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Abstract 

Electromyography (EMG) in the human-computer interface is one of the competent input signals. Its 

intuitive applicability with the same strategy of the body movements fits prosthesis and virtual reality interface 

applications. The advancement of EMG signal processing facilitated identifying postural pattern or 

locomotion trajectory estimation, but not together. The existing estimation models are usually either discrete 

classification of complex motions or regression of a single joint. However, the complex regression model is 

elusive because of the crosstalk inherent in EMG signals. Signal source decomposition demands for a complex 

movement estimation with continuity. Among famous decompositions are the non-negative factorization and 

independent component analysis, which are also algorithms to compute muscle synergy. This study explores 

the muscle synergy-based EMG signal decompositions and investigates the validity of muscle synergy in 

movement and muscle type discrimination. First, multi-degree hand movements containing combined two-

dimensional wrist movements and grasping were discriminated then linearly regressed using muscle synergy. 

Its estimation performance was compared with the existing musculoskeletal model in γ correlation and 

normalized error. Comparing linear regression performance from muscle synergy with the musculoskeletal 

model confirmed the robustness of muscle synergy in movement estimation and movement type 

discrimination. Finger movement estimation in the two-elbow posture was conducted after hand motion 

estimation to explores the crosstalk between the superficial and deep muscles with high-density EMGs on the 

forearm. The sequential EMG decompositions by muscle synergy onto the multi-channel EMG surrounding 

the entire forearm enabled deep muscle identification with equivalent signal fidelity of superficial muscles, 

and this drastically improved finger movement estimation. In addition, stepwise change of muscle signals 

revealed the role of decomposition algorithms. The muscle synergy proposed in this study gives either robust 

or improved signal fidelity input signals that could expand to the existing EMG based human-machine 

interface.
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Chapter 1 Introduction 

In the 21st century, the emerging technology of 3D display such as head mount 

display gives anticipation of augmented/virtual reality. New technologies demand 

interfaces that can keep up with their functions, as mouse/keyboard interface has been 

matched with graphic visualization of the computer. To fit into the new era, collaborative 

new interface devices and algorithms are vigorously studied, aiming for user-friendly 

features. Electromyography (EMG)-based interface is one of the candidates. 

This study deals with EMG based interface regarding wrist and hand movements 

using forearm muscles. The hand is a highly dexterous instrument in the human body that 

has abundant adaptability to numerous functions. Therefore, in augmented/virtual reality, 

hand motion is one of the most effective tools to express the intention of the users. Also, 

the application of an EMG-based interface could span the rehabilitation and prosthesis. 

The loss of hand functions makes daily living difficult such as wearing, eating like 

fundamental and natural behaviors. Hand motion estimation using EMG has been studied 

by several researchers from the 90s to the present. From implementing the physical 

parameters of the body to simply utilizing machine learning for classification, various 

EMG analysis showed high-precision movement in many procedures. 

In real use, however, there still exist several issues to overcome. Dexterous hand 

motion generates from several muscle fibers inside the forearm. However, the detection 

of individual muscle activity using surface EMG is a controversial issue, sometimes 

regarded as physically impossible. The muscles on the forearm are layered one over 

another. This physical location brings about crosstalk and makes a small number of EMG 

signal analysis to be hard to identify the specific target muscle activities in complex 
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movements so that further signal processing is demanding. This study deals with such 

signal processing issue with scientific concept ‘muscle synergy’ in engineering technique 

and try to figure out signal sources and applied the information into the interface.  

1.1 EMG 

Electromyography (EMG) records the bioelectric activity in the muscle 

representing voluntary contraction. Motor neurons in the spinal cord and the brain give 

commands, and the contraction occurs in multiple motor units inside muscles. Vibrating 

EMG signals originate from the superposition of such a massive number of the motor unit 

action potential. EMG-driven parameters such as Integrated EMG, Zero Crossing, and 

quasi-tension of selected muscles enable researchers to estimate muscle activities and 

even body movements (Phinyomark, et al., 2018). Figure 1.1 shows the EMG signals 

activation with subsequent Quasi-tension with the process of rectification.  

Figure 1.1 Time Series EMG signal (Up) and subsequent Quasi-tension (Down) 
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This control technology is applicable for not only exoskeletal devices of amputee 

and paralyzed patients but also a wide range of applications for augmented/virtual reality. 

One of the primary advantages of EMG is that it predicts movements using signals from 

the central nervous system that control the body so that the cost of users learning the EMG 

interface is small. If surface EMGs can detect each muscle activity, we can see and 

generate diverse body movements.  

1.2 Muscle Synergy 

Muscle synergy is defined as a group of muscle activations recruited by a neural 

command (Torres-Oviedo, et al., 2006). The existence of this phenomenon was proposed 

by Nikolai Bernstein (Bernstein, 1967) as a neural strategy simplifying the 

musculoskeletal model that it is too complex to the high degree of freedoms (DOFs). 

Studies on frogs have proposed that a complex repertoire of movements can emerge from 

the appropriate control and selection out of few synergies which respectively represent a 

primitive movement (Tresch, et al., 1999). Ting & McKay (2007) also proposed that the 

nervous system uses muscle synergies as a set of heuristic solutions to transform task-

level goals into detailed spatiotemporal patterns of muscle activation (Figure 1.2). 
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Figure 1.2  Muscle synergies allow task-level neural commands to be translated into execution-level 

muscle activation patterns. This hierarchical structure mirrors that of multisensory integration systems. 

©Reprinted from Current Opinion in Neurobiology, Vol 17, Ting & McKay, Neuromechanics of muscle 

synergies for posture and movement, 622-628, Copyright (2007), with permission from Elsevier 

 

Figure 1.3 Brief overview of non-negative matrix factorization 
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Muscle synergy derivation was mainly conducted using Non-negative matrix 

factorization (NMF) as shown in Figure 1.3. NMF is one of the main blind source 

separation (BSS) techniques to solve the following problem.  

    (1) 

where Q is the muscle signals in a non-negative matrix with  being the number 

of EMG channels,  being the number of samples; is the synergy vector 

series in  by  matrix, wherein  is the independent variable that defines the number 

of synergies and   representing a single set of synergy; H is time 

coefficient the synergy in   by   matrix. NMF optimizes the synergy and time 

coefficient vector based on the square of the Euclidean distance and other parameters 

(such as divergence) (Lee & Seung, 2001). In the case of the method of reducing 

Euclidean distance, the update rules are shown below with ,  are the k-th iteration 

results of update rules. 

   (2) 
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Chapter 2 Backgrounds and Aim 

2.1  EMG Preprocessing 

The surface EMG signal contains various noise and artifacts from physical 

contamination such as power source noise, movement, skin/electrode impedance artifact. 

And even the small-amplitude spikes induced by static electricity or random nature could 

be the source of noise components from the environment (Chowdhury, et al., 2013). The 

inherent noises such as blood flow in the muscles, muscle fiber composition, and distance 

between muscle fibers could be another source of the noise components. For this reason, 

EMG preprocessing is an essential step in the EMG analysis. 

 

- Bandpass filtering 

The SENIAM project and the International Electromyography and Exercise 

Science Association (ISEK) gave scientific recommendations to use bandpass filters (10 

- 500 Hz) under 1 kHz sampling rate to reduce the aliasing effect. 

 

- Linear envelope 

Linear envelope is a combination signal processing that comprise rectification and 

low pass filtering on the EMG signals. The high-frequency region of the EMG signal 

reflects individual motor unit action potential, and low frequency reflects the firing rate 

of  motor neurons (Koike & Kawato, 1995). Thereby linear envelope (quasi-tension) 

makes EMG signal to be highly correlated with joint torque of the muscle. 
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- Normalization 

The optimal condition of EMG normalization is matching the EMG activation 

according to a specific force level so that it connects EMG signals to the force unit. 

However, when it is not applicable, there are different methods to be applied (Halaki & 

Ginn, 2012) 

a. maximum(peak) activation levels during maximum contractions.  

(= Maximum voluntary contraction (MVC)) 

MVC is one of the most common methods of EMG normalization. Though the 

reference tests are not fixed per muscle, stimulations of all involved muscle parts are 

particularly important. Participants could distort normalization parameters by using the 

wrong muscle in the designated muscle contraction trial sets. Thereby, MVC in the 

isometric condition is preferable but if the condition is not matching, the dynamic 

contraction would be better than the following method. 

b. Peak or mean activation levels obtained during the task under investigation  

In some cases, normalization is performed using the maximum value of all data 

so that the data after the normalization process does not exceed 1. However, in this case, 

real-time analysis becomes impossible and normalization becomes task-dependent, 

making comparison with other tasks impossible. Nevertheless, this normalization method 

may be useful when high intensity exercise is unavailable as in patients. 
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2.2 EMG-based Hand Motion Estimation 

There are many studies conducting hand motion estimation using EMG. The 

followings are some examples within a year. 

