 3D slope; a random limit equilibrium method
is used in tandem with an MCS framework. Then, the rela-
tionship between the stability number and the sliding vol-
ume is investigated in detail in terms of the identified
failure mechanisms. Lastly, a sensitivity analysis is con-
ducted to improve the understanding of the effect of the
spatially variable soil properties on the stability number,
considering various failure mechanisms and using a partial
Spearman correlation coefficient and the simplified Bishop
method under the Mohr-Coulomb failure criterion.

2. Random limit equilibrium method

2.1. Limit equilibrium method (LEM)

A 2D LEM is often used in slope stability analyses
because of its simplicity and reduced computational time.
Bishop’s simplified method (Bishop, 1955) and Janbu’s
simplified method (Janbu et al., 1956) are two frequently
applied types of LEM. Using these methods, a soil mass
is discretized into vertical slices, and the forces, moments,
or stresses resisting the movement of the mass within the
slices are evaluated. To facilitate the 3D analysis, Hungr
(1987) proposed a 3D LEM based on the Bishop and Mor-
genstern–Price 2D LEMs by substituting rectangular col-
umns for the vertical slices.

Although the FEM is regarded as a superior method, as
it provides more detailed information on the stress–strain
distribution and failure development (Naylor, 1982), the
factor of safety and the locations of the critical failure sur-
faces obtained by the LEM and FEM agreed well in the
deterministic slope stability analyses conducted by Chen
et al. (2007), Liu et al. (2015), and Li et al. (2016). A
detailed comparison was made between the LEM and the
FEM by Matthews et al. (2014), who stated that the meth-



Fig. 1. Flow chart for random limit equilibrium method (RLEM).
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ods closely agree with each other, given a circular slip sur-
face for a slope model without complex geometries or mul-
tiple layers. Considering a probabilistic slope stability
analysis, Cho (2009) reported that the failure surfaces
determined by the RFEM are similar to the critical circular
surfaces determined by the RLEM and suggested that, only
if the anisotropic spatial correlation is incorporated and
the slope becomes stratified, a search for the critical non-
circular surface is then required. Moreover, Lee and
Ching (2020) validated the performance of the 3D RLEM

by comparing it with a 3D RFEM performed on a 3D long
slope. The results showed that the two methods produce a
consistent factor of safety, sliding length, and sliding vol-
ume. As the slopes considered in the current paper incorpo-
rate the isotropic correlation length, to be demonstrated
later, it is expected that the output from the 3D RLEM

should be consistent with that from the 3D RFEM.
Another advantage of LEM is its significantly computa-
tional efficiency, which ensures that a statistical interpreta-
tion by an MCS can be carried out for the 3D slope
stability analysis. It is important to note, however, that
the employed RLEM, the method using columns (simpli-
fied Bishop), requires prior assumptions of the column side
force and a spherical failure mechanism, which are not
required with the RFEM/RFDM as the failure occurs nat-
urally over the zone in which the failure criterion is vio-
lated. Consequently, larger values for the variation in the
stability number (factor of safety) and sliding volume will
be obtained, and progressive failures can be monitored if
the RFEM/RFDM is employed.

In this study, a 3D LEM is used along with Scoops3D
(Reid et al., 2015), a software program that evaluates slope
stability using a digital landscape represented by a digital
elevation model (DEM). Scoops3D uses a simplified
Bishop’s method in 3D, and its solutions are assumed by
the spherical trial surface with a global minimum FS. In
addition, a flow chart of the RLEM used in this study is
illustrated in Fig. 1. Firstly, three 3D slope models with dif-
ferent angles are built by DEM, and the random fields for
the soil properties (c, tan/, and c) are generated according
to the prescribed statistical information. Then, an MCS is
performed to generate 1000 sets of random fields, and the
DEM and the random fields of the soil properties are fed
into Scoopes3D to estimate the Fs, V, and critical slip sur-
face. Next, the statistics are calculated for Fs and V (i.e.,
mean, standard deviation, COV of Fs, and V), and the fail-
ure mechanism is identified using the critical slip surfaces.
Finally, the input information is changed for random
fields, and a new round of simulations is started.

2.2. Random field model

Guided by Vanmarcke (1977), the spatial variability of
the soil properties, such as cohesion c, shear strength
tan/, and soil unit weight c, are modeled in this study
as the isotropic random field. The shear strength and soil
unit weight are assumed to have an underlying log-
3

normal distribution to ensure the non-negative proper-
ties, with mean averages of lln tan/, llnc, and llnc, and
standard deviations of rln tan/, rlnc, and rlnc. The
dimensionless COV parameter is expressed as the ratio
of the standard deviation (r) with respect to the mean
value (l), as given in Eq. (1).
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COV ¼ r
l

ð1Þ

The random fields of the shear strength and soil unit
weight are assigned an approximately log-normal distribu-
tion. The mean and standard deviations are obtained as
follows:

lln tan/ ¼ ln ltan/ � 1

2
r2
ln tan/ rln tan/ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ COV 2

tan/

� �r
ð2Þ

lln c ¼ ln lc �
1

2
r2
ln c rln c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ COV 2

c

� �q
ð3Þ

lln c ¼ ln lc �
1

2
r2
ln c rln c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ COV 2

c

� �r
: ð4Þ

The spatial variables of cohesion c, soil shear strength
tan/, and unit weight c, for the ith element, are trans-
formed from the standard normal Gaussian variables as
follows:

ci ¼ exp lln c þ rln c � Gið Þ ð5Þ
tan/i ¼ exp lln tan/

þ rln tan/ � Gi

� �
ð6Þ

ci ¼ exp llnc þ rlnc � Gi

� �
ð7Þ

where Gi is a standard Gaussian random variable that is
linked to correlation length h. This study used the fast
Fourier transform technique to generate Gi from isotropic
random field G with a mean of zero and standard deviation
of one (a standard normal distribution). Li et al. (2015)
investigated the influence of five theoretical correlation
functions on slope stability and reported that slope stability
is not sensitive to the type of correlation function. Hence,
the most popular function, the exponential Gauss–Markov
correlation function, is adopted here as follows:

q ¼ exp �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2 þ zi � zj
� �2q

h

0@ 1A ð8Þ

where q is the correlation function, x, y, and z are the direc-
tions of the three coordinates, and xi-xj, yi-yj, and zi-zj are
the lag distances. Similarly, h is the correlation length.

Table 1 summarizes all the input parameters. Slope
angles of b = 30�, 45�, and 60� are chosen as three typical
slope inclinations, to facilitate the evaluation of the angle
effects on slope stability and the failure mechanisms. The
mean values of the shear strength parameters, cohesion
lc = 100 kPa and friction angle l/ = 30�, are mainly used
for the analysis. These values are referred to as the shear
strength parameters for soil-rock mixtures. It was reported
by Zhang et al. (2019) that cohesion of 100 kPa with a fric-
tion angle of 30� is found in a soil-rock mixture with a 40 %
rock block proportion. Hence, this soil-rock mixture is
taken as the investigated ground in the current analysis,
as it is the type of mixture often found in mountainous
areas. Other types of soil, together with possible combina-
tions of shear strength parameters, are investigated in the
4

