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Abstract

Understand brain mechanism is a challenging task, especially if the brain function
we are interested in is a cognitive or mental task that difficult to physically observe
the physiological changes. Current technology such as functional magnetic resonance
imaging (fMRI) enable us to be able to observe brain activity non-invasively. The
fMRI data analysis shows us the brain activation pattern during the task performed
by the subject during the scan. However, knowing which part is activated during
the task alone does not give us the full picture about the brain mechanism. The
higher cognitive function such as consciousness or self awareness are likely the result
of different part of the brain work in tandem with each other. We can investigate the
interaction between each brain regions during the time subject was performing the
task from fMRI data in form of connectivity model. Functional connectivity model
represents correlation between each regions of the brain while effective connectivity
model represents the causal relationship a specific brain region has with others. There
are several mathematical frameworks developed to extract causal relationship from
a system of signals which could be applied to fMRI blood-oxygen-level-dependent
(BOLD) signal as well. Tigramite is a causal discovery framework utilized transfer
entropy (TE) to determine causal influences one source has to the rest of the sys-
tem. In this study, we applied the Tigramite to several modes, such as task-based or
resting-state, of memory-related fMRI dataset to construct an effective connectivity
model of the cognitive function of interest. Episodic memory is an important cog-
nitive function of human brain. It is theorized to be the basis of higher cognitive
functions such as consciousness or self awareness, thus it is intriguing to understand
the underlying brain mechanism responsible for episodic memory. The low temporal
resolution of BOLD signal poses a challenge to the causal discovery framework, which
is a temporal sensitive process. This issue may result in false causal link implica-
tion. We demonstrates the application of BOLD signal temporal preprocessing using
CONN toolbox to improve the quality of the signal. Furthermore, we demonstrate
that the effective model is more informative to the functional one. We also purpose
the group-level connectivity model framework to derive a group representative model
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because the general model that can explain brain mechanism across population is
more preferable. Our resulting models regarding episodic memory-related function
agree with the prior knowledges from previous researches. This development allows
more comprehensive understanding of the brain function.
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Chapter 1

Introduction

Brain is an organ of curiosity that control all function of our body, both physically

and mentally, thus it is the core of our existence. Beyond controlling our bodily

function and movement, the Brain is capable of many cognitive function that we as

a human take for granted. It can observe and make sense of the world around us

and also acknowledge the existence of ourselves. It is the organ that is an essence

of ourselves, yet we know little about brain mechanism or how it works. In this

chapter, I will introduce the background knowledge about the brain, its anatomy and

some of it basic function. Later in this chapter, I will discuss in detail about the

cognitive function of interest of this study, namely the memory. Finally, I will discuss

about the current state of technology that can be used to investigate brain function

non-invasive.

1.1 Human brain

From the outermost look, the brain consists of two cerebral hemispheres. The term

cerebral means something that related to the brain. The outermost layer is called

cerebral cortex. Each hemispheres are connected by the corpus callosum [30]. Each

hemispheres can be further divided into four lobes: frontal, parietal, temporal and

occipital.

The appearance of bumps and grooves of the brain are referred to as gyri and
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sulci respectively. These folding of the brain increases the brain’s surface area, which

in turn, enables more cerebral cortex matter to fit inside the limited space of the skull

[17].

Under the cerebral cortex is the white matter, which is areas consisted of myeli-

nated axons. It got its name from its appearance due to relatively light color of

lipid content of myelin. The role of the axon bundles in this area is to transmit the

neuronal signal between the area with dense neuronal cells, traditionally called gray

matter [89].

Deep underneath the white matter lies a gray matter formations called subcortical

structures. It consisted of diencephalon, pituitary gland, limbic structures and the

basal ganglia. This structures are thought to be an information hubs of the nervous

system. They process, relay, and modulate information to different areas of the brain

[45].

Thalamus, epithalamus, subthalamus, and hypothalamus are the structures found

inside the diencephalon. The role of these structure revolves around survival and

optimal function of human body.

The limbic structure comprises of the limbic lobe, hippocampal formation, amyg-

dala, and a part of hypothalamus. These structure is an ancient part of human brain.

Their functions are related to primitive bodily responses such as hunger, sexual drive,

fight or flight emotional response. The hippocampal formation also responsible for

memory related function [61].

All of these aforementioned part of the brain are collectively called cerebrum.

Under the cerebrum on the back side of the head is cerebellum. Cerebellum can

be divided into an anterior lobe, a posterior lobe and the flocculonodilar lobe. This

part plays important role in human motor function, also it may be involved in some

cognitive function such as emotional control [40].

The lowermost part at the base of the brain is brainstem. It consists of mid-

brain, pons and medulla. The brainstem involves in the regulation of many essential

processes such as breathing, and body balancing [95].

Here I have briefly introduced the overall anatomy of the brain. Traditionally,
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the knowledge about the division of brain areas and their respective functions are

obtained from post mortem studies of the brain neuronal cell structure and clinical

observations of patients with brain injury. Later in this chapter, I will discuss about

the technology that enable us to observe brain function of realtime or near-realtime.

However before that, I would like to discuss about the main brain function of interest

of this study.

1.2 Human memory

In this section, I would like to discuss the basic knowledge about memory-related

function of the brain and its importance to the advancement of the humanity as a

whole.

Writing is one of the greatest invention of humanity. It enables us to record our

experiences or express our idea, and pass it on to other people or to the next gener-

ation. Modern day human has several means of storing information both physically

and digitally. However, for most of humanity’s existence, it has been only a short

period of time since the invention of writing. Before our means of recording informa-

tion was invented, all we had were our brain, a biological information storage which

stores our memories.

Human memory can be practically divided into 2 large group, short-term memory

and long-term memory [5]. As the name suggest, short-term memory is an immediate

memory required to perform immediate task for the moment, usually it persist for

period of several seconds only. It capable of holding only small amount of information

and not manipulating that information, for example, when we reciting a phone number

or an address. The short-term memory is easily forgotten if there is an immediate

distraction.

On the other hand, long-term memory is retained indefinitely inside our brain

(excluding the case of forgotten memory, which is another memory-related mechanism

of the brain). The long-term memory can be further divided into declarative memory

and procedural memory.
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Procedural or working memory is a memory that does not require explicit con-

scious recollection (implicit memory). This memory aid in our execution of task

involved in both cognitive and motor skill, from riding a bicycle to reading a book.

This memory can be committed into our mind using the process called procedural

learning, where the task is repeatedly performed over and over again until neural

system form and responsible for performing those specific task.

In contrast, declarative memory is a memory that required conscious, intentional

recollection (explicit memory). It is a memory of factual informations, past experi-

ences, or concepts. It can be divided further into 2 types based on type of information

it retains. Memory of general knowledge such as facts, ideas, or meaning of a concept

is call semantic memory. Another one is episodic memory, which is a memory of per-

sonal experience (also called autobiographic memory). This episodic memory contains

the information about time, place, associated emotion, and contextual knowledge of

past experiences [51]. One of the easily discernible characteristic of semantic and

episodic memory is information in semantic memory can be passed on to another

person exactly by the use of language, while the information in episodic memory

could be describe using words to other people to some degree, the information recipi-

ent cannot experience the exact same experience the person trying to convey. In this

study, we will focus on episodic memory.