Mukhopadhyay & Samui (2020) classified eight different hand movements, that 

are six wrist joint movements and hand grip and opening from seven EMG electrodes 

using feed-forward Deep Neural Network (DNN) model and compared with the existing 

machine learning tools. Their DNN model achieved comparable performance with SVM, 

with minimal processing in feature selection. 

Simão et al. (2019) propose the use of recurrent neural networks (RNNs) to 

improve the online classification of hand gestures using two Myo armbands (Thalmic lab, 

USA) placed on the forearm muscles, they showed equivalent performance with existing 

machine learning in less time cost. 

Ameri et al. (2019) tested RNN in eight bipolar EMG channels in four type of 

movements and their combinations. Their model showed more than ninety percent 

accuracy on the flexion, extension, pronation, supination movements and their 

combinations even with different width and distance. 

As illustrated, many researchers conducted hand motion estimation using each 

of their own machine learning model. However, their focus was mainly on the feasibility 

of machine learning on the bio-signal. For this reason, their target movements are limited 

to single joint movements even for measuring wrist joint muscles. 
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2.3 Muscle Synergy 

Some of the latest studies on muscle synergy employed in human machine 

interface are reviewed in this section. 

Shima & Tsuji (2010) proposed a pattern classification for user motions to create 

input signals for human-machine interfaces from electromyograms (EMGs). This method 

is implemented to represent combinations of simple motions using a recurrent neural 

network by combining synergy patterns of EMG signals preprocessed by the network 

(Shima & Tsuji, 2010). The results showed that 18 motions (12 combined and 6 single) 

were classified with learning on 6 single motions (average rate: 89.2 ± 6.3%), and the 

amputee participant controlled a prosthetic hand both on single and combined motions. 

Based on multiple days' study by Ison and Artemiadis (2015), new muscle 

synergy space naturally emerges as participants identify the system dynamics of a 

myoelectric interface. These synergies correlate with long-term learning, increasing 

performance over consecutive days. Synergies were maintained after one week, helping 

participants retain efficient control and generalize performance to new tasks. The 

extension to robot control was also demonstrated with a robot arm performing reach-to-

grasp tasks in a plane. The ability to enhance, retain, and generalize control, without a 

need to recalibrate or retrain the system, supports control schemes promoting synergy 

development, not necessarily user-specific decoders trained on a subset of existing 

synergies, for efficient myoelectric interfaces designed for long-term use. The study 

supports a shift in myoelectric control schemes toward simultaneous proportional controls 

learned through the development of unique muscle synergies. 
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Antuvan et al. (2016) compared the performance of a decoder trained using 

extreme learning machine (ELM) for two different features (EMG and synergy) which 

are for the myoelectric-based interface which is able to identify and online classify, upper 

limb motions involving shoulder and elbow. The performance of the decoder was tested 

in online motion control by using a simulated graphical user interface replicating the 

human limb: participants are requested to control a virtual arm by using their muscular 

activity. The decoder performance was quantified using ad-hoc metrics based on motion 

selection time, motion completion time, and classification accuracy. The work 

demonstrated the better robustness of online decoding of upper-limb motions and motor 

intentions when using the synergy feature. 

In muscles synergy studies, the tasks approached the actual movement on the 

daily life such as combination of reaching/grasping.  

2.4 Purpose of The Study 

The purpose of the study is to enable multi joint complex hand motion estimation.  

To do this, we need to find out the activation of each of the various muscles stacked in 

layers. This will span the application region and, in the end, enable the natural movement. 

I consider EMG sensor signal as a mixture signals composed of multiple muscle signals 

and noise components. Therefore, signal discrimination is necessary before inserting to 

system models. For this, the muscle synergy concept gets used with NMF as the BSS 

method. Besides, I suppose that through signal analysis such as NMF from these signals, 

we will be able to obtain specific muscle signals or primitive neural commands that cause 

movement. The following experiment tested whether muscle synergy could discriminate 

neural command and muscle activities from control tasks.  
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Chapter 3 Muscle Synergy-based Hand Motion Estimation 

3.1 Introduction 

Chapter 3 tested the feasibility of the muscle synergy model by comparing the 

performance with an existing model. As mentioned in the previous chapters, surface 

electromyography (EMG) signal-based models, algorithms, and numerous techniques 

have arisen for prosthesis controls and clinical controllers. Although it was a discreet way, 

several studies had attempted and shown their control method in prosthetic machines 

(Nishikawa, et al., 1999), virtual hands (Sebelius, et al., 2005), and exoskeletons 

(Khokhar, et al., 2010) using hand gestures and wrist motions. Their control algorithms 

were as diverse as their control targets. They used machine learning (Nishikawa, et al., 

1999), feed-forward neural network (Kita, et al., 2006), and other linear classifiers (e.g., 

k-NN and Bayes). 

Previous studies obtained high performance for movement but received a rigorous 

evaluation from real users (Biddiss, 2009). They demanded various and natural motions 

necessary for daily life, which naturally led to studies based on continuous estimation. 

Castellini & van der Smagt (2009) classified grasping type and estimated its force 

regression with a support vector machine. Another force estimation study showed 

promise of applicability to unilateral amputees by employing a bilateral mirror-training 

strategy (Nielsen, et al., 2010). In movement estimation, Artemiadis & Kyriakopoulos 

(2010) tried the shoulder and elbow joints of four rotational degree-of-freedoms (DOFs) 

model. Jiang et al (2012) even suggested an algorithm of the three DOFs of the wrist for 

simultaneous estimation; However, these continuous estimations did not step on the 

complex estimations of the wrist joint movements and gripping. 
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If I have to pick the biggest issue for complex movement estimation, it would be 

the crosstalk. Wrist joint and finger muscles placements are adjacent inside the forearm. 

Therefore, surface EMG sensor extract not only the target muscle signal but also the 

adjacent signals derived from neighboring muscles. In this regard, some researchers used 

sensor attachment in the way of suppressing inclusion between each muscle, and then 

considered each sensor signal as a target muscle signal and conducted the analysis. In this 

chapter, my sensor positions keep the previous research rules while treating the sensor 

signals as a mixture of multiple muscle signals. Movement estimation performs both on 

the gripping force and wrist joint movements by separating the crosstalk between 

different signal source using muscle synergies. 

The idea of synergy-based estimation has a root in the following studies. Muscle 

synergy is regarded as a neural command (Torres-Oviedo, et al., 2006). And combinations 

of muscle synergies generate from individual motion can make complex movements 

under pattern recognition (Tresch et al., 1999; Shima & Tsuji, 2010). Then we shall test 

whether the movements can be estimated in time series using the combination of the 

synergies. 

Chapter 3 tests the feasibility of the muscle synergy model by comparing the 

performance with an existing model. The analysis compared the muscle synergy model 

with the musculoskeletal model (MSM) the complex motion estimation performance.  

Specifically. A second-order computational motor control model with nonlinear 

dynamics. The MSM showed high performance in a one-degree-of-freedom joint angle 

for flexion and extension by computing muscle elasticity and viscosity (Kambara, et al., 

2013). Kawase et al. (2017) even developed a simplified computational model that 

investigated the estimation of three different joint angles (i.e., elbow, wrist, and finger). 
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He addressed that there was little influence between finger joint and wrist position 

estimation. Therefore, this experiment tests whether the muscle synergy model shows the 

equivalent or more robust estimation performance under complex motion between 

gripping and wrist joint movements. 

3.2 Wrist Motion and Synergy Preferred Direction 

Before the main tasks, a preliminary test was conducted on muscle synergy-based wrist 

joint angle estimation on two participants (males, aged 26 and 44, right-handed) to check 

whether linear regression is enough for wrist joint angle estimation. For that, EMG 

sensors from the Trigno™ Wireless system, and a Hand Tracking device based on 

potentiometer were used. In each trial, the participants followed the ball trajectory at three 

different speeds on the screen using a hand tracking device. The trajectory and EMG 

signals of the task were measured. Figure 3.1 shows the preferred direction of four wrist 

synergies from the preliminary trial, and Figure 3.2 shows the regression performance in 

two wrist joint angles. The average correlation coefficient on the wrist joint angles was 

more than 0.7 in two participants (0.735 in minimum). 