final subsection. As for the COV of the soil properties,
the COV of the unit weight (COVc), fixed at 0.1 as the typ-
ical COVc, is small and no more than 10 % in measurement
(Phoon and Kulhawy, 1999). In order to evaluate the influ-
ence of the COVs of cohesion (COVc) and the internal fric-
tion angle (COVtan/) on slope stability, this study considers
COVc and COVtan/ values in the ranges of 0.2 to 1.0 and
0.1 to 0.5, respectively. These values are higher than those
reported in the literature, where COVc and COVtan/ are
typically in the ranges of 0.1 to 0.5 and 0.05 to 0.2, respec-
tively (Lee and Ching, 2020; Phoon and Kulhawy, 1999).
Certain combinations of COVc and COVtan/ are consid-
ered, such as 0.2 and 0.1, respectively, and 1.0 and 0.5,
respectively. These combinations accommodate the same
order of increase or decrease in the COV of the shear
strength. And, for a simple demonstration, COVs is used
to represent COVc and COVtan/. The random field in this
study is assumed to be isotropic, with the same correlation
length in three directions and a similar correlation length of
the soil property h = hln tan/ = hlnc = hlnc. This isotropic
correlation structure also improves the confidence of using
a circular (spherical) search mechanism (Cho, 2009). Fol-
lowing Kasama and Whittle (2015), this study introduces
the ratio between the correlation length and the slope
height, H = hlntan//H = hlnc/H = hlnc/H, as an input
parameter, and H falls in the range of 0.05 to 1.0. This
range in H is equivalent to h = 1 to 20 m, considering
the slope model under study for a cell size of 1 m, width
and length of 100 m, and height of 20 m. For the c-/ soil
slope model considered in this study, the dependence
between the strength parameters, i.e., the cross-
correlation between the cohesive and friction angle qc-
tan/, is needed. As for the cross-correlation between cohe-
sion and the friction angle, Hassan and Wolff (1999) and
Rahardjo et al. (2012) reported both positive and negative
cross-correlations, while El-Ramly et al. (2006) and
Suchomel and Mašin (2010) reported that there is no
cross-correlation based on their experimental results. In
addition, Wu (2015) summarized that the cross-
correlation lies in the range of �0.78 to 0.37 based on an
extensive literature review covering 391 soil samples.
Therefore, following Chen et al. (2022), this study assumes
a slightly positive and negative cross-correlation coefficient
between c and / (qc-tan/ = 0.5 and �0.5). The influence of
the cross-correlation coefficient on the slope reliability will
be discussed further using Fig. 9, and the results for
qc-tan/ = 0.5 are mainly explained in this paper. As for
the cross-correlation between the shear strength and the
unit weight, there has been no adequate study on them.
However, some positive results have been reported from
laboratory measurements (Matsuo and Kuroda 1974;
Parker et al. 2008). In literature, positive cross-
correlations for these random variables are most often
assumed (Chowdhury and Xu 1993; Sivakumar and
Srivastava 2007). Hence, following the same assumption,
a positive cross-correlation between the shear strength
and the unit weight is assumed, qc-c = 1.0 and qc-tan/ = 1.0.



Table 1
Input parameters.

Parameter Value

Angle of slope, b 30�, 45� & 60�
Mean soil cohesion, lc 100 kPa
COV of cohesion, COVc 0.2, 0.4, 0.6, 0.8 and 1.0
Mean friction angle, ltan/ 0.5774 (l/ = 30�)
COV of friction angle, COVtan/ 0.1, 0.2, 0.3, 0.4 and 0.5
Mean unit weight, lc 20 kN/m3

COV of unit weight, COVc 0.1
Ratio of vertical and horizontal

correlation length
1 (Isotropic)

Normalized correlation length,
H = hln tan/ /H = hln c /H= hln c /H

Random, 0.05,
0.25, 0.5 and 1.0

Cross-correlation coefficient between c,
tan/, and c

qc-tan/ = 0.5, qc-c = 1.0 and
qc-tan/ = 1.0

Monte Carlo iteration 1000

COV: Coefficient of variation.
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Finally, 1000 iterations of the MCS are conducted to
accommodate the statistic interpretation of the stability
analysis.

Fig. 2 shows a sample DEM slope for one realization,
with given conditions of H = 1.0 and COVc = 0.2. There
is a soil base layer of depth d/H = 1.0, horizontal length
l/H = 5.0, and width w/H = 5.0, where H is the height
of the slope. The figure illustrates the spatial distribution
of soil cohesion for each cubic element at a resolution of
1.0 m, as one realization with the input parameter of
lc = 100 kPa and an isotropic correlation length of Hx =-

Hy = Hz. The red and blue regions indicate strong and
weak soil strengths, respectively.
3. Analysis results

Table 2 summarizes the statistics for a stability number
Ns and sliding volume V where the slope angle = 30�. The
results for slope angles of 45� and 60� are summarized in
Appendices 1 and 2. It is noted that Dn is the test statistic
proposed by Fenton and Griffiths (2008) for a normality
test using the Kolmogorov–Smirnov method, which indi-
cates the difference between the tested data and a fitted dis-
tribution, as shown in Eq. (9). Before comparing Dn to the
Fig. 2. Slope geometry and example of spatial variability.

5

acceptance criterion, an adjusted factor is used for Dn for
different distributions. The adjusted versions of Dn for a
normal (lognormal) distribution are shown by Eq. (10).
The bold italic values for Dn,adj in Table 2 and Appen-
dices 1 and 2 indicate that there is no fit.

Dn ¼ max
x

bF xð Þ � F xð Þ
��� ��� ð9Þ

where bF xð Þ is the CDF of the fitted distribution and F(x) is
the empirical distribution function of the tested data.

Dn;adj ¼
ffiffiffi
n

p � 0:01þ 0:85ffiffiffi
n

p
� 	

Dn ð10Þ

where Dn,adj is the adjusted version of test statistic Dn and
n is the total number of samples.

3.1. Stability number

Stability number Ns, proposed by Yu et al. (1998), is
used to evaluate the stochastic property of slope stability
with the spatial variability of the soil properties. The com-
puted stability number for a slope is reported for each ran-
dom field i of the MCS Nsi, as follows:

Nsi ¼
F si � lc � H

lc
ð11Þ

where Nsi is the stability number for the ith random field
and Fsi is the factor of safety of the slope for the ith random
field. It is noted that Nsi is a direct proportional linear func-
tion of Fsi; a large stability number means a slope with a
large factor of safety. Unlike Fs, Ns contains more detailed
information on slope height H, the factor of safety of a
homogeneous slope Fs_hom, the mean value of cohesion
lc, and unit weight lc, which can also be regarded as con-
sideration of normalization. Another important reason for
using the stability number is that the factors of safety esti-
mated in this study are all larger than 1.0, and an evalua-
tion of such large values provides less information.

In order to evaluate the effect of spatial variability in
terms of each set of MCS, a mean stability number, lN s

,

and its standard deviation, rNs , are introduced.

lNs ¼
1

n

Xn

1

Nsi rNs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

1

Nsi � lNs

� �2s
ð12Þ

where lNs
is the mean of stability number Ns, Nsi is the esti-

mated stability number for each Monte Carlo trial (each
random field), and n is the number of Monte Carlo trials.

The cumulative mean and COV of Ns in the MCS for
trial number n = 1000, H = 1.0, COVc = 0.1, and
COVs = 0.2 and 0.1, 0.6 and 0.3, and 1.0 and 0.5, are plot-
ted in Fig. 3 (a) and (b), respectively. Fig. 3 (a) shows that
lNs

reaches a stable value within 1000 trials of the MCS,

and Fig. 3 (b) shows that the cumulative COV of stability
number COVNs becomes stable within 1000 iterations.
Thus, it is suggested that the 1000 iterations of the MCS

conducted in this study are sufficient to obtain an accurate



Table 2
Stability number, sliding volume, and goodness-of-fit results for normal and log-normal distributions of b = 30�.

H COVc & tan/ lNs b = 30� lln(V) rln(V) Dn,adj

rNs Dn,adj lln(Ns) rln(Ns) Dn,adj lV (m3) rV (m3) Dn,adj

Random 0.2 & 0.1 14.81 0.02 0.661 2.69 0.0015 0.8550 20147.62 1263.39 0.928 9.90 0.0627 0.7046
0.4 & 0.2 14.70 0.04 0.5325 2.69 0.0031 0.7327 19727.35 1898.29 0.6372 9.89 0.0967 0.7098
0.6 & 0.3 14.57 0.07 0.6771 2.68 0.0048 0.7556 19296.89 2351.45 0.6581 9.86 0.1223 0.7976
0.8 & 0.4 14.43 0.10 0.5501 2.67 0.0067 0.9510 18825.08 2623.13 0.7688 9.83 0.1404 0.6998
1.0 & 0.5 14.28 0.12 0.5998 2.66 0.0086 0.9097 18486.44 2848.43 0.8100 9.81 0.1551 0.7481

0.01 0.2 & 0.1 14.78 0.03 0.8226 2.69 0.0023 0.8224 20054.81 1754.56 0.8712 9.90 0.0880 0.5960
0.4 & 0.2 14.65 0.06 0.7848 2.68 0.0043 0.6318 19715.32 2559.46 0.7012 9.88 0.1294 0.6193
0.6 & 0.3 14.49 0.09 0.7571 2.67 0.0064 0.6230 19134.96 2953.36 0.7625 9.85 0.1531 0.4161
0.8 & 0.4 14.33 0.12 0.8290 2.66 0.0087 0.7688 18747.02 3327.86 0.9302 9.82 0.1767 0.5227
1.0 & 0.5 14.16 0.16 0.8349 2.65 0.0110 0.5459 17423.75 4844.71 0.9421 9.80 0.1895 0.3167