1.2.1 Episodic memory

Episodic memory is a memory of autobiographical events or a memory of personal

events, times, places, associated with emotion and other contextual knowledge. With

this kind of memory, a person can remember personal experience and consciously

aware of the certain situation at a certain time of that event [83]. This episodic

memory is a part of declarative memory, a category of long-term memory [84]. It is

unique because it is often represented in form of visual information in order of event

occurrence on personal timeline with memory owner as a perspective observer.

This cognitive function is important because it enables human to project oneself

backward in time and recall several aspects of one experience. This ability becomes
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the source of self-awareness and induces intelligence which set human apart from

other animals.

1.3 Look into the Brain

Observing how information are organized in human brain is a challenging task, be-

cause our brains are situated inside solid skulls. In the past, the method of studying

brain’s structures and their functions are limited to study post-mortem brain, or ob-

serving behavior of patients with specific abnormality in specific region of the brain.

While these approaches yield large body of proven useful knowledge, and the ap-

proaches still viable event in the present day, it is difficult to perform a controlled

observation or design specific experiment paradigm around those limitations.

With the advancement of present day technology, several methods are available to

observe brain function in non-invasive fashion. This open the opportunity for studying

brain function in a more controlled manners. The example of one such technology

is electroencephalogram (EEG). EEG is one of the most well-used method to record

brain activity non-invasively. It detects brain activity through a matrix of electrodes

placed along the scalp. Its main advantages are its ease of use and transportation,

and its high temporal resolution. However, it also susceptible from contamination

originated from non-cerebral sources, such as, eye-movement, or muscle activity. The

major weakness of EEG is its poor spatial resolution, since the current are measure on

the scalp. Determine the cerebral source of current measure on scalp require intense

and solid assumption.

Considering merit and demerit of the EEG in regard to the condition of this study,

we concluded that EEG is not suitable for our brain function study on memory-related

task. Memory is a cognitive function that is hard to observe and verify externally,

being able to clearly identify specific area where the activity occurs would give us

better data for intepretation. Thus, we looked into another well-accepted approach

of brain activity monitoring, the functional magnetic resonance imaging, or fMRI.
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1.3.1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is a technology that detect brain

activity by observing changes in blood flow. It is a extension of MRI technology

developed for radiological use similar to x-ray imaging. It primary purpose is to

construct images of anatomy of the body. It is considerably safe compared to other

alternative method such as x-rays, or CT and PET scan, which both relying of ionizing

radiation. MRI works by detect radio frequency emitted by atomic nuclei when it is

subjected to an external magnetic field. The most often used nuclei is hydrogen atom

because it abundant in human body in forms of water and fat. This structural MRI

(sometime called medical MRI) can produce high resolution 3-dimensional image of

the inside of human body.

Functional MRI differs from structural MRI by the target of the scan. While

the structural focuses on reconstruction of body structure, functional MRI focuses

on detecting change of physiological activity over time. In the field of brain function

study, fMRI is used to detect the relative change in blood concentration in area across

the brain. The basis assumption is that the area with higher activity required more

oxygen for energy, thus induced the accumulation of oxygen-rich blood in that area.

Several aspects of the fMRI technology help push the advancement in brain func-

tion research field. It relatively safe so there is no worry that the scan will affect the

subject’s health, which is open up the opportunity to collect more data needed for the

research. The quality of the scan image is also high, which in turn improve the qual-

ity of results interpretation. However, fMRI technology also has its own weakness,

namely, low temporal resolution, or in a simpler term, low response time.

fMRI detect changes in blood flow, which required physical displacement of blood.

This displacement process takes time, usually up to 2 seconds. While it might now

constitute to analytical problem in a experiment design where the task is long and

slow, for reactive cognitive function such as memory, it may poses a problem to the

analysis where the actual neuronal activity cannot be picked up by the scanner. We

also have to keep in mind that the measurement of blood-oxygen level is an indirect
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effects of actual neuronal activity.

1.4 Motivations and objectives

Episodic memory is the main topic of this study because it is hypothesized to enable

human to project oneself backward in time and recollect many aspects of their pre-

vious experience resulting in self awareness. Brain connectivity model is a tool that

can be used to model particular brain function. The model can help us comprehend

the brain mechanism of interest. Therefore, the objective of this study is to derive

connectivity models that explain several aspects of episodic memory.
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Chapter 2

Brain Analogy

In this chapter, I would like to discuss about how we can try to comprehend brain

function. What we can observe when the brain is working is limited, without any

specialized tool. We can hardly observe observe any activity of the brain visually

even if we were to surgically open the skull to look at the brain. I would like to give

the introduction to the tools currently used to observe brain function and concepts

that we can utilized to help us understand the mechanism of the brain.

2.1 Brain activity data acquisition

Now that we have estimated idea of how we will model our brain function of interest,

we can begin discussing about how to acquire the data. While acquiring structure

data is as simple as have a subject lay inside the scanner and run the scan for around

5-10 minutes, acquiring functional data requiring experiment design and protocol for

an optimal scan data.

2.1.1 Modes of acquisition

Current MRI scanners are capable of acquiring several mode of scanned data. Most

commonly used are structural and functional scan. Most of the time, both mode are

required for the analysis.

27



The sole purpose of structural scan is to product a high resolution 3-dimensional

image of the brain. The structural scan is a time-consuming process, usually takes

around 5-10 minutes to finish. The subject have to stay still (at least the head) during

the scan, or else the subject run a risk of introducing movement artifacts into the

final scan data. The structural data will be used in conjunction to functional data

for the analysis.

Functional scan is difference from structure scan in that its objective is not focus

to produce high quality 3-dimensional model of the brain, but to detect the relative

change in blood level across the brain over time. The signal recorded in functional scan

is called blood-oxygen-level-dependent signal or BOLD for short. This BOLD signal

is an indirect measurement of neuronal activity of the brain. The basic assumption

is that the increase in neuronal activity requires more energy from oxygen in blood.

The area that consume more energy by actively working induces blood to accumulate

at that area to provide enough oxygen to maintain ongoing neuronal activity. By

observing those changing in blood-level we can infer neuronal activity of that region.

The strongest point of fMRI data is high spatial resolution image provided by

structural scan. In conjunction with the functional data, we can map functional

information onto 3-dimensional brain model, thus identify the exact location where

the activity has occurred. However, the fMRI approach is not without a weakness.

Since the BOLD signal measure the fluctuation of blood level and blood is a physical

substance, it takes time for blood displacement to occur. In short, BOLD signal has

low temporal resolution.

2.1.2 Acquisition protocols

The main concern of this topic is the experiment design. Conventional fMRI exper-

iment using has a subject perform a task alternate with rest repeatedly in a block

design. This is done in order to collect two set of data. One is the data during

the task performing, another is a neutral state. With these two set of data, we can

contrast them against one another to isolate the brain area where it is related to our

task of interest. This acquisition protocol is usually called task-related protocol.
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In recent years, there is an alternative protocol introduced to increase analytical

option of fMRI study. In this protocol, a subject is asked to stay completely still

and to refrain from performing any cognitive function during the whole length of the

scan session. This is commonly called resting-state protocol. This base assumption

of this protocol differs from task-related protocol in that it assume that there are a

possibility that certain cognitive function is rely on intrinsic brain activity.

The contrast of resting-state protocol is usually determined by behavioral profiling

test perform either before or after the scan session. The use of behavioral profiling

does not limited to only with resting-state protocol, it can be incorporated into task-

related design to increase analytical option as well.

2.2 fMRI data analysis

In this section, we will discuss several analytical option what can be used with the

data we acquired.