Figure 3.1 Preferred direction of synergy in preliminary hand tracking trials. 
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Figure 3.2 Horizontal(flexion/extension) and vertical (Radial/Ulnar deviation) wrist joint angle estimation 

in preliminary trial. 

The synergy computation from preliminary trials showed the distributed synergy 

to a four-movement direction and regression in flexion/extension, radial/ulnar deviation. 

It also confirmed the feasibility of vertical and horizontal axis movement estimation. 

However, the step-tracking movement task got some feedback. Following the trajectory, 

the participants felt that they need more deliberate control over the wrist motion so that 

synergy sets could be corrupted by stiffness action to match the ball speed. As a 

replacement, free-motion tasks without a target were applied in the main experiment. 

3.3 Experimental Procedure 

Ten healthy participants (males, aged 28.0±5.7, nine right-handed, one left-

handed, none ambidextrous) joined the main experiment. No participant had a history of 

any form of neurological disorder. They got asked to use their dominant hand (either left 

or right hand) during the experiment. 

Wrist joint angle estimation
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The experiment protocol was approved by the ethics committee of the Tokyo 

Institute of Technology (2014042) and was carried out in accordance with the Declaration 

of Helsinki. Written consent was obtained from each participant before the experiment. 

Table 3-1. Forearm muscle with channel number 

Muscle Position 

Ch. 1 

Ch. 2 

Ch. 3 

Ch. 4 

Ch. 5 

Ch. 6 

Ch. 7 

Extensor Carpi Radialis (ECR) 

Extensor Carpi Ulnaris (ECU) 

Flexor Carpi Ulnaris (FCU) 

Flexor Carpi Radialis (FCR) 

Abductor Pollicis Longus (APL) 

Flexor Digitorum Superficialis (FDS) 

Flexor Digitorum Profundus (FDP) 

Table 3-1 indicates the wrist and grip muscle groups chosen on the experiment. 

Five muscles are wrist joint muscles (i.e., ECR, ECU, FCU, FCR, and APL) and two are 

grip muscles (i.e., FDS and FDP). Several wrist-joint experiments analyzed four wrist 

muscles (i.e., ECR, ECU, FCU, and FCR) (Kawase et al., 2017; Lee et al., 2015), which 

are the flexor and extensor muscles of the wrist with different deviations (Radial and 

Ulnar).  My experiment added APL, an extensor of the thumb, to trace the radial 

movement of the wrist. The FDS and FDP—the flexor muscles of the finger—are chosen 

to estimate the grip force with a synergy-based model. Figure 3.3 shows the placement of 

the EMG sensors on the forearm. The EMG sensor equipment is Trigno™ EMG system.  
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Figure 3.3 Seven EMG channel placements on five wrist joint-related muscles (red-colored) and two grip 

muscles (blue-colored) 

Participants took two sessions. The first task focused on a wrist motion, measuring 

the EMG signals and wrist joint angles in different movement conditions. The second 

task focused on a grip force, measuring the EMG signals and grip forces in different grip 

force levels. Thus, the experiment and the analysis were divided into two sessions, one 

checking the wrist movement at a certain grip condition and the other checking grip force 

at a certain posture. 

In the first task, Trigno™ EMG system measured EMG signals and wrist joint 

angles using the ordinary (EMG) and IM (wrist joint angles) sensors of the system. Figure 

3.4 shows the placement of the two IM sensors. One was were attached to the back of the 

hand and the other to the back of the forearm; they were to detect the relative wrist joint 

angle from the forearm. 
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Figure 3.4 First task: experimental posture in the center-position and movement direction with the 

placement of the IMU sensors. Yellow-colored rectangles emphasize the positions of the IMU sensors 

placed at the back of the hand and forearm. 

Participants placed their forearms on the table fastened by a wrist binder and 

reached out of the table. From then, they performed four wrist motions: flexion, extension, 

and radial/ulnar deviation in two different conditions. They conducted wrist motion with 

and without gripping. Wrist motions also had three criteria in movement range. According 

to the participant's comfort level, they carry out comfortable maximum limit (with and 

without grip), half of the comfortable maximum limit (without grip only), and stiffened 

movement with force exertion (without grip only). Each condition consists of three trials 

requiring each trial to conduct three times for each motion. Then, the gripping action 
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(without wrist motion) began in the center-position (Figure 2) when the participants 

performed strong and weak grips three times each. 

In the second task, the Trigno™ EMG system measured EMG, and the 

ReachMAN robot (Yeong, et al., 2009) measured grip force. Participants adjusted the 

angle of the grip handle to their best fit while maintaining a center-position posture. In 

this task, three levels of grip strength get performed: strongest, half, and a quarter of 

gripping power. The strongest grip force (in newton N) varied for every participant with 

an average of 16.2 ± 3.2 N. 

3.4 Data Acquisition and Preprocessing 

The sampling rate differs per data. The EMG sampling rate is 2kHz, IMU wrist 

angle is 74Hz, and ReachMAN force sensor is 100Hz. Lab streaming layer (LSL) in 

MATLAB 2018b program (Kothe, 2014) collects all data with corresponding timestamps 

so that the timing of each data is aligned using the timestamps. 

The seven-channel EMG signals processed bandpass filtering and linear envelop 

before synergy computation. In normalization, the MVC method implemented using the 

combined hand motion tasks, co-activating both grip and wrist motions trial. 

Regarding wrist motion data, there applied Madgwick IMU algorithm to estimate 

the two-dimensional wrist joint angle (Madgwick, 2010). IMU sensors were placed on 

the back of the hand and forearm in a straight line when the wrist joint is at zero-degree 

to track the orientational difference between the hand and forearm. 

Participants performed self-paced movements without visual feedback; 

consequently, most of them performed diagonal movements even if the instruction was 
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only vertical and horizontal directions. To take this into account, the two angles obtained 

by the IMU algorithm were normalized by each angle’s absolute maximum value; the 

sum and difference obtained can be seen in Figure 3.5. The resultant angle reference was 

applied in all the following models. 

Figure 3.5 X-axis stands for flexion-extension dimension while Y-axis stands for radial-ulnar deviation. To 

compensate for the inclined diagonal movement of participants in self-paced movement, two angles were 

normalized, and their sum and difference were subsequently computed. 

3.5 Muscle Synergy Linear Regression and Musculoskeletal Model 

A synergy-based linear regression model was used to estimate wrist and grip 

values. To reduce computational costs in a model calculation, a simplified version of the 

nonnegative matrix method, i.e., the hierarchical alternating least square (HALS) method, 

was used (Cichocki & Phan, 2009). Apart from the computational cost, HALS also has a 

wide capability: it can work with a large number of components (Cichocki & Phan, 2009), 

in contrast to the canonical NMF method (Lee & Seung, 2001), which is only applicable 

if the number of the sources is greater than the number of components; Cichocki & Phan 

(2009) shows pride in their paper that HALS can work in conditions where the number 
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of components is large. This feature of HALS is appropriate in complex movement 

estimations. When measuring activities, as the object of movement increases, the form of 

synergy required may also vary. In some cases, the number of reference synergies may 

be greater than the measured near-front channel. HALS was selected in consideration of 

these variables. The HALS decompose the normalized quasi-tension with the same update 

rules without normalization per repetition. 

 

For complex hand movement estimation, wrist motion synergies and a grip 

synergy composed a synergy set. Then linear regression performed in wrist angle 

estimation using wrist motion synergies as input. The reference angles are normalized 

sum and difference of the wrist angle (flexion-extension, radial-ulnar deviation)  onto 

equation (4) below: 

   (4) 

Here,   denotes angle bias,  s are the regression coefficients for each synergy 

coefficient  , and   denotes random noise error. Synergy set with regression 

coefficients calculation conducted in two grip motion and wrist motion task separately, 

and the parameters applied to all other trials. 

3.6 Statistical Analysis on Estimation Performance of Computation Models 

An exhaustive cross-validation was used to test the performance of each model 

per participant, with indices used to estimate performance. The following Pearson 

correlation coefficient (r) and normalized root mean square error (nRMSE) composed the 

indices 
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   (5) 

 

    (6) 

where n is the number of samples, y is a reference, x is an estimate, and a is defined as 

the normalization coefficient. A in this nRMSE is 90, the limit of the wrist angle range. 

All statistical analyses were conducted using the ttest2 function of MATLAB 2018b. 

3.7 Results 

Task1 – Wrist motion Test 

Figure 3.6 shows the time series of the wrist angle in two dimensions. Participants 

got the instruction to rotate their wrists in four directions (up, down, left, and right). They 

performed freely at their own pace, moving in a sloping trajectory at different angles. 