0.25 0.2 & 0.1 14.53 0.25 0.7914 2.68 0.0173 0.8302 19194.26 3341.59 0.8941 9.85 0.1702 0.4135
0.4 & 0.2 14.26 0.32 0.6730 2.66 0.0222 0.6961 18545.56 4565.00 0.9762 9.80 0.2454 0.3894
0.6 & 0.3 13.85 0.46 0.5221 2.63 0.0330 0.5732 17706.12 5791.35 1.0009 9.73 0.3135 0.4058
0.8 & 0.4 13.42 0.58 0.6635 2.60 0.0433 0.5893 16620.05 6659.15 1.5377 9.64 0.4093 0.6455
1.0 & 0.5 11.98 0.71 0.5695 2.56 0.0562 0.5850 15762.95 7585.94 1.4997 9.53 0.6000 0.3167

0.50 0.2 & 0.1 14.47 0.33 0.6771 2.67 0.0231 0.7003 19158.55 3511.84 0.8869 9.84 0.1789 0.4080
0.4 & 0.2 13.98 0.62 0.5664 2.64 0.0445 0.3981 18148.66 5640.15 1.2662 9.76 0.3099 0.4663
0.6 & 0.3 13.38 0.92 0.4145 2.59 0.0685 0.3771 16618.08 7632.27 0.9957 9.61 0.4985 0.6532
0.8 & 0.4 12.65 1.22 0.5315 2.53 0.0976 0.6162 13920.93 9328.36 2.1642 9.24 0.9590 2.9235

1.0 & 0.5 11.64 1.50 0.6613 2.45 0.1328 0.9202 10802.15 10203.83 4.6320 8.60 1.4830 4.5990

1.0 0.2 & 0.1 14.35 0.54 0.5822 2.66 0.0376 0.7613 18724.15 3700.85 1.0853 9.82 0.1921 0.5259
0.4 & 0.2 13.63 1.08 0.8100 2.61 0.0802 0.6491 17023.05 6676.11 1.2072 9.67 0.3797 0.6817
0.6 & 0.3 12.75 1.54 0.5632 2.54 0.1232 0.6796 15231.93 10166.19 1.3510 9.11 0.7521 0.9947
0.8 & 0.4 11.66 1.99 0.9239 2.44 0.1732 0.4526 11408.69 10697.34 4.5574 8.82 1.2174 2.9136

1.0 & 0.5 10.18 2.24 0.9429 2.30 0.2298 0.6320 7659.88 10421.30 7.3404 7.96 1.6214 2.0841

Note: Acceptance criterion Dn,a,[1000, 0.01] � 1.035.
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and reliable evaluation of Ns. It is noteworthy that the
smaller the COVs is, the fewer iterations of MCS are
required.

Fig. 4 depicts histograms of the Ns from three com-
plete series of MCS, with COVs = 1.0 and 0.5, 0.6
and 0.3, and 0.2 and 0.1, for given normalized correla-
tion lengths of H = 0.25 and 1.0 and a slope angle of
30�. The solid curves in Fig. 4 (a) are the estimated nor-
mal fits. In general, the Ns values for spatially variable
slopes are smaller than those for homogeneous slopes,
indicating that spatial variability tends to cause instabil-
ity. The histogram distribution shows that COVNs

increases with an increasing COV of shear strength
(COVs), indicating that large COVs leads to a large vari-
ation in Ns, and results in a more uniform distribution
pattern. The solid curves in Fig. 4 (b) are the estimated
log-normal fits. It is seen that a log-normal distribution
can also be used to feature the stability number. How-
ever, it should be noted that the COV of the stability
number in Fig. 4 (b) for H = 1.0 is larger than that in
Fig. 4 (a) for H = 0.25, which suggests that a large H
also leads to a large variation in distribution. In addi-
tion, to obtain the distribution function of the stability
number, Table 2 summarizes the statistics of the Kol-
mogorov–Smirnov (K-S) test for all simulations of slope
angle b = 30�. (The results of b = 45� and b = 60� are
summarized in Appendices 1 and 2.) It is confirmed that
normal and log-normal distribution functions can be sen-
6

sible choices of fit for the stability number at a 1 % sig-
nificance level, with an acceptance criterion of D1000,

adj < Dn,a [1000, 0.01] = 1.032.
Fig. 5 presents the relationships between the mean sta-

bility number lNs for H = 1.0 and the slope angle. In order
to compare the results with the literature, the stability num-
ber for homogeneous strength from Ugai and Hosobori
(1988) is also plotted, as a broken red line. The results
for COVtan/ = 0 and COVc = 0 (COVs = 0) indicate a
slope with homogeneous strength. It is seen that the stabil-
ity numbers obtained by this study for a homogeneous
slope Ns_hom with slope angles of 30�, 45�, and 60� are
14.85, 12.09, and 9.42, respectively. This is comparable to
the results reported by Ugai and Hosobori (1988), with
only a 2 % difference for b = 30� and 45�, and a 4 % differ-
ence for b = 60�. These comparable results confirm the reli-
ability of Scoops3D. In addition to the effect of slope angle,
it is evident that a steep slope results in a small stability
number, for both homogeneous and spatially variable
slopes.

Fig. 6 summarizes the coefficient of variation in stability
number for all the input spatial variability conditions, for
a slope angle of b = 45�. Within the studied range of spatial
variability (0 to 1.0 for COVs and random to 1.0 for H),
for a given H increases linearly with increasing COVs,
and the rate of increase in COVNs increases as H increases
from random to 1.0. Moreover, as introduced by El-Ramly
et al. (2002), slope stability is more likely to be controlled



Fig. 3. Cumulative mean and coefficient of variation in stability number
in Monte Carlo trials: (a) cumulative mean stability number and (b)
cumulative coefficient of variation in stability number.

Fig. 4. Probability density function of stability number: (a) normal
distribution and (b) log-normal distribution.

Fig. 5. Mean stability number against slope angle.
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by the average soil properties, that is, the uncertainty of the
average strength along a slip surface. The effects of such
strength averaging can be observed when COVNs is rela-
tively small (maximum 0.27), and even when COVs is large
(COVs = 1.0 and 0.5), suggesting that the variability of
strength averages locally along the slip surface of a slope.

Spatial variability leads to a reduction in the stability
number, as shown in Fig. 5. Thus, in order to evaluate
the reduction effect of the stability number, irrespective
of the slope angle, the stability number ratio RNs and its
mean lRNs

are proposed.

RNsi ¼ Nsi

Ns hom

lRNs
¼ 1

n

Xn

1

Rsi ð13Þ

For creating safer slope designs, it is sensible to consider
lower stability numbers (or factors of safety). Fig. 7 does
so; and thus, the 99 % lower confidence bound of the sta-
bility number ratio for the input spatial variability is
demonstrated. According to Eq. (11), the 99 % lower con-
fidence bound of the stability number ratio is RNs99%

=Nsl99%/Ns_hom, where Nsl99% is estimated by assuming a
log-normal distribution with llnNs and rlnNs. In general,
RNs < 1. Hence, spatial variability causes a reduction in
the expected slope stability. The largest reductions in lRNs

occur when the COV is high and/or the correlation length
7

is large. For instance, the maximum decrease in lRNs
is

14 %, when H varies from 0.05 to 0.25 and when
COVs = 1.0. Specifically, the 99 % lower confidence bound
of the stability number ratio shows a minimum value for
COVs = 1.0 and 0.5. However, this observation of the sta-
bility number decreasing with increasing isotropic correla-
tion is not in agreement with the observations of
researchers such as Kasama and Whittle (2015) and
Tabarroki et al. (2013), who found that the stability num-
ber (factor of safety) first decreases at small correlation
lengths and then recovers when the correlation length grad-



Fig. 6. Influence of spatial variability of shear strength on COV of
stability number.

Fig. 7. 99 % lower confidence bound of stability number ratio.

Fig. 8. Mean stability number ratio against slope angle.
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ually increases. Based on this recovery tendency, Zhu et al.
(2019) introduced a worst-case correlation length, consid-
ering the appearance of the highest probability of failure.
In fact, it should be noted that the normalized correlation
length used in prior studies, by Kasama and Whittle (2015)
and Zhu et al. (2019), ranges from 0 to 4.0 and 0 to 100.0,
respectively. Compared to the above-mentioned prior stud-
ies, the range in normalized correlation length in our study
(0 to 1.0) is thought to be small. That is the main reason for
the decrease in the stability number in the present study.
On the other hand, the range in COVs is another important
reason. Based on the results for the probability of slope
failure for a wide range of COVs (0 to 10.0), by Griffiths
and Fenton (2004), there are threshold values for COVs

that can determine the increasing and decreasing trends
of the probability of failure (the threshold COVs = 1.0783
by the single random variable approach (SRV) and the
threshold COVs = 0.65 by the RFEM). Comparing our
numerical results for COVs = 0–1.0 with their findings, it
is thought that the decrease in the stability number with
the increasing correlation length results in an increase in
the probability of failure.