2.2.1 Functional segregation

Functional segregation, also known as activation pattern is an analysis focuses on

localized that activated area during the cognitive function of interest. The localization

of the activated brain region can be analyzed using statistical testing or model-based

regression. Usually, the analysis is divided into 2 steps, individual-level and group-

level. In the individual-level analysis step, only a set of data collected from a single

individual subject are analyzed. The resulting activation pattern is a generalized

representative pattern of that individual. The process is then repeated for each every

individual subjects included in the dataset.

In the group-level analysis, the result of the each individual-level analysis are com-

bined and is analyzed again to produce a group-level result that is a representative

pattern that can be applied across population. The group-level result is more prefer-

able to individual-level result because an individual-level result is over-specified to

that individual. There is no guarantee that that result will be valid for other people.
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Human brain has been observe to has an ability called neuro-plasticity or brain

plasticity. This ability allows brain to adapt itself based on experiences, and it change

continuously throughout one’s life. Because of this ability, each individual brain

characteristic varies from person to person. If the group-level analysis contains too

many variation, we may encounter an over-genralization problem. This problem is

an opposite to the oversimplification problem where the result is specific to only one

person, this over-generalization problem means that the results is generalized to the

point where it lost any meaningful interpretability.

2.2.2 Functional integration

Functional integration, also known as connectivity is an analysis aim to illustrate

relationship between active brain regions. It usually depicted in a form of a graph,

where nodes represent brain regions and edges represent connections. The region-

of-interest included in this analysis usually range from a selected group of region

based on activation pattern analysis up to every single region of the brain defined by

anatomical atlas.

The purpose of this analysis is to model brain interaction during the cognitive

task of interest. Any correlation or causality discovery algorithm can be applied on

localized BOLD signal to generate the connectivity model. However, we have to be

careful with the characteristic of the BOLD signal in general. BOLD signal is an

indirect measurement of actual neuronal signal, it may mask and convolute actual

neuronal signal with may lead to faulty result. Furthermore, the problem with the

cognitive function study in general is that there is no ground truth that can be

used to validate the result. Faulty connectivity model leads to faulty interpretation

of the brain function. BOLD signal also highly susceptible to movement artefacts

and physiological artefacts such as heart beat. These artefacts could cause spurious

connection to appear in our model. So, before applying any correlation or causality

discovery algorithm to the BOLD signal, it must be properly preprocessed to remove

noises as much as possible.
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2.2.3 Functional and effective connectivities

Here I will briefly introduce the concept of functional and effective connectivities,

however we will discuss this topic in more details later in chapter 3.

There connectivity model can be divided into 2 groups based on the property of

the connection. A connectivity model where its connections do not contain directional

information is a functional connectivity model, whereas the model where its connec-

tion contain directional information is a effective connectivity model. The functional

model generally represents correlation and the effective model represents causation.

This distinction is important in terms of interpretability of the result. Several time

these 2 terms are used interchangeably, which we highly disagree in mixing these two

terms together as they are not equivalent in property.

Consider a functional relationship between region A and B in functional connec-

tivity model. There are only 2 possibilities for the information to be included in the

model which is either the connection exist or does not exist. In contrast to effective

connectivity, there are 4 possibilities for the information to be included in the model.

One is the connection does not exist, the second is it is a unidirectional connection

from A to B, the third is it is a unidirectional connection from B to A, and the fourth

is it is a bidirectional connection between A and B. These additional information can

improve the interpretability of our resulting model.

Another important difference between function and effective connectivities is that

most correlation analyses do not take temporal order into account, while the temporal

order of the connection is essential to causality discovery algorithm. Considering

the scenario where there are 3 regions X, Y, and Z in our connectivity model. If

the activity in region Z cause both activation of region X and Y, most correlation

algorithm is prone to detect a synchronization of region X and Y as a connection, while

the causality discovery algorithm has a higher chance to detect the source activity at

region Z.
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2.3 Modeling brain mechanism

In the previous chapter, we had discussed about the functional magnetic resonance

imaging (fMRI), the main method of observing brain activity in this study. Briefly,

this technique observe the change in blood flow in each region of the brain, which

implies that the regions with larger amount of blood flow consume more energy, thus

more active in comparison to the area with lesser blood flow. From this information,

we can create a localization map of activated region during the task of interest. This

is an activation pattern or functional segregation. However, higher brain functions

are likely result from several regions of the brain working in tandem. By first isolating

the regions that are activated during the task then study how each of those regions

interact with each other, we can derive a brain connectivity.

When we what to describe how any particular system works, we compare that

system to some form of simplified representation, either it be an equation, a graph,

or a model. In case of brain function., what is its appropriate form of representation?

Brain can be divided anatomically based on cellular structure into several regions.

We also partially know that each regions responsible for a specific set of cognitive

function based on the observation and study by the prior researchers. Simpler task

such as motor movement can be identified to be a product of a certain area, appro-

priately called motor area. This is a result of activation pattern study. However, for

the higher cognitive function, there are a possibility that in order to produce that

function, a single brain area is not enough. When the result of activation pattern

analysis show several activated regions spread across the brain, it is suggested that

those region are working together to produce those cognitive function.

If there is an evidence suggested that several regions of the brain working together,

it is reasonable to assume that those regions must exchange some form of informa-

tion among each other. It is well-documented that there exist forms electrical and

chemical pathway between several regions of the brain. With current technology, it is

impossible to measure what information they are exchanging, but we can observe the

flow of the information by tracing the change cascading throughout the brain. There
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are several correlation and causality discovery analysis capable to undermining those

kind of information from the collected signals. The result can be model into a graph

describing the relationship between each brain region. Nodes represent brain regions,

and edges represent connections or links the regions have.

2.3.1 Activation pattern

fMRI neuro-imaging analysis can produce a contrast image showing the activated

brain regions during the task-of-interest. The basic idea is to contrast the images

during the task with the images from outside the task. This is called subtraction

analysis. There are several framework and software developed to analyze and produce

the contrast images. There are 2 prominent software suite that utilized different

mathematical framework to achieve the same result. One of them is a software suite

called SPM. SPM (Statistical Parametric Mapping) constructs and assesses spatially

extended statistical processes that is used to test hypotheses about functional imaging

data [2]. Another software suite is FSL (FMRIB’s Software Library). FSL is a model-

based fMRI data analysis based on General Linear Modeling (GML) or multiple linear

regression [1].

2.3.2 Connectivity

With the current technology, we can observe live brain activity. The next question is

how we would interpret those information. Conventional fMRI study can show us the

localization of brain activity in relation to the cognitive function of interest. Knowing

which area of the brain active during which cognitive task does not give us the full

understanding of the mechanism of the brain. Understanding the interaction between

those active brain region will give us deeper understanding in dynamic of the brain

function. The concept of brain connectivity model was developed to represent those

interaction between brain regions. There are 3 types of brain connectivity models,

anatomical, functional, and effective connectivity models. Anatomical connectivity

model represents the actual physical connection based on brain cellular structure
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and organization [90], the knowledge mostly acquired from postmortem study of the

brain. Functional models represents un-directed statistical relationship between brain

regions, while effective model represents directed causal relationship between brain

regions. These are usually constructed by analyzing brain activity data. We can

interpret the information provided by these models to infer how brain mechanism

works.

One of the most well-known framework is the Granger causality (GC), a linear

auto-regressive causality modeling framework [33]. It is a mathematical framework

commonly employed to model causality of the neuronal activity from fMRI BOLD

data. The underlying assumption of this framework is that if X → Y if and only if a

change in X has an effect on Y [66]. However, all we can imply from observational

data are statistical dependencies. It is controversial to infer effective connectivity

(directed connectivity) due to the low temporal resolution nature of the BOLD signal

as Granger causality is prone to under-sampling signals.