Because of that, both models appear to have the underlying assumption that a participant 

moved in a diagonal direction even if they performed a gradual movement, as shown in 

Figure 3.6(C). 

Table 3-2 and 3-3 shows the exact performance of Synergy-based linear 

regression model (SLRM) and MSM in r and nRMSE. Wrist motion performances r on 

average are 0.789±0.084 in SLRM and 0.761±0.104 in MSM, implying a statistically 

significant difference (p < 0.001, Student’s t-test). Similarly, nRMSE also shows a 

significant difference between SLRM and MSM (p < 0.01, Student’s t-test). This trend 

continued during grip-less wrist motion trials (comfortable maximum limit trial, 

comfortable half limit trial, and stiffened movement trial). 
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However, when added grip motion, there was no statistically significant difference 

in r (p = 0.761); however, differences still existed in nRMSE (p < 0.001, Student’s t-test). 

The r of the comfortable maximum with grip trials was 0.756±0.063 in SLRM and 

0.758±0.088 in MSM, and nRMSE was 0.165±0.0.27 in SLRM and 0.180±0.051 in MSM. 

Finally, in the grip-trial, where r measurement was inappropriate because the wrist motion 

in the trial is just an indication of a perturbation; nRMSE of SLRM was 0.146±0.025 and 

MSM was 0.186±0.077 in nRMSE, implying a statistically significant difference (p < 

0.001, Student’s t-test). 

In detail, the r values of the comfortable maximum limit trials were 0.826±0.027 

in SLRM and 0.799±0.053 in MSM (p < 0.001, Student’s t-test); the nRMSE was 

0.154±0.018 in SLRM and 0.171±0.034 in MSM (p < 0.001, Student’s t-test). In 

comfortable half limit trials, the corresponding values were 0.746±0.073 in SLRM and 

0.684±0.102 in MSM when measuring r values (p < 0.001, Student’s t-test), and the 

nRMSE was 0.120±0.011 in SLRM and 0.126±0.022 in MSM (p < 0.01, Student’s t-test). 

The stiffened movement trials also had the same trend in  values, being 0.844±0.034 in 

SLRM and 0.814±0.059 in MSM (p < 0.001, Student’s t-test); and, for nRMSE, being 

0.185±0.022 in SLRM and 0.210±0.056 in MSM (p < 0.001, Student’s t-test).  
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Figure 3.6 2D wrist joint angle estimation in 5 different trials. Angle X corresponds to flexion-extension 

dimension taking extension as positive. angle Y corresponds to radial-ulnar deviation having radial 

deviation as positive. The blue-colored line represents the IMU-reference angle derived from two IMU 

sensors by differentiating relative orientation in Euler angle. The red-colored estimate is a musculoskeletal 

model (MSM) based estimation having 5 input signals. Yellow-colored estimate stands for synergy-based 

linear regression model (SLRM)-based estimation deriving synergy derived separately per trial. (A) An 

example of a comfortable maximum limit trial. (B) an example of half of a comfortable maximum trial. (C) 

An example of a stiffened movement trial. (D) an example of a grip-trial having twelve times gripping. (E) 

An example of combined movement of a comfortable maximum limit with grip. 
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Table 3- 2. MSM performance indicator per participant and trial 

Sub 

Data 

type 

Comfortable Max Comfortable half Stiffened movement Grip&Motion 

Wrist Motion 

(average) 

Grip 

r nRMSE R nRMSE r nRMSE r nRMSE r nRMSE nRMSE 

Sub1 

Mean 

SD 

0.854 

0.022 

0.154 

0.017 

0.730 

0.073 

0.126 

0.012 

0.882 

0.016 

0.188 

0.035 

0.809 

0.066 

0.174 

0.032 

0.816 

0.081 

0.161 

0.037 

0.129 

0.021 

Sub2 

Mean 

SD 

0.853 

0.027 

0.102 

0.014 

0.763 

0.048 

0.072 

0.010 

0.836 

0.036 

0.167 

0.016 

0.730 

0.181 

0.097 

0.033 

0.790 

0.111 

0.110 

0.043 

0.147 

0.028 

Sub3 

Mean 

SD 

0.682 

0.048 

0.170 

0.021 

0.556 

0.104 

0.129 

0.020 

0.709 

0.059 

0.208 

0.032 

0.672 

0.062 

0.170 

0.022 

0.652 

0.097 

0.169 

0.041 

0.140 

0.061 

Sub4 

Mean 

SD 

0.826 

0.050 

0.211 

0.037 

0.720 

0.059 

0.120 

0.019 

0.818 

0.060 

0.259 

0.042 

0.828 

0.043 

0.182 

0.024 

0.795 

0.075 

0.191 

0.065 

0.098 

0.059 

Sub5 

Mean 

SD 

0.816 

0.084 

0.145 

0.034 

0.687 

0.132 

0.109 

0.016 

0.817 

0.053 

0.217 

0.042 

0.750 

0.060 

0.210 

0.040 

0.763 

0.102 

0.173 

0.058 

0.301 

0.111 

Sub6 

Mean 

SD 

0.836 

0.027 

0.200 

0.028 

0.686 

0.103 

0.194 

0.014 

0.800 

0.065 

0.261 

0.035 

0.806 

0.045 

0.193 

0.027 

0.777 

0.093 

0.213 

0.043 

0.174 

0.048 

Sub7 

Mean 

SD 

0.678 

0.070 

0.224 

0.021 

0.470 

0.127 

0.134 

0.011 

0.699 

0.109 

0.226 

0.037 

0.674 

0.079 

0.179 

0.024 

0.626 

0.139 

0.188 

0.048 

0.506 

0.180 

Sub8 

Mean 

SD 

0.808 

0.061 

0.133 

0.028 

0.662 

0.099 

0.110 

0.015 

0.848 

0.041 

0.152 

0.021 

0.754 

0.047 

0.158 

0.029 

0.764 

0.107 

0.139 

0.033 

0.431 

0.078 

Sub9 

Mean 

SD 

0.869 

0.044 

0.182 

0.030 

0.864 

0.042 

0.126 

0.010 

0.881 

0.026 

0.180 

0.023 

0.854 

0.041 

0.155 

0.021 

0.867 

0.043 

0.159 

0.032 

0.321 

0.170 

Sub10 

Mean 

SD 

0.773 

0.030 

0.192 

0.050 

0.709 

0.093 

0.136 

0.044 

0.852 

0.036 

0.239 

0.104 

0.702 

0.109 

0.284 

0.106 

0.758 

0.106 

0.215 

0.101 

0.175 

0.082 

Mean 

Mean 

SD 

0.799 

0.053 

0.171 

0.034 

0.684 

0.102 

0.126 

0.022 

0.814 

0.059 

0.210 

0.056 

0.758 

0.088 

0.180 

0.051 

0.761 

0.104 

0.172 

0.057 

0.186 

0.077 
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Table 3-3. SLRM performance indicator per participant and trial 

Sub 

Data 

type 

Comfortable Max Comfortable half Stiffened movement Grip & Motion 

Wrist Motion 

(average) 