Fig. 8 demonstrates the mean stability number ratio lRNs

against the slope angle, considering spatial variability. The
8

upper curves represent small COVs and are almost horizon-
tal, suggesting that the reduction in lRNs

by spatial variabil-

ity is somewhat similar for each slope angle. However, as
COVs increases, the difference in the reduction in lRNs

between each slope angle becomes increasingly significant.
The maximum reduction in lRNs

is at a slope of b = 60�,
while the minimum is at a slope of b = 30�. Such differing
effects of spatial variability on flat and steep slopes will be
investigated later.

Fig. 9 illustrates the effect of spatial variability on the
mean stability number ratio with respect to the cross-
correlation coefficient between shear strength components
c and tan/. It is seen that generally the stability number
decreases with increases in COVs and H, regardless of the
positive or negative cross-correlation coefficient. However,
it should be noted that, for the same COVs and H, the sta-
bility number for a positive cross-correlation coefficient is
smaller than that for a negative one, and that the results
for the zero cross-correlation coefficient lie between them.
Therefore, positive and negative q have a similar effect on
the reduction in the stability number, and the results
obtained when using a positive q lie on the safer side
(Griffiths et al. 2009; Javankhoshdel and Bathurst 2016;
Zhang et al. 2021).
3.2. Sliding volume evaluation

The stability number (factor of safety) method of per-
forming slope stability evaluations is apparent and effec-
tive. However, evaluations based only on the safety
factor are not fully informative. Fortunately, one benefit
of a 3D slope analysis is that the output information on
the volume of a sliding mass provides other insights into
a slope stability assessment. Furthermore, a 3D analysis
with various sliding volumes also provides a deeper under-
standing of the effect of spatial variability on slope stabil-
ity. In order to evaluate the slope failure dimension, this
paper considers a sliding volume V as an investigated
parameter, including mean average sliding volume lV and
its standard deviation rV .



Fig. 9. Influence of cross-correlation coefficient q on mean stability
number ratio considering spatial variability.

Fig. 10. Cumulative mean and COV of sliding volume in Monte Carlo
trials: (a) cumulative mean sliding volume and (b) cumulative COV of
sliding volume.
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lV ¼ 1

n

Xn

1

V i rV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

1

V i � lVð Þ2
s

ð14Þ

where Vi is the sliding volume for the ith iteration, and lV

and rV are the mean and standard deviations of the sliding
volume for each complete iteration of MCS.

Fig. 10 (a) shows the cumulative mean sliding volume
against the number of MCS iterations. It shows that
1000 iterations are sufficient to acquire accurate results
for a given COV of shear strength. Fig. 10 (b) shows the
cumulative COV of the sliding volume against the number
of MCS iterations. It is clear that the variable sliding vol-
ume becomes stable within 1000 iterations. Hence, incorpo-
rating the observations from Fig. 3, it is suggested that a set
of 1000 iterations of MCS is adequate to obtain a reliable
statistical interpretation. As pointed out by Xiao et al.
(2016), a more accurate estimation could be acquired from
a larger number of MCS, but computational costs must be
taken into consideration.

Histograms of the sliding volumes for b = 30�,
COVc = 0.1, and COVs = 1.0 and 0.5 from one complete
series of MCS are presented in Fig. 11. In general, all dis-
tributions of sliding volumes lead to less than homoge-
neous slope results, and all shapes of distributions are
changed by increasing the spatial variability, suggesting
that the sliding volume is significantly affected by the spa-
tial variability. In other words, for a relatively small H
(H = 0.25; see Fig. 11 (a)), the results of V can be fitted
as a normal distribution. However, the applicability of
the normal distribution lessens with an increasing COVs,
suggesting that the fit quality for a large COVs is worse
than that for a small COVs. For a relatively large H
(H = 1.0; see Fig. 11 (b)), the normal distribution cannot
be fitted. The detailed results shown in Table 2 were esti-
mated by K-S normality tests. As a result, a log-normal dis-
tribution is considered for H = 1.0 in Fig. 11 (b). However,
at the large COVs values of 1.0 and 0.5, the log-normal dis-
tribution no longer fits. The histogram does not follow the
log-normal distribution curve, shown by the bold italic val-
ues in the K-S normality test results given in Table 2.
9

Fig. 12 depicts the relationships between mean sliding
volume lV for H = 1.0 and the slope angle. The red dashed
line is the resulting sliding volume for a homogeneous
slope, Vhom. It is seen that Vhom decreases with an increas-
ing slope angle, with apparently small values for b = 45�
and 60� compared with b = 30�. The effect of the decreas-
ing sliding volume with the increasing slope angle can still
be observed in the spatial variable slope, and the maximum
and minimum values of the mean sliding volume can be
found at b = 30� and 60�, respectively. Considering the
COVs influence, lV decreases for all slope angles with an
increasing COVs. However, for small COVs (COVc and
COVtan/ = 0.2 and 0.1) at b = 45�, the lV of a spatially
variable slope is larger than that of a homogeneous slope.
This notable observation will be further discussed.

Fig. 13 plots the COV of sliding volume COV V , consid-
ering spatial variability. It shows that COVV increases with
increasing COVs, and that the increasing rate of COVV also
increases with H. A comparison between COV Ns in Fig. 6
and COV V in Fig. 13 clarifies that the variation in the
stability number is less than that of the sliding volume
(0.27 maximum COVNs < 1.18 maximum COVV). This
suggests that the slope failure dimension of such a sliding
volume is largely affected by the spatial variability. This



Fig. 11. Probability density function of sliding volume: (a) normal
distribution and (b) log-normal distribution.

Fig. 12. Mean sliding volume against slope angle.

Fig. 13. Influence of spatial variability of shear strength on COV of
sliding volume.
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large variation in sliding volume at large COVs values will
be investigated. It is firstly doubted here, due to the exis-
tence of different failure mechanisms.

Similar to the stability number ratio, in order to exam-
ine the sliding volume changes due to spatial variability,
the sliding volume ratio Rvi and its mean are introduced
as follows:

RVi ¼ V i

V hom

lRV
¼ 1

n

Xn

1

RV i ð15Þ
Fig. 14. 99% upper confidence bound of sliding volume ratio.
where Vhom is the sliding volume for a homogeneous slope,
Rvi is the sliding volume ratio for each ith realization, and
10
lRV
is the mean of the sliding volume ratio for each com-

plete series of MCS.
In reality, for sliding volume evaluations, it is not neces-

sary to consider the sliding mass for very small volumes,
especially for a small volume together with a large stability
number (factor of safety). Conversely, close attention
should be paid to any extremely large sliding volumes,
which always lead to serious consequences. For such con-
sideration, an evaluation of the mean sliding volume ratio
and 99 % upper confidence bound of the sliding volume are
presented in Fig. 14. It should be noted that the method of
presenting the 99 % upper confidence bound of the sliding
volume ratio in this figure differs from that in Fig. 7, which
is selected from the original output data on the sliding vol-
ume at the 99 % upper bound. It is seen that RV u99% increases
with COVs andH, which suggests that, although increasing
spatial variability results in a decreasing mean sliding vol-
ume (for instance, as shown in Fig. 12), unexpectedly large
sliding volumes are prone to occur. This useful information
may alert slope designers to be vigilant in terms of potential
large-scale failures, even when the ground soil presents
high spatial variability.