There are several other mathematical frameworks and algorithms available for

functional or effective connectivity model inference from recorded brain signal time-

series. In recent years, several tools designed specifically for brain connectivity study

using fMRI data, such as Dynamic Causal Modeling (DCM) [26] or CONN toolbox

[92] have been developed. Each attempts to address aforementioned issue from dif-

ferent aspects. The DCM constructs the connectivity model by predicting neuronal

activity using forward model, then it uses haemodynamic model to generate hypo-

thetical BOLD time-series. Finally, it tests the hypothesis against the real BOLD

time-series to choose the best model. The CONN toolbox performs temporal pre-

processing on BOLD time-series in additional to conventional spatial preprocessing

to remove noises that usually cause spurious connection in the model as much as

possible. Each approaches has its own advantages and disadvantages. For example,

the DCM needs concrete assumption of the driver that cause changes in the system,

it usually suitable with task-based fMRI paradigm. The CONN toolbox, which is

usually applied to resting-state fMRI, is only designed for functional connectivity

that shows only correlation between brain region, in contrast to effective connectiv-
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ity model which encoded more information in form of directed link. The additional

information improves the model interpretablility.

In the context of fMRI analysis, DCM is a technique developed specifically for

analyzing connectivity from fMRI BOLD time-series and it is arguably one of the

most widely adopted method. This technique is a model-based approach where it

constructs connectivity model by simulating hypothetical model supplemented by a

haemodynamic forward model, then it estimated the model parameters from observed

data [26]. DCM requires a priori knowledge about the structure of the network be-

ing estimated to test different specific hypotheses using Bayesian model comparison.

For this reason, the classical DCM only suitable for task-based experiment paradigm

where input functions are known. To extend the capability of DCM to cover resting-

state analysis where input function is not well-defined, a DCM for resting-state fMRI

(spectral DCM) was developed [28]. The new developed technique fits a model to the

cross spectrum of the data. Cross spectra are second-order statistics of the original

time-series under stationarity assumption. However, the resting-state analysis usu-

ally includes larger number of region of interest which can be a challenge for DCM

in terms of computational cost. Razi textitet al. proposes a framework complimen-

tary to spectral DCM by using functional models as priors to reduce computational

complexity of large-scale network [68].

Tigramite (time-series graph-based measures of information transfer) is a time-

lagged causal discovery framework based on conditional independence testing using

the assumptions of time-order, Causal Sufficiency, the Causal Markov Condition,

and Faithfulness, among others [73]. The inclusion of time-lag enable this framework

to show changes in causal model over time, which is useful for pathway inference.

The connectivity models can be visualized in form of graphical model [48] which is a

summary model showing all existing connectivities, or time-series graph [20], a graph

that shows causal relation along lagged-timeline. This visualization is useful for model

interpretation. The detailed background of this framework will be discussed later in

section 2.4.
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2.4 Tigramite causal discovery framework

The development of this framework started with an attempt to escape the curse of

dimensionality in estimating multivariate transfer entropy from observational climate

data (sea level pressure) [74]. Transfer entropy (TE) is a model-free approach to

detect directed transfer of information (causality) between stochastic process [78].

The main problems with the interpretation of causal influences in a system that the

underlying mechanisms are poorly understood are the possibility of spurious causali-

ties from indirect influences or common drivers [74]. When interpret the relationship

between two process, it can be said to be a causal relationship if a statistical meth-

ods can (1) measure associations, (2) measure time delays, and (3) exclude other

influences [66]. Existing model-based approach such as Granger causality fulfill re-

quirements (1) and (2). The unfulfilled requirement (3) makes it controversial to infer

causal relationship in this approach. There is no such model-based requirements in

information theoretic framework [15]. The information-theoretic function utilized in

this framework is conditional mutual information (CMI) [39] in the form of transfer

entropy (TE) [78].

The main advantage of choosing TE over the conventional methods such as DCM

is that it is model-free and also capable of detecting both linear and non-linear depen-

dencies. DCM relies on correct prior knowledge of the network under investigation

to define the optimal model space because the model space should reflect the pos-

sible causal connection between brain region in the network. [43], therefore it may

not be optimal for exploratory analyses. Vicente et al. formulated four requirements

for a new effective connectivity measure for it to be considered a useful addition to

the established methods, such as GC and DCM, and showed that TE fulfills those

requirements. [87]. The four requirements are as follows:

1. It should not require the a priori.

2. It should be able to detect non-linear interactions.

3. It should be able to detect effective connectivity even if there is a wide distri-
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bution of interaction delays between two nodes.

4. It should be robust against linear cross-talk between signal.

The first requirement ensures that the new measure is useful for exploratory in-

vestigations. DCM was design specifically for fMRI data by including generative

model based on haemodynamic function [13], which can be both a strength and a

weakness because, while the model fits the data well, it depends on the accuracy of

the current knowledge regarding haemodynamic response.[7]. There are new studies

suggest that haemodynamic response varies across population based on physical con-

dition of the individuals [36]. Nonetheless, the model-free measure could also be use

in complement to DCM in large-scale analysis to create prior constraints to reduce

model space of large network. The second and third requirements are dictated by

observed characteristics of brain function. Brain exhibits strong non-linearities in-

teraction across all level of brain function. Also, the signal traveling from one brain

region to another involve several pathways where delays could be varied according to

anatomical structure [82]. The fourth requirement ensures quality of the analysis us-

ing signal from electroencephalography (EEG) or magnetoencephalography (MEG),

however this property could still benefit analysis using fMRI signal.

There are several studies that utilize TE to investigate brain connectivity. The

studies by Wibral et al. investigate brain connectivity using multivariate transfer

entropy [63] in both task and resting-state paradigms [94] [93]. On the other hand,

Tigramite framework proposed the use of graphical causality in combination with

information theoretic measure i.e. TE. The Tigramite utilizes PCMCI algorithm [73],

which was proposed to address the shortcoming of the Peter and Clark (PC) algorithm

[81]. The PC algorithm is a graph-based causal discovery algorithm where it starts

with a complete undirected graphical model [48], then the links are adjusted based on

conditional independence test [81]. The PCMCI algorithm has main two step. In the

first step, a version of PC algorithm is used to estimate parent sets of each variable.

Then, in the second step, it performs the momentary conditional independence (MCI)

test for each pair of variables and condition on the aforementioned parent sets. This

37



reduces number of independence test it needs to perform. The important advantage

of PCMCI over PC is that the MCI test accounts for autocorrelation which keeps the

false-positive rates at the expected level [75]

To obtain causal information from measured variables, some assumptions is needed.

This framework focuses on three main assumptions under which the time-series graph

represents causal relation [73]. The first assumption is Causal Sufficiency, which as-

sumes that there exist no other unobserved variable that influence any other pair of

our set of variable, either directly or indirectly. We need this assumption because it

is impossible to ensure that we have measured all possible variables [66]. The sec-

ond assumption is the Causal Markov Condition. This condition dictates relationship

between process X and its associated graph G. It implies that once we know the

value of a node’s parent at time τ , all other variables in the past become irrelevant

for predicting state of the current node [80]. The third assumption is Faithfullness.

Faithfullness guarantees that the graph entails all conditional independence relations

that are implied by the Markov condition [80].