Grip 

r nRMSE r nRMSE r nRMSE r nRMSE r nRMSE nRMSE 

Sub1 

Mean 

SD 

0.885 

0.017 

0.137 

0.014 

0.785 

0.051 

0.116 

0.012 

0.862 

0.027 

0.174 

0.029 

0.863 

0.021 

0.131 

0.016 

0.845 

0.053 

0.140 

0.030 

0.112 

0.016 

Sub2 

Mean 

SD 

0.887 

0.020 

0.093 

0.015 

0.780 

0.025 

0.064 

0.007 

0.878 

0.039 

0.143 

0.017 

0.786 

0.117 

0.083 

0.018 

0.828 

0.087 

0.096 

0.034 

0.121 

0.010 

Sub3 

Mean 

SD 

0.664 

0.022 

0.166 

0.013 

0.504 

0.087 

0.121 

0.010 

0.775 

0.029 

0.170 

0.010 

0.457 

0.069 

0.175 

0.013 

0.594 

0.146 

0.157 

0.027 

0.062 

0.009 

Sub4 

Mean 

SD 

0.843 

0.018 

0.186 

0.018 

0.737 

0.066 

0.136 

0.017 

0.846 

0.021 

0.209 

0.024 

0.776 

0.031 

0.177 

0.010 

0.797 

0.065 

0.176 

0.034 

0.116 

0.019 

Sub5 

Mean 

SD 

0.837 

0.029 

0.144 

0.017 

0.770 

0.034 

0.100 

0.007 

0.832 

0.038 

0.239 

0.024 

0.760 

0.047 

0.240 

0.043 

0.796 

0.060 

0.184 

0.073 

0.089 

0.019 

Sub6 

Mean 

SD 

0.823 

0.027 

0.200 

0.018 

0.748 

0.085 

0.194 

0.007 

0.855 

0.023 

0.212 

0.016 

0.836 

0.022 

0.178 

0.017 

0.815 

0.067 

0.196 

0.022 

0.224 

0.043 

Sub7 

Mean 

SD 

0.801 

0.026 

0.162 

0.007 

0.716 

0.137 

0.133 

0.008 

0.796 

0.045 

0.177 

0.018 

0.639 

0.100 

0.176 

0.025 

0.732 

0.114 

0.162 

0.027 

0.165 

0.029 

Sub8 

Mean 

SD 

0.857 

0.024 

0.116 

0.012 

0.821 

0.054 

0.087 

0.013 

0.857 

0.032 

0.152 

0.019 

0.796 

0.045 

0.147 

0.032 

0.831 

0.055 

0.127 

0.036 

0.288 

0.050 

Sub9 

Mean 

SD 

0.842 

0.025 

0.179 

0.022 

0.824 

0.032 

0.138 

0.003 

0.832 

0.031 

0.190 

0.021 

0.820 

0.040 

0.161 

0.016 

0.828 

0.037 

0.166 

0.027 

0.104 

0.023 

Sub10 

Mean 

SD 

0.817 

0.033 

0.158 

0.023 

0.775 

0.023 

0.116 

0.005 

0.875 

0.025 

0.186 

0.027 

0.830 

0.027 

0.185 

0.036 

0.825 

0.062 

0.162 

0.042 

0.197 

0.030 

Mean 

Mean 

SD 

0.826 

0.027 

0.154 

0.018 

0.746 

0.073 

0.120 

0.011 

0.841 

0.034 

0.185 

0.022 

0.756 

0.063 

0.165 

0.027 

0.789 

0.084 

0.156 

0.038 

0.146 

0.025 
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Figure 3.7 Trial based wrist joint movement estimation performance changes in synergy-based linear 

regression model (SLRM) and musculoskeletal model (MSM) in terms of Pearson correlation coefficient 

(r) and normalized root mean square error (nRMSE). (A) SLRM and MSM had no statistically significant 

difference in wrist motion with grip, while wrist motion average had a statistically significant difference 

between the models (p < 0.001, Student’s t-test). (B) nRMSE between SLRM and MSM had a statistically 

significant difference in every trial. 
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C.  Task2 - Grip Motion Test  

Figure 3.8 shows the continuous grip force estimates under SLRM and the 

following angle estimate perturbation. I asked participants to fasten their hand on a grip 

device what restricted wrist motion during the task. Hence, I monitored the grip task not 

only the grip force estimation but also wrist angle estimation. There checked whether grip 

motion muscle activity affects the angle estimate under SLRM. The results showed that 

during the gripping task, instability of the wrist angle estimation occurred in the presence 

of a strong force activation, as may be seen in Figure 3.8 (D). For the half and quarter 

grip force task, angle estimation was less than 30 degrees, as shown in Figure 3.8 (E) and 

(F). The  value for grip force estimation and nRMSE of the X-Y angle estimation, 

compared with zero angle (no movement), were computed as indicated in Table 3-4. Sub 

8 data was omitted in this task because the EMG signal was saturated during the analog 

to digital converting process using National Instrument Data Acquisition (±5 voltage). 

The SLRM-based grip-force estimate from nine participants was 0.846 ± 0.050 in r with 

0.256 ± 0.140 nRMSE in wrist movement estimation. 
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Figure 3.8 Times series estimation of grip task with ReachMAN robot. (A) Time series for the normalized 

max grip force reference and synergy-based linear regression (SLRM) grip force estimate. (B) Time series 

for the normalized half grip force reference and synergy-based linear regression (SLRM) grip force 

estimate. (C) Time series for the normalized quarter grip force reference and synergy-based linear 

regression (SLRM) grip force estimate. (D) Time series for wrist joint motion estimate from SLRM in max 

grip force task. (E) Time series for wrist joint motion estimate from SLRM in half grip force task. (F) Time 

series for wrist joint motion estimate from SLRM in quarter grip force task. Angle X -Y is the same axis in 

Figure 3.6 
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Table 3-4. SLRM grip force estimates per participant with corresponding wrist movement estimate 

perturbation 

Sub 
  Grip Force Estimate (r) Angle X-Y error (nRMSE) 

  (Average) (std) (Average) (std) 

Sub1 Mean / SD 0.844 0.021 0.307 0.075 

Sub2 Mean / SD 0.716 0.058 0.453 0.192 

Sub3 Mean / SD 0.791 0.124 0.093 0.076 

Sub4 Mean / SD 0.893 0.018 0.198 0.037 

Sub5 Mean / SD 0.868 0.042 0.316 0.119 

Sub6 Mean / SD 0.953 0.010 0.275 0.165 

Sub7 Mean / SD 0.949 0.013 0.200 0.173 

Sub8 Mean / SD     

Sub9 Mean / SD 0.859 0.032 0.244 0.026 

Sub10 Mean / SD 0.747 0.020 0.218 0.232 

Mean Mean / SD 0.846 0.050 0.256 0.140 

3.8 Discussion 

This chapter tested continuous hand motion estimation using SLRM with a 

comparison of MSM. As explained by Kawase et al (2017), MSM also had a robustness 

of the wrist movements in relation to finger movement. However, the SLRM wrist 

movement estimation outperformed with statistical significance in nRMSE under any 

trials and even r except the complex movement of grip & wrist trial. The goal of this study 

is to use outcome models in practical such as prosthesis or the interface. For this reason, 

only basic noise attenuation which is mainly applied at the sensor level was applied in the 
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EMG. Therefore, even with the anatomical placements of the EMG signal, some noise 

remains depending on the subject with low signal-to-noise-ratio. Unlike MSM, which is 

based on signals in each channel, SLRM appears to show higher robustness in this 

environment because it utilizes EMG coactivation. 

The estimation performance of SLRM showed comparable performance with 

previous results in the literature on trajectory (Castellini & Van, 2009) and joint force 

(Jiang, et al., 2012) estimation in spite of small amount of training data. The advantage 

of SLRM is not only continuous wrist movements but also complex movements. The 

wrist movement estimation performance was equivalent and better at some point 

compared to MSM performance.  

Within the wrist-only motion trials, both SLRM and MSM had the lowest 

performance in comfortable half performances. It is most likely due to the non-linearity 

between EMG signals and arm motion, or contamination of movement artifact and 

baseline noise to the EMG (representatively, Sub3). Therefore, the non-linear regression 

techniques used in previous studies (Castellini & van der Smagt, 2009; Jiang et al., 2012) 

could be comparable with the synergy-based model having an alternative to using linear 

regression.  

The linear envelope filtering used in the EMG signal analysis was proven to have 

highly correlated signals with joint torque induced by the target muscle (Koike & Kawato, 

1995). Grip synergy, which is a co-activation of these filtered EMG signals, also showed 

a high grip force estimation performance having correlation of 0. 846 ± 0.050 without 

resort to further conversion or regression techniques in nine participants. The gripping 

force level did not affect the estimation performance. In movement intention 
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discrimination performance, however, the strong grip-trial showed wrist angle estimation 

distortion. This strong-grip distortion indicates the necessity to investigate the limits of 

the SLRM in grip force estimation. The current result alone cannot determine which 

parameter triggers the distortion of wrist angle estimation. It could be a specific physical 

force or a particular ratio of the maximum force level, or other causality. 