The sliding volume decreases with an increasing slope
angle, and this slope angle effect is shown in Fig. 12. How-
ever, in order to evaluate the spatial variability effect on the
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sliding volume for all slope angles, irrespective of the angle
effect, the mean sliding volume ratio lRV

against the slope

angle is plotted in Fig. 15. It illustrates the important point
that the reduction in mean sliding volume caused by spatial
variability is at its most serious at the slope angle of 30� (an
0.65 reduction when COVs is varied from 0.2 to 1.0).
Another interesting point is that the mean sliding volume
for a spatial variable slope is smaller than the sliding vol-
ume for a homogeneous slope, Vhom, except for the 45�
slope, where the mean sliding volume for a spatially vari-
able slope is larger than Vhom, noted as lRV

greater than 1.0

for COVs = 0.2 and 0.1. This unusual finding will be inves-
tigated later. Next, the minimum reduction in lRV

is found

for the 60� slope, suggesting that the spatial variability
effect is not as significant as it is for the other two slope
angles. In order to compare the effects of spatial variability
on the stability number and sliding volume, Fig. 8 is
recalled. It is seen that the reduction in lRV

is larger than

that in lRNs
for slope angles of 30� and 45�, and equivalent

for the slope angle of 60�. Therefore, the marked effect of
spatial variability on the sliding volume is seen for a shal-
low slope.
3.3. Relationship between stability number and sliding

volume in terms of failure mode

In the above discussions, certain facts have been pre-
sented. For example, Fig. 8 reveals that the marked effect
of spatial variability is seen for a large slope angle.
Fig. 13 shows a large variation in sliding volumes triggered
by large COVs. Fig. 15 demonstrates a lRV

larger than 1.0

at COVs = 0.2 and 0.1 for b = 45� and a serious reduction
in lRV

by spatial variability for b = 30�. These interesting

and unfamiliar facts can hardly be properly understood if
their interpretation is based only on the stability number
and sliding volume. These are imperfect measures for
quantifying slope stability since identical slopes with the
same stability number and sliding volume can exhibit dif-
ferent failure mechanisms due to the variability of the soil
properties. Therefore, an evaluation of the influence of soil
Fig. 15. Mean sliding volume ratio against slope angle.
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spatial variability on failure mechanisms is suggested. In
order to investigate the failure mechanism in the relation-
ship between the stability number and the sliding volume,
this subsection provides stability evaluations that consider
the slope failure mode. As expected, two base failure
modes, two face failure modes, and one toe failure mode
are identified in terms of the location of the critical slip sur-
face. As the inset drawings in the following figures show,
base failure mode 1, Mb1, is characterized as a large slope
failure, which includes the slope crest and slope toe in addi-
tion to the inclined slope face. The sliding mass for base
failure mode 2, Mb2, includes the slope toe and inclined
slope face, while that for face failure mode 1, Mf1, includes
the inclined slope face and slope crest. For face failure
mode 2, Mf2, the sliding mass includes only the inclined
slope face. In addition to toe failure mode Mt, whose slid-
ing mass includes the slope crest and the critical slip surface
passing across the slope toe, there is a transition failure
mode between Mb1 and Mf1. Mb1 is expressed as a large
failure, while Mb2, Mf1, and Mf2 are expressed as relatively
small failures. However, due to the stationary stability
analysis and the inherent assumption of LEM methodol-
ogy, it should be noted that the failure mode evaluation
in this study does not account for secondary or progressive
failure.

Figs. 16, 17, and 18 illustrate the relationships between
stability number ratio RNs and sliding volume ratio RV, in
terms of the failure mode, for the largest spatial variability
considered in this study (COVs = 1.0 and H = 1.0). In gen-
eral, a positive correlation between the stability number
and the sliding volume can be found for all slope angles.
It is noted that Mb1 is the deterministic failure mode for
homogeneous slopes of b = 30� and 45�, and Mf1 is the
deterministic failure mode for b = 60�, suggesting that,
with an increasing slope angle, the dimension of the deter-
ministic failure change from large to small, and explaining
how the sliding volume decreases as the slope angle
increases. The black plots in the three figures show the
locations of the means of RNs and RV for each failure mode.
An effect of the slope angle on the stability number can be
Fig. 16. Stability number ratio against sliding volume ratio with respect to
failure mechanism for b = 30�.



Fig. 18. Stability number ratio against sliding volume ratio with respect to
failure mechanism for b = 60�.

Fig. 17. Stability number ratio against sliding volume ratio with respect to
failure mechanism for b = 45�.
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found, whereby the stability number decreases with
increases in the slope angle, even when considering the
same failure mode. As expected, a large change in the slid-
ing volume ratio via the change in failure mode is observed,
which explains that the large variation in sliding volumes
presented in Fig. 13 is due to the existence of various failure
modes.
Fig. 19. Investigation of failure mode for b = 30�: (a) percentage of failure
deterministic failure mode for homogeneous slope.
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In Fig. 16, for the slope angle of b = 30�, the results for
base failure mode Mb1 are plotted close to the 1:1 line,
accompanied by large values of RNs and RV. The results
for the other three modes (Mb2, Mf1, and Mf2) are all plot-
ted above the 1:1 line. This means that RNs is larger than RV

for these three failure modes, suggesting that RV is affected
greatly by the failure mode. In the case of Mf2, it is noted
that the range in RNs is apparently larger than the range in
RV, which means that very different stability numbers
could arise even for comparable sliding volumes. This effect
further confirms that the stability of a slope is mainly con-
trolled by the average strength along the slip surface; Mf2 is
local and small enough to show the obvious spatial average
effect. Fig. 18 shows that, with a slope angle of b = 60�, the
RV for Mf1 in a spatially variable slope is smaller than 1.0,
affirming that spatial variability leads to a reduced sliding
volume when compared with that for a homogeneous
slope. (The failure mode for a 60� homogeneous slope is
Mf1.) Moreover, the RV for Mb1 is larger than 1.0, which
confirms the large failure feature for Mb1. Finally, in
Fig. 17, for a slope angle of b = 45�, the failure mode for
a homogeneous slope is Mb1. However, the RV of Mb1

for a spatially variable slope is generally larger than 1.0.
Thus, the sliding volume of Mb1 for a spatially variable
slope is larger than that for a homogeneous slope, which
is contrary to the finding that spatial variability results in
a reduction in sliding volume. Hence, further assessment
is required of Mb1 for homogeneous and spatially variable
slopes of b = 45�.

In order to examine the effect of spatial variability on
the failure mode, Figs. 19, 20, and 21 show the occurrence
of each failure mode against the COV of shear strength and
the failure mode transition for a homogeneous slope. It is
necessary to mention that the toe area of the slope should
be closely monitored as the shear stress concentrates and
the critical slip surface shifts from passing below the toe
(base failure) to passing through the inclined face (face fail-
ure) when the slope angle increases (Stianson et al., 2011;
Al-Karni and Al-Shamrani, 2000). Before introducing toe
failure mode Mt, the failure mode for a homogeneous slope
mode against COV of shear strength for spatially variable slope and (b)



Fig. 20. Investigation of failure mode for b = 45�: (a) percentage of failure mode against COV of shear strength for spatially variable slope and (b)
deterministic failure mode for homogeneous slope.

Fig. 21. Investigation of failure mode for b = 60�: (a) percentage of failure mode against COV of shear strength for spatially variable slope and (b)
deterministic failure mode for homogeneous slope.
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of b = 45� is firstly characterized as Mb1 (M
45

�

hom ¼ Mb1). As
found in Fig. 17, the lRV

of Mb1 for a spatially variable

slope is larger than 1.0, which means that the sliding vol-
ume of Mb1 for a spatially variable slope is larger than that

of Mb1 for a homogeneous slope (V 45
�

SV Mb1ð Þ > V
45

�

hom Mb1ð Þ).

This suggests that the critical slip surface of Mb1, for a spa-
tially variable slope, sits deeper and passes below the toe.
Conversely, the critical slip surface for a homogeneous
slope should be close to the toe and pass across it. Under
these mechanisms, toe failure mode Mt is introduced; it lies
between base failure Mb1 and face failure Mf1. It is featured
as the critical failure surface passing across the slope toe
and is sketched in the following figures. In order to inves-
tigate the mechanism of transition mode Mt, Fig. 19 (b),
20 (b), and 21 (b) show the failure mode transitions for
the homogeneous shear strength of slope angles b = 30�,
45�, and 60�, respectively. It is seen that, under homoge-
neous shear strength, pure base failure mode Mb1 for
b = 30�, failure modes Mb1 and Mf1, and toe mode Mt

are observed for b = 45� and 60�. This clearly suggests that
Mb1, Mf1, and Mt are the deterministic failure modes for a
homogeneous slope and that Mb2 and Mf2 are the results of
13
spatial variability. It can also be seen that homogeneous
slope failures all involve the slope crest (Mb1, Mt, and
Mf1). In addition to the range in c–/ values of those failure
modes for slopes of b = 45� and 60� in Fig. 20 (b) and 21
(b), it is seen that plots for Mb1 lie in the lower portion,
indicating a combination of large cohesion c and small fric-
tion angle /, contrasting the combination of small c and
large / for Mf1. This observation agrees with the study
of Chen and Chameau (1983), who evaluated a 3D c–/
slope and found that lower c values with higher / values
lead to a shallow critical sliding surface passing over the
toe, while higher c values with lower / values lead to a deep
critical sliding surface extending beyond the toe of the
slope (referred to as Mf1 and Mb1, respectively, in this
study). Hence, the sliding volume sequence of
V Mb1 � V Mt � V Mf 1 is provided. Since the changes in Mb1

and Mf1 are due to changes in the values of c and /, a series
of deterministic values of c and / for Mt, which may be
called c–/ thresholds for Mb1 and Mf1 transitions, are dis-
covered and then plotted as red dashed lines in the figures.
The values c = 100 kPa and / = 30�, shown as red solid
lines, are the mean strengths used as inputs in this study.
They are exactly the threshold values causing toe failure
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Mt for a slope of b = 45�. This further indicates that a nor-
malization index for a sliding volume ratio, that considers
the sliding volume for a homogeneous slope of b = 45�
(VMt), will result in a ratio larger than 1.0 at a small COVs

(COVs = 0.2 and 0.1) since the large base failure Mb1 is also
dominant at that COVs. It consequently explains how lRV

lies above the 1.0 ratio line for a small COVs (0.2), as
shown in Fig. 15, and why, when the COVs increases, as
shown in Fig. 20, the Mb1 is gradually replaced by other
small failure modes and lRV

eventually drops below 1.0.