Subsequently for the Causal Markov condition to hold, the assumption that there

is no instantaneous (contemporaneous) causal effects is needed. While it may seem

counterintuitive to consider the instantaneous effect between dynamical systems be-

cause the physical speed of information transfer, i.e. speed of light, is finite. The

problem arise when the time-series cannot be sampled with sufficient resolution. [73].

Causal discovery algorithms used in this framework is PCMCI. This approach was

implemented in this framework to address some of the shortcoming of the PC (Peter

and Clark) algorithm [81]. The PC algorithms was invented for random variables

without assuming a time order [48]. It’s process consisted of several phases where

first an undirected graphical model is estimated, then it’s links are adjusted using a

set of logical rules [81].

Tigramite defines time-series graph of a stationary multivariate discrete-time stochas-

tic process X of dimension N as graph structure G = (V ×Z, E) of X where the set of

nodes in the graph consists of the set of components V at each time t ∈ Z. The links

in graph G are defined as a connection between variables X i
t−τ and Xj

t connected by
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a lag-specific directed link ”X i
t−τ → Xj

t ” ∈ G for τ > 0 if and only if

X i
t−τ �⊥⊥ Xj

t |X−
t \{X i

t−τ}, (2.1)

where X−
t = (Xt−1,Xt−2, ...). X, Xt, and X−

t are considered as sets of random

variables. The symbol \ denotes set difference [73].

The stationarity is assumed for process X. The process X is casually stationary

over a time index set T if and only if for all links X i
t−τ → Xj

t in graph [73]

X i
t−τ �⊥⊥ Xj

t |X−
t \{X i

t−τ} holds for all t ∈ T. (2.2)

The framework constructs a time-series graph of a multivariate stochastic process

Xt by evaluating the conditional mutual information (CMI) from subprocesses Xt−τ

to Yt for τ > 0

I(X i
t−τ ;Yt|X−

t \{Xt−τ}), (2.3)

with infinite past X−
t = (Xt−1,Xt−2, ...). If Y �= X, the link Xt−τ → Yt is

considered as a coupling or cross-link at lag τ . If Y = X, then the link is considered

an autodependency or autolink at lag τ [71].

The CMI for multivariate random variables X, Y , Z is defined as

IX;Y |Z =

∫∫∫
dxdydz p(x, y, z)log

p(x, y|z)
p(x|z) · p(y|z) ,

= HX|Z +HY |Z −HZ −HX,Y |Z ,

(2.4)

where H denotes the Shannon entropy and densities p(·) is assumed to exist [72].

The framework test the conditional independence hypothesis

H0 : X ⊥⊥ Y |Z, (2.5)

against the general alternative. IX;Y |Z = 0 if and only if X ⊥⊥ Y |Z, provided that

densities are well-defined [72]. Tigramite utilizes a permutation-based generation of

the distribution under H0 for hypothesis testing in graph structure construction. The
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conditional independence testing used in this framework is CMI as defined in equation

2.4 are model-free method, therefore in principle can handle non-linear dependencies

[73].

Then the framework measures information transfer from the past of a process X

at times t′ < t to the target variable Y at time t and exclude common information in

history shared by X and Y . TE is defined as [71]

I(X−
t ;Yt|X−

t \X−
t ), (2.6)

I(X−
t ;Yt|X−

t \X−
t ) =

∞∑
τ=1

I(Xt−τ ;Yt|X−
t \X−

t , X
−
t−τ ), (2.7)

To overcome the curse of dimensionality of the condition in each term, TE is

estimated using decomposed transfer entropy (DTE) [74] utilizing theory of graphical

models [48] [20] which implies that

I(Xt−τ ;Yt|X−
t \X−

t , X
−
t−τ ) = I(Xt−τ ;Yt|SYt,Xt−tau), (2.8)

for a certain finite subset SYt,Xt−tau ⊂ X−
t \X−

t ∪ X−
t−τ of the conditions. The

suitable set SYt,Xt−tau can be determined from the constructed time-series graph. The

DTE is calculated by

ITE
X→Y ≈ IDTE

X→Y =
τ∗∑
τ=1

I(Xt−τ ;Yt|SYt,Xt−tau), (2.9)

where τ ∗ is the chosen smallest τ [74].

The conditional independence test needed to compute CMI and TE in Tigramite is

CMIknn based on conditional mutual information estimated with k-nearest neighbor

entropy estimator developed by [46]

ÎXY |Z = Ψ(k) +
1

n

n∑
i=1

[Ψ(kz
i )−Ψ(kxz

i )−Ψ(kyz
i )] (2.10)

with the logarithmic derivative of the Gamma function Ψ(x) = d
dx
lnΓ(x). Free

40



parameter k is the number of nearest neighbors in the joint space of X ⊗ Y ⊗ Z

around each sample point i at maximum norm distance εi. The kxz
i , kyz

i , and kz
i

are computed by the number of points with distance smaller than εi in the subspace

X ⊗ Z , Y ⊗ Y , and Z to get kxz
i , kyz

i , kz
i respectively [75].

The appropriate maximum time delay τmax usually depends on the nature of signal

being investigated. We can estimate the τmax by observe the lagged unconditional

dependencies decay. In this study, we observed that the dependencies decay beyond

a lag of 15. For the significance level α, in the context of this framework it takes

the role of a regularization parameter for model-selection, since precise assessment of

uncertainty is not possible in iterative hypothesis testing.

To quantify causal interaction between subprocess, this framework proposed a

measure I to quantify linear causal effect (CE) of perturbation [71]

ICE
i→j(τ) = Ψji(τ) (2.11)

where Ψ(τ) is iteratively computed matrix products of estimated coefficient ma-

trices Φ(τ) by [76]

Ψ(τ) =
τ∑

s=1

Ψ(s)Φ(τ − s). (2.12)

The mediated causal effect (MCE) through a component k is the sum over the

products of path coefficients only along causal paths through k.

IMCE
i→j (τ) = Ψji(τ)−Ψ

(k)
ji (τ) (2.13)

where Ψ(k)(t) is a computed from equation 2.12 with mmodified path coefficient

matrices Φ(k)(t) where all links towards component k are set to zero

Ψ
(k)
ki (τ) =

⎧⎪⎨
⎪⎩
0, for all links X i

t−τ → Xk
t

Φki(τ), otherwise

(2.14)

which blocks all paths though component k at any lag [76].
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Aggregated causal effect (ACE) and aggregated causal susceptibility (ACS) mea-

sures on the lag with maximum effect [76]:

ICE,max
i→j = max

0<τ≤τmax

|ICE
i→j(τ)| (2.15)

IACE
i→j =

1

N − 1

∑
j �=i

ICE,max
i→j (2.16)

IACS
i→j =

1

N − 1

∑
i �=j

ICE,max
i→j . (2.17)

The average mediated causal effect (AMCE) is calculated based on causal paths

through a given node

IAMCE
k =

1

|Ck|
∑

(i,j)∈Ck
max

0<τ≤τmax

|IMCE
i→j|k (τ)| (2.18)

where Ck is the set of interactions between all non-identical pair i, j �= k at all lags

0 < τ ≤ τmax where k is an intermediate component (at any lags) and |Ck| denotes

its cardinality [76].