3.9 Conclusion 

This chapter conducted continuous wrist joint angle estimation with/without 

gripping. In the first task, I compared SRLM and MSM for the wrist angle estimation 

performance. The SLRM exhibited relatively higher performance in wrist motion. In the 

gripping, SLRM showed robustness in angle estimation when the grip force is half or a 

quarter of its maximum force level. Also, SLRM could provide the extent of grip force 

exerted in the center-position with little perturbation. These characteristics of SLRM can 

be useful for combined wrist and grip motion estimation. Thereby, this result showed the 

feasibility of superficial muscle activity separation; however, there should be a limitation 

on the grip force not to crash the wrist angle estimation and vice versa. Further studies 

are required to obtain and test the simultaneous regression of both angle and grip force 

necessary for real-life applications. Based on the current result of superficial muscle 

activity identification, the next step began looking for deep muscle activity identification 

and their resultant posture recognition.   
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Chapter 4 Finger Movement Estimation from High Density EMG  

4.1 Introduction 

This chapter tested the separation of the superficial and deep muscle signals in 

high-density EMG data. As mention in the background, surface EMG signals contain 

different muscle signals and various noises such as baseline noise and movement artifacts 

(De Luca, et al., 2010). These noises and crosstalk between muscles can misguide EMG 

analysis leading to erroneous interpretation; hence, various studies focus on attenuating 

undesirable signals (De Luca, et al., 2010). However, it is still challenging to detect single 

muscle activity from EMG sensors (Keen & Fuglevand, 2004; Schieber, 1995). Gazzoni 

et al., (2014) applied NMF to high-density EMG signals. Then they distinguished the 

muscle position on each forearm per movement of the wrist and single finger joint. Their 

deep muscle position investigation showed the feasibility of high-density EMG analysis 

in deep muscle identification. However, they could not step further toward natural 

movement nor the structure of muscle synergy per joint movement. Finger movements of 

high dexterity generate multiple muscle activations; however, this causes significant 

crosstalk in the forearm EMG measurements. Thereby, additional steps need to be taken 

in dexterous finger movement estimation using a high-density EMG signal. 

Independent component analysis (ICA) is a general-purpose statistical technique 

that can linearly transform random data into independent components (ICs) (Hyvärinen 

& Oja, 2000). Hence, it is one of the most important algorithms in biomedical signal 

processing, especially for EEG, where noise and various movement artifacts reduction is 

critical. In EEG, such noises are removed through ICA before signal analysis (Jung, et al., 

2000). Even in EMG analysis, Staudenmann et al. (2007) revealed that ICA reduces the 
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root mean squared error of the monopolar EMG signals when measuring muscle force. 

The NMF algorithm by Lee and Seung (2001) has established a standard method for 

muscle synergy calculation. Since then, several EMG studies have proposed low-

dimensional input-based myoelectric models using muscle synergy. However, NMF in 

high-density EMG analysis caused problems by the normalization process. Normalization 

modulates each channel size equal to have 1 in maximum. But most high-density EMGs 

contain merely noise components. Therefore, there demands several techniques and 

know-how to resolve this problem beforehand. Since NMF alone cannot distinguish 

significant signals among EMG sensor signals, ICA applied in the raw EMG signals.  

This chapter tests how well high-density EMG signals can estimate the direction 

of index finger movements. There applied two signal decomposition ICA and NMF. In 

the previous chapter, NMF showed feasibility in estimating complex wrist and grip 

motion. Thereby, three parameters following were examined to compare NMF alone 

(EMG-synergy) and sequential ICA and NMF analysis (IC-synergy). 1. robustness of the 

synergy structure calculation in the two elbows posture, 2. The robustness of preferred 

direction compared per elbow posture, and 3. classification performance on the eight 

direction finger movements using convolutional neural network (CNN). 

4.2 Experimental Procedure 

This study used experimental data obtained from Yoshimura et al. (2017). Six 

healthy right-handed participants (two females and four males, aged 40.7±7.2) joined the 

experiment. The research protocol was approved by the University of California San 

Diego Ethics Committee (approval number 14353) and was conducted following the 

Helsinki Declaration. Written consent was obtained from each participant before the 

experiment (Yoshimura, et al., 2017). This study focused on 96 channel EMG signals 
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acquired from the Biosemi active Two amplifier system with active sensors (Biosemi, 

Amsterdam, Netherlands), and its analysis concerning cursor movement directions. The 

EMG signals were sampled at 2048 Hz and Cursor movement at 100 Hz.

Figure 4.1. EMG signals with respective channel positions on the upper limb. The red channel on the back 

of the hand is used as the ground and not for ICA or muscle synergy.

The posture functional capacity evaluation system (zebris Medical GmbH, Isny, 

Germany) measured EMG sensors and joint positions on the arm. The abstract EMG 

sensor placements are as in Figure 4.1.

The participants performed finger movements shifting the cursor in eight different 

directions at two elbow angles (0° and 90°) shown in Figure 4.1. The numbering of 

directions per posture was constant to extract the extrinsic coordinate reaction. They 

repeated movements 80-times per each posture and action.
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Figure 4.2. Eight target directions for the two different elbow angles (0° and 90°) 

In the experiment, each participant placed their right forearm on an arm rest (350-

series, Ergorest, Siilinjarvi, Finland) and wrist on a desk., The task was moving the cursor 

on the monitor using the right index finger on a touchpad (T650, Logitech, Lausanne, 

Switzerland) in one of two elbow angles refraining arm movement. Each trial ran 4 s 

composed of 2s of preparation and 2 s of movement. In the prior, a red circle cursor 

appeared on the center of monitor with participants placing their index fingers at the 

center of the touchpad. In the latter, a target circle appeared randomly at one of eight 

positions distributed 45° apart on a circle with a 10-cm radius for the next 2 s. The 

participants got the instruction to move at once per trial. It was even when the final cursor 

position is displaced far from the target. When the target disappeared, participants moved 

their index fingers back to the center origin so as to conduct the next trial. The participants 

completed 80-time repetitions on each posture and direction described in Figure 4.2.  
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4.3 Data Acquisition and Preprocessing 

Data analysis was upon the Matlab program. The experimental data went down 

the Matlab. EMG gets digitally filtered by the 50 Hz notch and 10-1000 Hz band-pass 

filters. Then, there computed standard deviation on each EMG sensor, and the least 

vibrating sensor became the ground reference. The sensor in six participants was in the 

same position, on the back of the hand. Having one channel and as a ground reference, in 

ICA computation, the number of EMG sensors becomes ninety-five. ICA is one of the 

famous BSS methods and frequently used cases like the cocktail party problem. High-

density EMG signals scattered on the forearm without any anatomical basis. Thereby in 

some channel data, the signal-to-noise ratio was too low that muscle activities and noises 

are indistinguishable. For this reason, ICA analysis was carried out after the preprocessing 

to derive deep muscle activities. In a matrix formula, ICA is deriving 

     (7) 

where X is C by N EMG signal matrix, C is the number of input channels and N is time 

points. S is C by N IC matrix where the vectors are expected mutually independent, and 

A is C by C square matrix showing how the source signal S is composed in each sensor. 

ICA derives the basis vectors in the way minimizing the mutual information and 

maximizing the non-Gaussianity. Each trial had a 2 s duration, the post-onset recording 

after target onset. Among the outputs from AMICA, I excluded ICs that show white noise 

characteristics upon trials-based average.  The selective ICA analyzed from the 95 

channel EMG signals on 1280 trials out of the six participants yielded between 22 to 36 

ICs varying per participant (mean: 29.8, standard deviation (SD): 5.1). 
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In the synergy computation, IC-synergy chose three to fifteen sets, and EMG-

synergy three to thirty per participant. When selecting the synergy number, the following 

two conditions became the standard each different per participant: more than 0.9 Variance 

Account For (VAF) that commonly applied in other studies (Cheung et al., 2005; Clark 

et al., 2010; Santuz et al., 2017) and less than mean squared error of the linear 

regression of VAF per muscle synergy number (d'Avella, et al., 2006). Figure 4.4 shows 

two condition parameters with the number of IC-synergy in six participants. From these 

conditions, 10 to 26 EMG-synergy (mean: 18.2, SD: 5.5) and 9 to 18 IC-synergy (mean: 

12.2, SD: 3.2) were derived from the whole dataset and used depending on the participants 

throughout the study. 

Figure 4.3. Mean Variance Account For (VAF) and slope of VAF of IC synergy in the six participants 
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In addition to the entire dataset-based synergy computation, I derived muscle 

synergies from each postural dataset (Elbow 0°, Elbow 90°). In this computation, there 

applied the same number of synergies to see the consistency of the structure.  

I clustered the synergies from three different datasets and then grouped the 

muscle synergies depending on the scalar product (Cheung et al., 2012; Matsunaga et al., 

2017) using the Unweighted Pair-Group Method with Arithmetic mean (Nei & Kumar, 

2000). The module criteria were the scalar product of more than 0.75. Cosine tuning 

calculated the preferred direction of the muscles and synergies using the average 

amplitude of eight direction movement trials. The detail is muscle (or synergy) signal 

m(θ) in eight direction θ with a linear regression m(θ) =  

(Gentner, et al., 2013). The preferred direction of the signal (either muscle or synergy) is 

. Then the resultant preferred directions are compared within a 

module to verify the signal consistency in two elbow postures. The preferred directions 

of the synergy in Elbow 90 were compensated by shifting 90° clockwise. In cosine tuning 

linear regression under the normalized form, cosine tuning weight is defined as W = 

, which shows the muscle activation ratio for target finger movements. 