At b = 60�, as shown in Fig. 21 (a), the failure mode for

a homogeneous slope is face failure Mf1 (M
60

�

hom = Mf1). Mf1

is the dominant failure mode irrespective of any changes in
COVs. This suggests that spatial variability has less influ-
ence on the failure mechanism of a steep slope. The com-
mon occurrence of Mf1 indicates a low variation in the
failure mode, and further explains it having the smallest
change in sliding volume ratio among all the slope angles,
as shown in Fig. 15. In Fig. 19 (a), for a homogenous shal-

low slope (b = 30�), the failure mode is Mf1 (M
30

�

hom = Mf1).
It is seen that COVs has a significant influence on the fail-
ure mode. For small COVs of 0.2 to 0.4, Mb1 is dominant,
with a probability of more than 90 %. However, as COVs

increases, the failure mode gradually changes to the modes
for small failures. Eventually, all kinds of failure modes
appear. And, at COVs = 1.0, more than 70 % of the occur-
rences are small failure modes (Mb2, Mf1, and Mf2). For the
sliding volume ratio, therefore, a normalized index consid-
ers the sliding volume of a homogeneous slope (V Mb1

),
resulting in a small sliding volume ratio RV together with
an increased occurrence of small failure modes at large
COVs values. The results of the maximum reduction in
the sliding volume ratio are shown in Fig. 15. It can be con-
cluded that the sliding volume evaluation for a shallow
slope is conservative, regardless of the soil’s spatial
variability.

In order to evaluate the failure mechanism together with
the slope inclination, Fig. 22 presents the percentages of
failure modes against the slope angle for COVs = 0.5 and
Fig. 22. Percentage of failure mode against slope angle for spatially
variable slope.
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1.0 and H = 1.0. It is found that Mf1 becomes the major
failure mode, while Mb2 gradually fades away as the slope
angle steepens, and disappears at b = 60�. It is noted that
Mb1 and Mf1, whose sliding masses include the slope crest,
become the major failure modes as the slope angle
increases, with a combined 94 % probability at b = 60�.
This shows that failures involving the slope crest comprise
the main failure mechanism for steep slopes, while failures
involving the toe (Mb1 and Mb2) gradually become minor.
It is also found that, as the slope angle decreases, the slope
failure mechanism varies greatly. For example, four failure
modes can be found at b = 30� and their probabilities of
occurrence are relatively comparable.

3.4. Sensitivity analysis

Sensitivity analyses are often carried out to determine
the relationship between the uncertainty in the output of
a model and the different sources of uncertainty in its input.
Zhang et al. (2017) conducted a sensitivity analysis between
various parameters and the corresponding factor of safety
for the Sweden arc method, using a first-order derivation
method. El-Ramly et al. (2002) performed a probabilistic
sensitivity analysis to quantify the contributions of the var-
ious sources of uncertainty in geotechnical parameters to
the overall design uncertainty. Khan and Malik (2013),
Chen et al. (2016), Chen et al. (2019), and Kasama et al.
(2021a) investigated the effect of geotechnical parameters
on structures by sensitivity analyses. In this study, the
geotechnical parameters for slope stability are cohesion c,
friction angle / (tan/), and unit weight c, which are also
treated as random variables for modeling the soil uncer-
tainty. (Table 1 summarizes the mean averages and vari-
ances for all parameters.) It is necessary to evaluate the
sensitivity of those parameters, and the stability number
of this slope stability model.

In order to evaluate the sensitivity of input random
parameters, whose uncertainties are deemed important to
slope stability, El-Ramly et al. (2002) performed a sensitiv-
ity analysis with Spearman rank correlation coefficients as
input. The Spearman rank correlation coefficient is a com-
monly used nonparametric measure of rank correlation
that reveals the strength of a relationship between two sets
of associated data. It varies between –1 and 1, the former
indicating a perfect negative correlation, the latter a perfect
positive correlation. A zero value indicates no correlation
between the two data sets. This technique can be employed
to measure the correlation between and the contribution of
each input variable to the uncertainty in the stability num-
ber in this study (Conover, 1999). In order to measure the
correlation between two random variables under the condi-
tion whereby the indirect influence of other random vari-
ables is eliminated, a partial estimation is introduced as a
partial Spearman rank correlation coefficient (Conover,
1999). The formulas to calculate the first order and second
order partial Spearman rank correlation coefficients are
introduced as follows:
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q XW ;Yð Þ ¼
qXW � qXYqYWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

XYð Þ 1� q2
YWð Þ

p ð16Þ

where qAB is the Spearman rank correlation coefficient
between A and B, and q(AB,C) is the first order partial
Spearman rank correlation coefficient between A and B

after controlling the effect of C.

q XW ;Y ;Zð Þ ¼
qXW ;Y � qXZ;YqWZ;Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

XZ;Y

� �
1� q2

WZ;Y

� �q ð17Þ

where q(AB;C,D) is the second-order partial Spearman rank
correlation coefficient between A and B after controlling
the effect of C and D.

Three parameters (c, /, and c) are considered in this
study. Hence, Eq. (17), for the second-order partial Spear-
man rank correlation coefficient, is used to estimate the
relationship between one input parameter and output Ns,
after controlling the effect of the other two parameters.
To perform a sensitivity analysis using a partial Spearman
rank correlation coefficient, the random parameters for
shear strength c and / are assumed to be the average cohe-
sion and average friction angle along the slip surface,
respectively. In addition to the above two shear strength
parameters, unit weight c is treated as the average weight
of the soil mass above the slip surface. These assumptions
could reduce the uncertainty of the soil properties along the
slope surface. However, it has been established that slope
failure tends to occur when the average strength along
the slip surface is insufficient, rather than because of weak
soil strength at a particular location (Kasama and Whittle,
2015). This spatial averaging effect is also evidenced by
Fig. 6. The assumption for the uncertainty of the average
shear strength along the slip surface is reasonable and
makes for an accurate assessment of the uncertainty.

Fig. 23 shows the sensitivity analysis using partial Spear-
man rank correlation coefficients for the three input vari-
ables. The inset figure with grey bars shows the partial
Spearman rank correlation coefficients without considering
the failure mechanism. The two shear strength parameters
Fig. 23. Partial Spearman rank correlation coefficient for stability number
with and without consideration of failure mode.
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(c and /) are positively correlated with the stability num-
ber. This is due to the definition of the stability number
(factor of safety) in terms of the shear strength and
Mohr-Coulomb failure criterion. In addition to unit weight
c, a negative correlation to Ns is revealed, which means that
an increase in unit weight tends to decrease the stability
number. This is reasonable since the unit weight mainly
contributes to the slope sliding driving force. It is seen that
the most sensitive input parameter is cohesion c. The rea-
son for its maximum influence is that its probability density
function range is larger than those of / and c; thus, it can
produce large changes in the stability number. However, as
pointed out by Zhang et al. (2017), many studies ignore the
influence of the sensitivity of parameters on the slope fail-
ure mode and give an overall sensitivity evaluation, as in
the inset figure, which is inaccurate if the slope behavior
points to various failure mechanisms. In this study, various
failure modes have been identified. In order to reveal infor-
mative details and enhance the reliability of the sensitivity
analysis, failure modes considering the partial Spearman
rank coefficient correlations were examined, and are shown
in Fig. 23. In general, cohesion c remains the most sensitive
soil parameter in each failure mode, which confirms its
dominant influence on the stability number in this slope
stability model and the positive contributions of the two
shear strength parameters. It is worth noting that a positive
correlation of unit weight c is revealed for base failure Mb2,
meaning that c also contributes to slope stability. This
apparently odd finding is in fact reasonable, if the sliding
mass is mainly located at the slope base, as it could stop
the above sliding mass and provide a moment counter to
the sliding moment. Hence, a positive correlation of c is
found for Mb2. The magnitude of the negative correlation
of c for Mb1 is smaller than that for face failures Mf1 and
Mf2, for the same reason, since the positive effect of c has
been offset by a large volume of upper sliding mass. Mean-
while, the largest negative correlation of c is found for Mf1,
a face failure involving the slope crest. In addition to the
engineering interest of the largest failure, Mb1, cohesion
has the largest positive correlation to slope stability, while
the unit weight has an insignificant negative influence.
These results highlight the necessity of considering the fail-
ure mechanism in any sensitivity analysis, as it could affect
the judgment of uncertainty in slope stability.