2.4.1 Computational cost and consistency

The computational complexity of the PCMCI used in Tigramite depends on the com-

plexity of the condition selection step and the momentary condition independence

(MCI) test step. The complexity of the conditional selection step depends on the

network structure where in the worst case is a complete graph, the number of condi-

tional independence tests for N variables is

N
Nτmax−1∑

p=0

Nτmax = N3τ 2max (2.19)

tests with iteratively increasing cardinality [75]. The number of test in MCI step

are N2τmax tests for τ > 0 of a maximal dimensionality of 2 + |P̂(Xj
t )|+ |P̂(X i

t−τ )|
where P denotes the causal parents [75]. Thus, the overall complexity of the PCMCI
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is N3τ 2max+N2τmax which is polynomial. The current implementation of the PCMCI

does not yet support parallelization, however, it is a planned feature. There are several

processes that have potential for parallelization, so the framework’s performance may

improve in the future.

Consistency is a property of causal discovery method indicates whether the method

is able to converges to the true causal graph in the limit of infinite sample size [73].

Consistency of PCMCI is proven by Runge et al. [75].

2.4.2 Advantages and disadvantages of Tigramite

Graph theory is a classical tools for brain function modeling, usually based on pairwise

association measures among nodes in the graph [12]. In contrast, Tigramite uses CE

which is a dynamical and causal alternative to classical measures, and has been found

to have higher predictive power [76]. The problem such as common driver, where X

and Y are driven by common Z process with difference time lag, reduces the validity

and interpretability of the connectivity model in the framework where only correlation

between two variable is considered at a time such as Granger causality [52]. The

implementation of Tigramite allows more detail pathway analysis by investigating CE

of each nodes along lagged time. It mitigates common driver problem by discovering

hidden pathways and drivers.

However, the limitation of this approach has to be considered when interpret

the model. This method is a data-driven approach, thus it needs to rely on several

assumptions. For example, causal sufficiency assumes that all variables are available

and taken into account [80]. When interpreting resulting CEs, it is important to

consider it only in relative to variables that were taken into account [76].

While we have shown that this approach is applicable in individual level, to in-

terpret brain mechanism for general population, the method to construct a group

connectivity is needed because modeling connectivity from data across individuals is

controversial [19]. Causal analysis is sensitive to temporal noise and variance. The

variation in time-order of neuronal activity across individual due to brain plasticity

may cause misinterpretation of the causal effect. The fact that BOLD signal is an in-
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direct measurement of the actual neuronal activity further confound the connectivity

inference.

2.5 Case study: motor-task fMRI connectivity using

Tigramite

Here I would like to demonstrate the basic of brain connectivity study using motor-

task fMRI data. As a primary study using novel tools, the motor-task is relatively

simpler comparing to memory-related task or resting-state because we can physically

observe the subject performing the task. The brain networks related to motor function

had also been extensively studied, thus we can validate the results of this study by

comparing them with the previous studies by other researchers.

2.5.1 Materials and method

The dataset used in this study is obtained from Human Connectome Project (HCP),

a project conducted by the Washington University-University of Minnesota Human

Connectome Project Consortium (WU-Minn HCP). This project provides exceptional

spatiotemporal resolution fMRI dataset of well-characterized large group of healthy

individuals [85].

We utilize the HCP motor task-fMRI dataset for this particular case study. This

motor task was adapted from design developed by Bucholz et al. [10]. Subjects are

asked to perform following actions, tapping left or right fingers, squeezing left or

right toes, or moving tongue in according to visual cue being presented. The session

is organized in blocks of movement type, each preceded by a 3 second cue and lasted

for 12 seconds with 10 movements. Overall, the session contains 13 blocks in total,

with 4 foot movements (2 right and 2 left), 4 hand movements (2 right and 2 left),

and 2 tongue movements. The rest 3 blocks are 15-second fixation blocks [85].

Figure 2-1 shows the process overview of this connectivity study. Univariate group

subtraction analysis was done on the aforementioned HCP motor task using FSL
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6.0.2 (FMRIBs Software Library, www.fmrib.ox.ac.uk/fsl) software suite (figure 2-

1b). The preprocessing step consisted of image reconstruction, distortion correction,

motion correction, and slice timing correction. The HCPs structural MRI and fMRI

were preprocessed using FSL 5.0.6 according to HCP preprocessing pipeline [31].

Individual- and group-level univariate group subtraction analysis were done using

FEAT (FMRI Expert Analysis Tool, v.6.00). 50 subjects were randomly selected

from HCP dataset for this analysis.

Usually, a set of region-of-interest (ROI) will be selected based on an univariate

group subtraction analysis, however, additional ROIs can also be included if they are

known to involve in the function of interest based on the prior related literatures.

In this case, the ROIs included are the activated region from the univariate group

subtraction analysis (figure 2-2). Additionally, frontal lobe, cerebellum, left and right

thalamus, are included based on prior studies [53] that they play roles in motor related

task. All ROIs are listed in table 2.1.

BOLD time-series were extracted using FSL’s average time-series calculation tool

(fslmeants). Time-series of each area were extracted in according to Juelich histolog-

ical atlas, Harvard-Oxford cortical structural atlas, and MNI structural atlas (table

2.1). Slice timing correction was performed using FSL. The masks of the aforemen-

tioned ROIs used as input for fslmeants were created using FSLeyes software (figure

2-1c). Each masks have been checked that there is no overlapping between different

regions. For connectivity model construction, we propose the use of Tigramite causal

discovery framework (figure 2-1d).

In our motor task-fMRI application, the algorithm’s parameters we used are as

follow: maximum time lag τmax = 15 time point, significance level α = 0.01 (Student’s

t-test).

2.5.2 Results
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Table 2.1: All region of interest included in connectivity model.
No. Area Name AbbreviationAtlas
1 left thalamus PmcBA4pL MNI structural
2 right thalamus PmcBA4pR MNI structural
3 left premotor cortex Brodmann area 6 PcBA6L Juelich histological
4 right premotor cortex Brodmann area

6
PcBA6R Juelich histological

5 left anterior primary motor cortex
Brodmann area 4

PmcBA4aL Juelich histological

6 right anterior primary motor cortex
Brodmann area 4

PmcBA4aR Juelich histological

7 left posterior primary motor cortex
Brodmann area 4

PmcBA4pL Juelich histological

8 right posterior primary motor cortex
Brodmann area 4

PmcBA4pR Juelich histological

9 left visual cortex V1 Brodmann area 17 V1BA17L Juelich histological
10 right visual cortex V1 Brodmann area

17
V1BA17R Juelich histological

11 left visual cortex V2 Brodmann area 18 V1BA18L Juelich histological
12 right visual cortex V2 Brodmann area

18
V1BA18R Juelich histological

13 cerebellum Cereb Harvard-Oxford cortical struc-
tural

14 frontal lobe FL Harvard-Oxford cortical struc-
tural

Table 2.2: Area identified by univariate group subtraction as defined by Juelich
histological atlas.
Area Name Abbreviation
left anterior primary motor cortex Brodmann area 4 PmcBA4aL
right anterior primary motor cortex Brodmann area 4 PmcBA4aR
left posterior primary motor cortex Brodmann area 4 PmcBA4pL
right posterior primary motor cortex Brodmann area 4 PmcBA4pR
left premotor cortex Brodmann area 6 PcBA6L
right premotor cortex Brodmann area 6 PcBA6R
left visual cortex V1 Brodmann area 17 V1BA17L
right visual cortex V1 Brodmann area 17 V1BA17R
left visual cortex V2 Brodmann area 18 V1BA18L
right visual cortex V2 Brodmann area 18 V1BA18R

While the localization of the motor-related brain region had been well studied,

we performed univariate group subtraction analysis on this data to verify that this
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dataset is consistence with prior finding.