4.4 Classification Model 

Before the classification, all input signal was down-sampled to 50hz to reduce 

the computational cost. In addition, the data cut off from -0.2 second to 0.3 seconds on 

the basis of the movement initiation. However, it is difficult to grasp a precise onset using 

EMG due to noise, so there used cursor movements as the cut off reference. When the 

cursor had more than 2% of the final distance became the onset timing. There used four 

different types of muscle activity signals: EMG-input, IC-input, EMG-synergy, and IC-



39

synergy for classification. Twenty-five-time points of high-density signal set were given 

as input signal for CNN (Krizhevsky, et al., 2012) to classify the eight directional finger 

movements. In CNN, the three by three 32 filters extracted features and five-fold cross-

validation conducted on the whole datasets dividing each elbow posture individually.

4.5 Results

Figure 4.4. NMF Synergy Modules with corresponding preferred directions. The preferred direction was 

expressed in different colors according to the trial. Red represents total data, Green represents Elbow 0 trial, 

Blue represents Elbow 90 trial.

When grouping synergies into modules from different elbow posture conditions, 

the number of EMG-synergy modules was proportional to the EMG-synergy number (e.g., 

i.e., the ratio between module and synergy is 14.4 modules out of:18.2 synergies in six 

participants). On the contrary, the module number of IC-synergy was between eight and 

ten that is independent to the IC-synergy number (nine to eighteen). Figure 4.4 and Figure 

4.5 show the EMG channel activations of EMG-synergy and IC-synergy modules from 

an individual participant.
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Figure 4.5. ICA-NMF Synergy Modules with corresponding preferred directions. The preferred direction 

was expressed in different colors according to the trial. Red represents total data, Green represents Elbow 

0 trial, Blue represents Elbow 90 trial. 

Between EMG-synergy (Figure 4.4) and IC-synergy (Figure 4.5) modules, some modules 

had similar EMG channel activation with more than 0.75 scalar product. But their 

inclination for each finger movement is significantly different. The average cosine tuning 

weight W is bigger in IC-synergy than that of EMG-synergy module (p < 0.0001, W_ICA 

= 0.34±0.11, W_EMG = 0.18±0.12, n = 35). As in Figure 4.4 and W, EMG-synergy 

showed similar muscle activation channels with IC-synergy, but the movement-related 

signal ratio was almost half of IC-synergy. It affects the wrong preferred direction 

computation so that the average preferred-direction-error within the EMG-synergy 

module is 24.4±25.8°. As in Figure 4.5, IC-synergy modules are likely to indicate one 

clear direction so that the average preferred-direction-error within the modules is 

13.4±18.1°. The preferred direction robustness per elbow posture differed statistically 

significantly between the two cases for the t-test (p = 0.0069, n_EMG = 87, n_ICA = 54). 
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The shape of the structure categorized EMG-synergy and IC-synergy modules into two 

different types, i.e., (i) parallel type wherein the EMG activations shaped alongside the 

forearm, and (ii) local type wherein the EMG activations are structured in the cross-

sectional region of the forearm. Figure 4.6 shows the synergy module changes of parallel 

and local type per input with corresponding EMG channel activations. For the parallel 

type, both input-based synergies showed similar EMG channel coactivation and preferred 

direction. It pointed toward a specific finger movement, which is the flexion of the index 

finger. However, in the local type, EMG-synergy did not have the preferred direction. 

And the preferred direction of the corresponding EMG channels is also very vague. But 

when looking at the IC-synergy in this type, it showed similarity to those of parallel one. 

In finger movement direction estimation, there applied CNN classification per 

each input (EMG-input, IC-input, EMG-synergy, and IC-synergy) per coordinate (i.e., 

extrinsic and intrinsic coordinates). Naturally, intrinsic coordinate always showed a 

higher classification performance than the extrinsic for all inputs. (Extrinsic vs. Intrinsic: 

p_EMG-input < 0.0001, p_IC-input = 0.0013, p_EMG-synergy = 0.0034, p_IC-synergy 

= 0.011, n = 30). Therefore, I compared all the classification performance on the intrinsic 

coordinate. And the classification performances per input are shown in Figure 4.6 to 4.10 

as confusion matrices. The results show that there is no statistical difference before and 

after synergy computation both in EMG and ICA. (EMG-input vs. EMG-synergy, p = 

0.18, IC-input vs. IC-synergy, p = 0.86, n = 30). And the presence or absence of ICA 

drastically changed the performance (EMG-input vs. IC-input, p < 0.0001, EMG-synergy 

vs. IC-synergy, p < 0.0001, n = 30).  
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Figure 4.6. Comparison of horizontal (alongside of the forearm) and vertical (cross-sectional side of the 

forearm) structure synergy in participants. Considering the physical placement of the muscles, horizontal 

synergy was expected to be a superficial muscle activity and vertical one as a deep muscle activity. The 

horizontal structure synergy (Red) had equivalent preferred direction both in NMF and ICA-NMF 

computation while vertical structure synergy (Green) had distinctive preferred direction change between 

NMF and ICA-NMF synergy. 
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Figure 4.7. Confusion Matrix of four different input types on Intrinsic Coordinate with EMG 95ch inputs  

Figure 4.8. Confusion Matrix of four different input types on Intrinsic Coordinate with NMF synergies 

(mean: 18.2, SD: 5.5) 
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Figure 4.9. Confusion Matrix of four different input types on Intrinsic Coordinate with Independent 

Components (mean: 29.8, standard deviation (SD): 5.1) 

Figure 4.10. Confusion Matrix of four different input types on Intrinsic Coordinate with ICA-NMF 

synergies (mean: 12.2, SD: 3.2) 
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4.6 Discussion 

The goal of this multi-EMG analysis is to elucidate the effect of ICA and NMF 

in reducing crosstalk. EMG signals are derived from overlaid muscles both superficial 

and in depth. EMG signals originate from overlaid muscles superficial and in-depth with 

noise components. By investigating the preferred direction and movement direction 

decoding, I checked the accuracy and precision increase with and without ICA and NMF. 

The synergy modules from three different data (Elbow 0 and 90, and whole dataset) 

showed that most NMF results in finger movement EMG signal were consistent in elbow 

postures. But when considering the classification performance using CNN, such 

compatible synergy modules did not give accurate finger movement estimation. On the 

other hand, In ICA-NMF, the number of modules (8 to 10) was close to the number of 

finger movements (8) with other synergies being relevant to elbow posture.  meanwhile, 

the classification performance using CNN was the highest in IC-synergy input. This 

outcome matches the result of Staudemann et al., (2007) showing that ICs improved 

muscle force estimation. Eight to ten IC-synergy modules were the coactivations for 

finger movements, and others might be unrelated muscle movements that need to be 

investigated further.  

The modularization of muscle synergies and the shifted preferred direction 

confirmed that they belong to intrinsic coordinates. Even the classification performances 

were higher than the extrinsic coordinate at all times. Therefore, the target of EMG 

decoders should be intrinsic parameter when developing EMG based interfaces or 

applications. The muscles synergy module had structures in two big categories with a 

small number of outliers. The index finger-based cursor movements in 8 directions 

require participants to activate superficial and deep muscles placed in a multi-layer 
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structure on the forearm (Blanc & Dimanico, 2010). Because of the physical location, the 

signal distribution on multiple EMG sensors would vary depending on where the muscle 

derives from. It is assumed that the superficial would appear in parallel modules while 

the deep would appear in the cross-sectional modules. The inner muscle activity 

dissipates in omnidirectional so that it forms evenly and widely in the cross-sectional 

region of the forearm.   

Even though EMG passed preprocessing, there could still exist the crosstalk and 

other heterogeneous noises. They make muscle reaction blurry, and it is more likely to 

happen in deep muscle signals because they should have less signal to noise ratio than the 

superficial. Upon this condition, ICA takes the role of sensor configuration (Staudenmann, 

et al., 2006) or replacement of temporal whitening (Clancy & Hogan, 1995). It separates 

noise and EMG artifacts, even sorting out muscle activities, maximizing independent 

component dimensionality to input signal dimension. NMF after ICA reassembled the 

muscle coactivation in a predefined number of synergies. This way, IC-synergy 

succeeded in classifying the superficial and deep muscles that led to robust finger 

movement classification with a few inputs. Thus, finger movement estimation represents 

the necessity of ICA on the high-density EMG before muscle synergy derivation, which 

even holds the minimum number of input channels. The ICA and NMF role become clear 

in in CNN classification performance. The ICA and NMF roles become clear in CNN 

classification performance. ICA increased classification performance accuracy while 

NMF minimized the input dimensions, saving computational cost. The 95 EMG channels 

downsize to 18.2 ± 5.5 EMG synergies, 29.8 ± 5.1 ICs to 12.2 ± 3.2 IC synergies.  
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4.7 Conclusion 

This study investigated the effect of ICA and NMF in high-density EMG signals. 