3.5. Significance of mean values of shear strength parameters

Depending on the material type, a large mean cohesion
with a small mean friction angle for clayey soil, a small
mean cohesion with a large mean friction angle for sandy
soil, and relatively large cohesion and a relatively large fric-
tion angle are usually seen for soil-rock mixtures. The cur-
rent analyses were made using relatively large mean values
for cohesion lc = 100 kPa and for the friction angle of
l/ = 30� and are referred to as the shear strength parame-
ters for soil-rock mixtures. In order to consider the effect of
different types of soil and other possible combinations of



Fig. 24. Ratio of rNs for single random variable to all three random variables: (a) considering different mean cohesion values and (b) considering different
mean friction angles.

L. Hu et al. Soils and Foundations 62 (2022) 101225
mean values for the shear strength parameters on the anal-
ysis results, additional calculations were performed.

Fig. 24 demonstrates the significance of random vari-
ables for the shear strength parameters (cohesion c and
friction angle /) considering their different mean values.
When investigating the single random variable, the others
are kept constant at their means, and a ratio of the varia-
tion in Ns resulting from a single random variable to that
resulting from the simultaneous input of all three random
variables is introduced in Eq. (18), and the results are plot-
ted in Fig. 24. It should be noted that the effect of the ran-
dom variables on the soil unit weight is not shown in the
figure, due to the fixed mean value of 20 kN/m3 used in
the analyses.

R ¼ rNs single
=rNs three

ð18Þ

Fig. 24 (a) and (b) show mean cohesion lc changing
from 3 kPa to 100 kPa, while keeping the mean friction
angles of l/ = 3�, 30�, and 50�, and mean friction angle
l/ changing from 3� to 50�, while keeping the mean cohe-
sion values of lc = 10 kPa, 50 kPa, and 100 kPa, respec-
tively, while the mean unit weight is fixed as lc = 20 kN/
m3. Each random variable has a different magnitude of sig-
nificance in the output of the model (referred to as a vari-
ation in Ns).

Considering sandy soil with small cohesion and a large
friction angle, for example, lc = 3 kPa with l/ = 30�
and 50�, as in Fig. 23 (a), the variation in Ns for the cases
where only the friction angle is considered as a random
variable is the most significant. This means that the varia-
tion in friction angle is the major source of the variation in
Ns at the sandy soil condition of lc = 3 kPa with l/ = 30�
and 50�. When considering other possible combinations
and increasing the mean cohesion (3 kPa to 100 kPa), the
significance of the friction angle decreases, while the signif-
icance of cohesion increases and surpasses that of the fric-
tion angle. On the other hand, considering clayey soil with
a small friction angle and large cohesion, for instance,
l/ = 3� with lc = 10 kPa, 50 kPa, and 100 kPa, as in
Fig. 23 (b), the cohesion is the major source of the varia-
tion in Ns. When considering other possible combinations
and increasing the mean friction angle (3� to 50�), the sig-
16
nificance of cohesion decreases and the significance of the
friction angle increases and surpasses that of cohesion,
when keeping lc = 10 kPa and 50 kPa, but it does not sur-
pass that of cohesion when keeping lc = 100 kPa, which is
mainly due to a relatively large mean value for cohesion.
Hence, a significant effect of cohesion is found in soil-
rock mixtures with lc = 100 kPa and l/ = 30�, such as that
mainly investigated in this study.
4. Conclusions

This paper presented the results of a probabilistic slope
stability analysis, considering the 3D spatial variation in
soil properties, using a random limit equilibrium method
and Monte Carlo simulation. The main conclusions are
as follows.

(1) One thousand iterations of the Monte Carlo simula-
tion (MCS) meet the accuracy requirement in this study,
considering the cumulative mean and coefficient of varia-
tion (COV) of the stability number ratio and sliding vol-
ume ratio. A normal or log-normal distribution is highly
adaptable to statistical distributions of the stability number
and sliding volume. An assessment of the Kolmogorov–
Smirnov goodness of fit test, with an acceptance criterion
of Dn,a[1000, 0.01] = 1.035, accounts for the uncertainty
effect on the slope stability number and sliding volume
and facilitates a probabilistic assessment of slope stability.

(2) The ratio of the stability number normalized by that
for a homogeneous slope is <1.0 and decreases with the
increasing COV of the shear strength and correlation
length H. The maximum decrease in the mean stability
number ratio, considering the 99 % lower confidence
bound, is 14 %. This occurs when H varies from 0.05 to
0.25 for a given COVs (COVc and COVtan/) = 1.0 and
0.5. The marked reduction in the stability number ratio is
seen for steep slope angles.

(3) The ratio of the stochastic sliding volume normalized
by that for a homogeneous slope decreases with increasing
H, while the 99 % upper bound of the sliding volume ratio
shows a maximum decrease of 29 % when H varies from
0.25 to 0.50 for a given COVs = 1.0 and 0.5. This marked
reduction in the sliding volume ratio is seen for shallow
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slope angles. The sliding volume is more sensitive to the
spatial variability of the soil strength, compared to the sta-
bility number.

(4) The variations in the stability number and sliding
volume are found to increase with increasing COVs and
H, due to the varied failure mechanisms at large values
of COVs and H. Five failure mechanisms (two base fail-
ures, two face failures, and one toe failure, namely, Mb1

and Mb2, Mf1 and Mf2, and Mt) are identified by the loca-
tion of the slip surface of the sliding soil mass. The deter-
ministic failure modes are Mb1 for a homogeneous slope
of b = 30�, Mt for that of b = 45�, and Mf1 for that of
b = 60�. This indicates that Mb2 and Mf2 are additional
failure modes triggered by soil spatial variability. Mean-
while, the failure mode varies for shallow slopes, while fail-
ure involving the slope crest is the main mechanism for
steep slopes. As the slope angle increases, the failure mech-
anism at the critical surface is prone to change, from pass-
ing below the toe to passing above it.

(5) The sensitivity of input random variables (cohesion,
friction angle, and unit weight) to the output of the stabil-
ity number is evaluated considering failure mechanisms by
using partial Spearman rank correlation coefficients. A
positive correlation between the unit weight and the stabil-
ity number can be triggered by the base failure mechanism,
suggesting that sensitivity analyses should not ignore the
effect of failure mechanisms.
Table A1
Stability number, sliding volume, and goodness-of-fit results for normal and log

H COVc & tan/ lNs b = 45�

rNs Dn,adj lln(Ns) rln(Ns)

Random 0.2 & 0.1 11.99 0.0267 0.7843 2.48 0.0022
0.4 & 0.2 11.84 0.0496 0.5349 2.47 0.0042
0.6 & 0.3 11.66 0.0777 0.6788 2.46 0.0067
0.8 & 0.4 11.47 0.1011 0.5170 2.44 0.0088
1.0 & 0.5 11.27 0.1266 0.7132 2.42 0.0112

0.01 0.2 & 0.1 11.96 0.0391 0.9488 2.48 0.0033
0.4 & 0.2 11.77 0.0721 0.9317 2.47 0.0061
0.6 & 0.3 11.56 0.1050 0.8505 2.45 0.0091
0.8 & 0.4 11.33 0.1381 0.7173 2.43 0.0122
1.0 & 0.5 11.10 0.1679 0.9325 2.41 0.0152