The resulting main cluster of all the task blocks are shown in figure 2-2, and the

areas cover the activated brain region are listed in table 2.2. The left and right foot

tasks show clusters at right and left premotor cortex (Brodmann area 6) respectively.

The left and right hand tasks show clusters at right and left primary motor cortex

(Brodmann area 4). The tongue block shows cluster in both left and right primary

motor cortex. The visual cue block shows large cluster covers both left and right

visual cortex V1 (Brodmann area 17) and V2 (Brodmann area 18).

In the following, we show a constructed connectivity model and its associated

parameter of a random HCP subject. In this framework, in addition to studying

causal effects between adjacent nodes in the connectivity model, we can also study

total causal effect (CE) along indirect causal paths. The matrices of CEs between all

ROIs are shown in figure 2-3. The CE between two components i and j at lag τ can

be denoted as ICE
i→j(τ).

We can observe CE becomes stronger as the lag (τ) is increasing at node 12, 8,

and 4 or area V1BA18R, PmcBApR, and PcBA6R (table 2.1) respectively. From this

observation, we can further investigate the interaction between these area by plotting

their mediation graph. The figure 2-4 is a mediation graph between V1BA18R and

PmcBA4aL. We choose to investigate this pair because it has highest CE, ICE
12→5(15) =

0.82. Time-series graph in figure 2-4b shows the effects propagate from V1BA18R

to other visual areas in the early process, then the strongest CE propagates to Pm-

cBA4aL in the left hemisphere and weaker CE propagates to PmcBA4aR in the right

hemisphere. After that, the CE propagates from PmcBA4aR to PcBA6R. Left Tha-

lamus only receives CE from PcBA6R and show negative CE to several visual areas

and PmcBA4aL. The negative CE means that it counteract the effect of other areas.

By calculating average causal effect (ACE), a column-mean of the CE matrices,

and average causal susceptibility (ACS), a row-mean of the CE matrices, we can

observe how much effect a specific ROI has on the rest of the brain and how sensitive

a specific ROI is to perturbations from other parts of the brain. An average mediated

causal effect (AMCE) measures how strong a subprocess mediates CEs propagating
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throughout the system [76].

In figure 2-5, we show ACE, ACS and AMCE for this HCP subject. The figure

2-5a shows that this particular subject’s right visual cortex (Brodmann area 18) has

strong effect to the rest of the brain. This is reasonable since in HCP motor task-fMRI

protocol, the subject’s actions were initiated by visual cue. In figure 2-5b, we can see

that the left primary motor cortex (Brodmann area 4) has high susceptibility with

the change from other area. We can infer the reason behind this observation to be due

to the fact that this task focuses on motor function, thus most changes in the system

affect motor-related area the most. In figure 2-5c, right visual cortex (Brodmann area

17) is shown to be the strongest mediator of the CE spreading. This area acts as the

main pathway to this system is correspond to the experiment paradigm where there

visual cue initiate the action.

2.5.3 Discussions

Correctly interpreting brain mechanism is difficult, especially in higher cognitive func-

tion such as memory or self-awareness, because there is no ground truth, and some

cognitive function cannot be physically observed. In this study, we want to show

that in addition to conventional connectivity model construction approaches such

as Granger causality, Tigramite is also one of the viable approaches with its own

benefits. We choose to show its application with motor task-fMRI dataset because

mechanism of brain motor function is well studied. The available knowledge can be

used to compare and verify the validity of the resulting connectivity model.

The brain areas involve in controlling body’s voluntary movement is the motor

cortex. This area can be further divided into primary motor cortex (Brodmann

area 4), premotor cortex (Brodmann area 6), and supplementary motor area [58].

The primary region of the motor system is the primary motor cortex. It works in

association with the rest of the motor area to control muscle movement. Visual area

1 (V1), or Brodmann area 17 (BA17), in visual cortex functions primarily in pattern

recognition in the visual field [32]. It processes visual information in association with

other region inside visual cortex, such as, Broadmann area 18 (BA18). Frontal cortex
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in frontal lobe has been found to play roles in mediating movement-related brain

signal [57] through thalamus and cerebellum [9]. According to these knowledge, we

use Tigramite to construct a connectivity model involving these regions.

The Tigramite framework shows not only the statistical dependency between brain

regions, but also causal effects among the regions. In addition to the topological infor-

mation of the resulting graphical model, ACE, ACS, and AMCE provide information

about the overall characteristic of the interaction inside the model.

ACE shows how much effect a ROI has on the rest of the brain. The ACE of the

random subject depicted in result section shows that the major driver of the system is

right visual area (BA17), followed by right premotor cortex (BA6) and right primary

motor cortex (BA4) respectively (figure 2-5a). It is reasonable to expect visual cortex

as a major driver to the system due to the fact that the motor task performed by

the subject was initiated by visual cue. Inside the motor cortex, ACE shows that

premotor cortex is the major driver to the system. It reflects the fact, founded by

studying brain activity of monkey, that the premotor cortex is involved in planning

and preparing for movement, in which the movement is then executed by the primary

motor cortex [91].

The level of ACS shows how susceptible a ROI is to the perturbations from other

part of the brain. In our sample case, the brain areas with high ACS are left pri-

mary motor cortex (BA4) and left premotor cortex (BA6) respectively (figure 2-5b).

Considering that the right motor cortex is shown to be one of the major driver, the

high susceptibility of the left motor cortex may be the evidence of inter-hemispheric

coupling in brain activity observable even during uni-lateral motor task [16].

AMCE measures the subprocess that mediates the propagation of CEs throughout

the system. Figure 2-5c demonstrates that the most dominant causal mediators is

right visual area (BA17), which means that this region is a major causal pathway

of this system. The presence of dominant mediation and driver in right hemisphere

may related to the handedness of the subject, unfortunately the HCP dataset does

not included this information in subject’s profile, so we cannot confirm or deny this

conjecture.
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In figure 2-4, we shows a connectivity model of pathway between right visual

area (BA18) and left primary motor cortex (BA4) at lag 15. While we expected a

mediation pathway in frontal lobe that caused by motor movement planning activity

[4], we could not detected it. The absence of this connection might be due to the

fact that if the CEs are faster than the lag resolution, the repetition time (TR) in

the case of fMRI which is 2.8 seconds for this dataset, it will appear in the analysis

as contemporaneous links, which are not regarded as causal links [76].

2.6 Issues with fMRI data for brain connectivity mod-

eling

The low temporal resolution of fMRI BOLD signal poses a challenge to connectiv-

ity modeling because the causal inferring process is temporal sensitive. Moreover,

fMRI images are constructed from several scan slices acquired at the different time

in orderly fashion. Despite the slice-timing correction process usually applied in the

preprocessing step, there is a chance that the error or deviation in correction may re-

sult in spurious connectivity, or incorrect order of causality. This issue will be further

discussed in chapter 3

2.7 Validation and interpretation

While most conventional fMRI studies rely on pool of data collected across individ-

uals, modeling of the connectivity from data across individuals is controversial [19].