EMG had an intrinsic coordinate, and its derivative parameters after ICA and NMF 

maintained the characteristic. The high-density EMG analysis confirmed that the ICA 

increased the classification accuracy by detecting deep muscle activation. NMF did not 

affect the classification performance but reduced the input dimension. NMF could not 

attenuate the noise component from the deep muscle activity. Meanwhile, ICA-NMF 

showed a clear preferred direction in both superficial and deep muscles. Of course, it is 

still necessary to check whether the IC synergy could divide mixture of superficial and 

deep muscle signals under more complex movement including multiple finger and wrist 

movement coactivation. In addition, the current estimations only progressed up to the 

classification stage. The studies on the wrist or upper joint movements mainly focused on 

the trajectory (Xia, et al., 2018) and the joint angle estimation (Kawase, et al., 2017) at a 

continuous level what prosthesis user required (Biddiss, 2009). Thereby, further research 

is still demanding to connect and check the feasibility of this current IC synergy input to 

continuous estimation models.  
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Chapter 5 Consideration in Muscle Synergy Computation 

5.1 Synergy Derivation per Individual DOF Trial 

When deriving muscle synergy, synergy matrices depend highly on task 

constraints (Roh, et al., 2012). One solution is to calculate the muscle synergy per each 

fundamental movement (Furui, et al., 2019). However, this not only increases the training 

session but also make synergies to be vulnerable to unexpected noises at the trials. As a 

way to compromise, chapter 3 computed the muscle synergy per wrist and grip trial. 

Figure 5.1 describe the necessity of movement-type separation in synergy derivation 

(wrist movements and gripping). The synergy set from the joint trials is SLRM1, and that 

of the separate trials is SLRM2. The time series synergy coefficients in Figure 5.1 are 

derived from the pre-defined two different models at the gripping task. SLRM1 divides 

the seven-channel EMG signals into several part-based synergy groups without 

movement type consideration, resulting in the gripping to be combined sets of wrist 

synergies and additional grip muscle synergy that activate only on the gripping. Such 

supplementary synergy set cannot split off one specific DOF activity from the EMG 

signals, interfering wrist joint estimates at the gripping trial. Among the five synergy 

matrices, Synergy-5 stands for the grip synergy matrix that shows the discrepancy 

between SLRM1 and SLRM2, and Synergy-5 in SLRM2 contains the co-contraction of 

the muscles. In time-series synergy coefficients, Synergy 1 to 4 in SLRM1 respond to the 

grip activation regardless of the force level. The major channels of Synergy-5 are FDS 

and FDP that are flexor muscles of the finger for gripping from an anatomical aspect. 

They help to infer grip activation but is insufficient for complex movement estimation. 

Since grips cause most of the wrist muscle activity, it is essential to identify their co-
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contraction ratio for independent estimation. In that sense, the information given in 

Synergy-5 in SLRM2 played a central role in the complex estimation, the objective of 

chapter 3. 

5.2  The Number of Muscle Synergies in The Trials  

In NMF, the synergy number is a parameter that the experimenter must decide. 

Therefore, it is common to try varying number of synergies. This study also followed 0.9 

VAF and  mean squared error when optimizing muscle synergy. Chapter 3 used 

the same synergy number per trial from the anatomical basis EMG signals. But in chapter 

4 where uses high-density EMGs, each participant had different synergy number defined 

from 0.9 VAF. One consistent factor in the two analyses was that 0.9 VAF gave an 

optimized performance. The excessive number of synergies increased the classification 

or linear performance, but that was not enough to show a statistical difference. Mean 

squared error was applied only in chapter 4, and it converged faster than VAF. It showed 

that a new threshold is required with a consideration of EMG number. One notable point 

in the synergy number is that more than 0.9 VAF made the synergy module similar to the 

actual movement number. The fixed four synergies in chapter 3 were the same number of 

wrist movements (four perpendicular directions). Chapter 4 gave each different number 

per participant, but their synergy modules were eight to ten: an approximate number of 

finger movements. Also, the estimation performance using only the input of these 

modules were equivalent to the performance from the whole synergies. Though additional 

verification is demanding, the task constraints may determine the synergy number, not 

merely influencing the synergy matrix.  
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Figure 5.1 Time series synergy coefficient data with corresponding synergy matrix in the 

synergy-based linear regression model in grip task. Synergies one to four represent wrist 

synergy, and synergy five represent grip synergy. The purple-colored region represents 

three times strong grip actions and the green-colored region represents three times weak 

grip actions. 
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5.3 The Characteristic of Muscle Synergies and Their Application  

As mentioned in the introduction, muscle synergy is defined or hypothesized as 

a group of muscle activation recruited by a single neural command (Torres-Oviedo, et al., 

2006). However, as mentioned in Roh et al., (2012), together with the result section 5.1, 

the synergy matrix from NMF is task-dependent, affected by task constraints. That task-

dependency could change the synergy matrix, converting the resulting synergy matrix the 

mixture of several neural commands. However, this change could be rather helpful in 

classifying the input signal. The separate computation combines the multiple neural 

commands for gripping. Such bindings of synergy model enabled discriminating 

movement type which can be defined by the training set as depicted in chapter 3. 

Muscle synergy could utilize not only NMF but also ICA right after EMG 

extraction. The sequential combination enabled identifying the deep muscle activity, 

generally hard to distinguish from the noise components because of their small-signal size. 

Figure 4.6 shows the signal fidelity improvement before and after ICA by comparing 

EMG and EMG-synergy and IC-synergy in vertical structure synergy structure (Green 

colored). The muscle synergy could make high-density EMGs reflect high fidelity deep 

muscle activity, hard to inspect from individual EMG signal. But then there needs further 

restriction. Any muscle that is likely to give signals could be considered another 

independent component in the ICA analysis. This deep muscle discrimination ability of 

ICA could grasp unknown deep muscle activity irrelevant to the target movements. Thus, 

high-density EMGs using muscle synergies shall require users to consider numerous 

undesirable deep muscle activities such as postural activities. The detection of all possible 

muscle activities would be a keystone toward the muscle synergy-based real-time 

application. 
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Chapter 6 Conclusion 

6.1 Summary 

 Complex hand estimation in chapter 3 comprised the two-dimensional wrist joint 

movement and grasping. There evaluated whether continuous estimation is applicable 

under the simultaneous activation of wrist/hand muscles on the forearm. The result shows 

that muscle synergy succeeded in separating EMG signals per movement type with 

sufficient information. The linear of wrist synergies had a comparable wrist joint 

movement estimation performance with the musculoskeletal model, and the grip synergy 

could estimate the dynamic gripping force when the wrist motion halted without 

impacting wrist motion estimate until certain limit. It infers that muscle synergy-based 

signal decomposition could elicit mutually independent multi-dimensional movements. 

Based on the signal source discrimination of the forearm superficial muscles obtained in 

Chapter 3, in Chapter 4, the analysis was to determine whether signal separation can catch 

internal finger muscles. The high-density EMG signal had more noises at the sensor level. 

Even after pre-processing, the signal quality may be worse than that of the EMG sensors 

attached on the anatomical basis. Thereby, ICA was applied improving the signal fidelity 

of internal muscle to that of the superficial by recruiting the motor unit action potentials 

from the diverse signal compound, and NMF reassembled the muscle signal by taking 

together the similar ICs which gave no effect in performance. Additionally, for this reason, 

it seems that the increase in performance may not be as large for the anatomy-based EMG 

signal. 
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6.2 Future Works 

 This study found that multi-dimensional motion prediction is possible through 

multiple BSSs for EMG, and together with high-density multiple sensors, internal muscle 

patterns can become transparent. However, further studies are needed to establish 

robustness in a wide range of usage. In combined wrist joint and grasping movement, the 

grasping began to affect wrist estimation at a specific power level. The limit is on-demand 

for further investigation. Also, the dynamic estimation of wrist joint and grasping shall 

need extra examination. Besides, there are more grip types and activities with fingers. 

There should be further research focusing on robustness and other restrictions. In a 

complex movement investigation with a high-density EMG system, current research 

results are only a stage of proposing possibilities rather than demonstrating a basis. 

Therefore, it is necessary to investigate whether these research results are valid through 

research under more diverse conditions.  
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