0.25 0.2 & 0.1 11.73 0.1726 0.6854 2.46 0.0147
0.4 & 0.2 11.25 0.3453 0.4698 2.42 0.0307
0.6 & 0.3 10.73 0.5042 0.4564 2.37 0.0471
0.8 & 0.4 10.18 0.6282 0.4038 2.32 0.0618
1.0 & 0.5 9.61 0.7425 0.3564 2.26 0.0779

0.50 0.2 & 0.1 11.58 0.2952 0.6520 2.45 0.0256
0.4 & 0.2 10.90 0.6547 0.4678 2.39 0.0602
0.6 & 0.3 10.15 0.8585 0.4549 2.31 0.0855
0.8 & 0.4 9.25 1.1744 0.4232 2.22 0.1296
1.0 & 0.5 8.31 1.3039 0.4119 2.10 0.1598

1.0 0.2 & 0.1 11.46 0.4552 0.7283 2.44 0.0399
0.4 & 0.2 10.67 1.0125 0.3996 2.35 0.0970
0.6 & 0.3 9.46 1.4231 0.5262 2.24 0.1513
0.8 & 0.4 8.43 1.7766 0.7371 2.11 0.2142
1.0 & 0.5 7.11 2.7724 0.9514 1.96 0.2729

Note: Acceptance criterion Dn,a,[1000, 0.01] � 1.035.
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(6) The significance of the mean values for the shear
strength parameters (cohesion c and friction angle /) was
investigated under the consideration of different soil types.
Results show that c is significant in clayey soil with a large
lc and a small l/, and that / is significant in sandy soil
with a small lc and a large l/. Considering soil-rock mix-
tures with a relatively large mean value for cohesion
(lc = 100 kPa) and a friction angle of l/ = 30�, such as
the mixture mainly investigated in this study, cohesion is
the most significant random variable causing a variation
in the stability number, as a larger mean value is applied
for it.
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Appendix A. (See Table A1, Table A2).
-normal distributions of b = 45�.

lln(V) rln(V) Dn,adj

Dn,adj lV (m3) rV (m3) Dn,adj

0.6874 7006.26 547.99 0.7024 8.85 0.0772 0.6457
0.6781 6966.14 730.39 1.005 8.84 0.1040 0.8911
0.5480 6809.89 901.04 0.6224 8.82 0.1320 0.5318
0.6000 6663.50 983.36 0.8204 8.79 0.1473 0.5954
0.5099 6501.91 1059.42 0.8016 8.77 0.1622 0.4504
0.8429 7024.39 568.52 1.0014 8.85 0.0809 0.9978
0.5998 6957.78 859.73 0.9985 8.84 0.1235 0.7151
0.7556 6853.02 1058.09 0.8193 8.82 0.1532 0.4920
0.9059 6622.57 1164.65 0.9245 8.78 0.1734 0.5143
0.8914 6448.98 1247.76 0.6946 8.75 0.1923 0.5664
0.7914 7009.34 1047.97 0.8171 8.84 0.1455 0.9986
0.4270 6618.14 1566.61 0.7609 8.77 0.2314 0.6178
0.5635 6324.08 2091.11 0.6755 8.70 0.3357 0.5795
0.5201 5868.87 2442.26 0.7643 8.59 0.4651 0.6937
0.6779 5313.89 2729.88 0.8557 8.41 0.6847 0.7623
0.7919 6938.90 1270.16 0.4220 8.83 0.1735 0.5335
0.5804 6471.16 1990.63 0.6236 8.73 0.3024 0.8870
0.8414 5835.92 2734.95 0.8608 8.56 0.4937 0.8739
0.6508 4837.03 3236.41 1.2901 8.20 0.8803 1.3412

0.4835 3769.67 3280.77 2.1614 7.73 1.1741 2.7685

0.7921 6807.06 1176.13 1.0671 8.81 0.1625 0.5719
0.4802 6098.59 1997.00 1.2690 8.67 0.3180 0.8502
0.3157 5229.94 2787.53 2.0832 8.41 0.6012 1.5926

0.5079 4431.42 3495.23 3.4661 8.04 0.9710 1.5854

0.4088 3575.84 3890.61 5.9290 7.56 1.2491 1.6272



Table A2
Stability number, sliding volume, and goodness-of-fit results for normal and log-normal distributions of b = 60�.

H COVc & tan/ lNs b = 60� lln(V) rln(V) Dn,adj

rNs Dn,adj lln(Ns) rln(Ns) Dn,adj lV (m3) rV (m3) Dn,adj

Random 0.2 & 0.1 9.55 0.0284 0.7606 2.26 0.0030 0.7620 4142.25 273.62 0.6784 8.33 0.0690 0.7715
0.4 & 0.2 9.38 0.0560 0.7495 2.24 0.0060 0.9239 3927.16 407.39 0.7437 8.27 0.1065 0.6112
0.6 & 0.3 9.18 0.0856 0.9963 2.22 0.0093 0.6438 3859.67 490.61 0.7521 8.25 0.1285 0.6879
0.8 & 0.4 8.96 0.1095 0.9149 2.19 0.0123 0.9463 3796.02 544.82 1.0051 8.23 0.1440 0.7742
1.0 & 0.5 8.59 0.1722 0.6474 2.15 0.0201 0.7587 3694.47 600.30 0.7728 8.20 0.1862 0.7947

0.01 0.2 & 0.1 9.52 0.0378 0.7902 2.25 0.0040 0.7748 4099.54 305.92 0.8422 8.32 0.0783 0.6939
0.4 & 0.2 9.32 0.0773 0.9132 2.23 0.0083 0.7865 3898.09 457.52 0.9438 8.26 0.1193 0.9279
0.6 & 0.3 9.08 0.3059 0.4922 2.20 0.3172 0.4221 3858.47 544.80 0.5794 8.24 0.1461 0.7041
0.8 & 0.4 8.84 0.3187 0.5671 2.17 0.3167 0.4330 3741.97 617.18 0.8101 8.21 0.1711 0.6987
1.0 & 0.5 8.73 0.4107 0.6182 2.15 0.4467 0.9187 3684.56 679.78 0.9494 8.19 0.1855 0.6823

0.25 0.2 & 0.1 9.28 0.1732 0.5726 2.23 0.0187 0.5930 3987.42 491.20 0.4163 8.28 0.1266 0.6180
0.4 & 0.2 8.79 0.3421 0.6225 2.17 0.0391 0.6009 3783.97 741.93 0.4844 8.22 0.1981 0.9833
0.6 & 0.3 8.29 0.4845 0.4432 2.11 0.0586 0.6327 3651.09 1113.58 0.6605 8.16 0.3169 0.5102
0.8 & 0.4 7.75 0.6114 0.4663 2.04 0.0796 0.8168 3311.33 1288.81 0.7206 8.00 0.5099 0.7686
1.0 & 0.5 7.22 0.6961 0.3969 1.97 0.0975 0.6857 2960.14 1506.16 0.9553 7.82 0.6783 0.9622

0.50 0.2 & 0.1 9.15 0.2693 0.6236 2.21 0.0295 0.3976 3817.22 493.54 0.8011 8.01 0.1298 0.4751
0.4 & 0.2 8.47 0.5681 0.9980 2.13 0.0674 0.3489 3686.37 847.92 0.9092 8.18 0.2393 0.9258
0.6 & 0.3 7.78 0.7807 0.4362 2.05 0.1014 0.9311 3376.59 1282.97 0.8839 8.03 0.4494 0.7284
0.8 & 0.4 6.95 1.0524 0.5317 1.93 0.1538 0.6510 2924.68 1710.65 1.6059 7.76 0.7595 0.8469
1.0 & 0.5 6.16 1.0674 0.6186 1.80 0.1766 0.8615 2437.26 1764.62 1.9485 7.46 0.9596 1.9743

1.0 0.2 & 0.1 9.06 0.4003 0.4029 2.20 0.0443 0.5398 4005.58 499.71 1.1855 8.29 0.1399 0.7926
0.4 & 0.2 8.18 0.8656 0.4832 2.10 0.1076 0.8913 3616.26 927.70 1.0881 8.16 0.2504 2.0961

0.6 & 0.3 7.24 1.1289 0.8941 1.97 0.1705 0.4016 3277.20 1547.20 1.4857 7.98 0.5155 1.5631

0.8 & 0.4 6.36 1.3992 0.8159 1.83 0.2240 0.7407 2810.84 2000.79 2.8865 7.70 0.7792 2.1564

1.0 & 0.5 5.63 1.5982 0.5774 1.69 0.2884 0.4133 2406.74 2003.13 2.9553 7.38 1.0255 2.0946

Note: Acceptance criterion Dn,a,[1000, 0.01] � 1.035.
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