Nonetheless, a method to establish a general model that represents brain connectivity

across individuals is essential. We propose a method of constructing a representative

graph based on graph structure by using median aggregation of the weight of corre-

sponding edges and nodes of each individual graphs which will be discussed in detail

later in chapter 4.
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2.8 Generalizing brain connectivity model

As we have discussed functional segregation section, the generalized group-level result

is more preferable to individual result. This poses a problem with the connectivity

model analysis because currently there is no established method to compute and

validate the connectivity model. We will discuss this problem in more details in

chapter 4.
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Figure 2-1: Summary of processing pipeline from fMRI data to connectivity using
Tigramite. a) Here, we use motor task-fMRI dataset provided by Human Connectome
Project (HCP). The data were preprocessed by the HCP using the HCP preprocess-
ing pipeline [31] which includes image reconstruction, distortion correction, motion
correction, and MNI nonlinear volume registration. b) We performed localization
of activated brain region during the task using FSL FEAT fMRI analysis. Group-
level analysis were done using randomly selected 50 individuals. c) Then we defined
masks for BOLD time-series extraction based on the aforementioned localization re-
sults using FSLeyes. Additional regions that are known to play roles in motor-related
function were included. Then the average BOLD time-series of each regions of inter-
est were extracted using fslmeants tool. d) Finally, Tigramite was used to construct
a connectivity from the extracted time-series. The first step is to estimate the lagged
dependencies to determine maximum lag (τmax). Then we performed the conditional
independence test to estimate the causal link between each ROIs. After that, the
estimated time-series graph were used to evaluate causal effect and causal mediation.52



Figure 2-2: Group-level clusters of each task blocks from randomly selected 50
subjects of HCP motor task-fMRI dataset. Z statistic images were thresholded using
clusters determined by Z>3.1 at cluster significance threshold of P=0.05 (corrected).
FEAT (FMRI Expert Analysis Tool, v6.00) was used for the analysis. The General
Linear Model was used to model 6 blocks (5 task blocks, 1 cue block). Task blocks
consisted of tapping left or right fingers, squeezing left or right toes, or moving tongue,
preceded by visual cue block. The brain areas covers by these clusters are listed in
table 2.2.
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Figure 2-3: Causal effect of all ROI pairs and lags. An entry in the matrix shows
causal effect ICE

i→j(τ) calculated using equation 2.12 where i and j correspond to ROI
listed in table 2.1. The strength declines in the longer lags.
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Figure 2-4: a) Aggregated graphical model from V1BA18R to PmcBA4aL at lag 15
ICE
12→5(15). It is a summary graph represents time-series graph in figure 2-4b. The edge

color shows link coefficient and node color shows the MCE. b) Time-series-graph of
V1BA18R to PmcBA4aL pair at lag 15 ICE

12→5(15) depicts links in relevant causal paths
between V1BA18R and PmcBA4aL at lag 15. The edge color shows link coefficient
and node color shows the MCE.
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Figure 2-5: a) Depicts average causal effect (ACE) of each brain regions (nodes) in
HCP motor task-fMRI connectivity model. The values (size of the nodes) reflect how
much particular region effects the rest of the brain. b) Average causal susceptibility
(ACS) shows how sensitive the region is to the change from the rest of the system.
c) Average mediated causal effect (AMCE) shows how strong the region mediate the
effect propagation.
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Chapter 3

Functional and Effective

Connectivities

How can we describe brain mechanism? In the simplest form, we can consider brain

as a information processing unit, thus it is logical to illustrate brain function using

a model that represents information flow. That is a connectivity model. The con-

nectivity model consists of nodes and edges, where nodes represent brain regions and

edges represent information pathway between regions their are connected to. Using

this concept, we can find which areas are active during the task and measure the

flow of information by tracing a series of activation over time, then construct a graph

describe that mechanism. We can combine the model with the prior knowledge of

function of each regions involved in the model, then trying to interpret the meaning

of the model.

Nonetheless, illustrating how brain works for a specific cognitive function is a

challenging task. Currently available technologies for observing brain function non-

invasively is limited, and the signal acquired is indirect. One of the most prominent

technology in this field is functional magnetic resonance imaging (fMRI). The fMRI

technology has enabled the observation of regional brain activation by detecting the

amount of oxygen presence in blood in each particular part of the brain, on the

principle that the region that is working is consuming oxygen for energy. This allows

the chronological observation of brain regional activations, and by plotting those
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regional activations through time, we can assume information pathways from region

to region inside the brain during any particular cognitive task. These pathways are

the brain connectivity.

3.1 Deriving connectivity model from BOLD signals

Since brain activity cannot be observed physically, the brain connectivity is a useful

tool to model its mechanism. A connectivity model or a network is a mathematical

representation of a real-world complex system denoted by a collection of nodes and

links between pairs of nodes [70]. Nodes usually represent brain region, and links

represent connection between regions. The model illustrate how each regions of the

brain interact with each other and show how information, in form of neuronal signal,

flow through them. Combine with the background knowledge of each particular region

responsibility to certain lower cognitive function, the mechanism of higher cognitive

function can be inferred. There are 3 types of connection, anatomical, functional and

effective connection. The anatomical connection is an actual physical link between

regions by biological pathway.

Functional connectivity is a type of connectivity that represents the undirected link

or correlation between the node. It is defined as the temporal coincidence of spatially

distant neurophysiological events [27]. We need to be careful when interpreting this

type of connectivity. For example, when the analysis shows that the region A has

functionally connected with region B, it might be incorrect to conclude that there

are information transfer from region A to region B. There is a possibility that both

region A and B have the common influencer region C, so they both A and B seems to

be coupled. Moreover, correlated activity in two regions may be mediated by other

area relaying the information from the first to the second area, which will resulting

in the correlation presence even in the absence of real physical connection. Thus, the

function connectivity does not imply any causal relationship between brain regions.

Effective connectivity is a type of connectivity model that the directed link be-

tween nodes represent causation between the node. It is defined as the influence one
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area exert over another [25]. This type of connectivity allow for more sophisticated

interpretation of the brain mechanism. Furthermore, the effective connectivity also

considers time-dependent change, so we can trace the path that the signals, or infor-

mations, propagate. The Tigramite framework use transfer entropy to measure this

connectivity from signals.

The anatomical connectivity is the most straightforward of all 3 connectivity in

terms of inferring and interpreting connectivity model, because there are physical

evidences and measurable signal as ground truth, albeit postmortem pathological

study of neuronal structure or invasive procedure on live patient are usually required.

Contrarily, functional and effective connectivity usually derived from non-invasive

measurement and they are hypothetical connections. It is usually controversial to

infer solid conclusion from hypothetical connections as there is no ground truth to

support the inference, thus limiting our ability to make meaningful interpretation of

these connectivities. Confounding factors present due to limitation of non-invasive

measurement further reduce the reliability of the resulting connectivity model.

There are several mathematical framework or algorithms that can be applied to

construct both functional and effective connectivity from fMRI blood-oxygen-level-

dependent (BOLD) signal. The example of such algorithm is Granger causality.

Granger causality [33] is a mathematical framework commonly employed to model

causality of the neuronal activity from fMRI BOLD signal. The underlying assump-

tion of this framework is that if X → Y if and only if a change in X has an effect

on Y [66]. However, all we can imply from observational data are statistical depen-

dencies. Inferring and interpreting causal relationship is controversial. Moreover, the

fact that fMRI BOLD signal is an indirect measurement of actual neuronal signal

further confounds the inference. The detailed background about the development of

other tools commonly used in this field is discussed in chapter 2.

Regardless of fMRI technological limitation, there are attempts and progresses in

research and development of the framework to extract connectivity information from

fMRI BOLD signal. CONN toolbox is a MATLAB toolbox designed for functional

connectivity analysis using BOLD signals. This toolbox emphasis on preprocess the
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signals to make it suitable for functional connectivity analysis. Primary concern of

signal preprocessing for conventional fMRI analysis is spatial preprocessing, such as,

slice-timing correction to correct time lag between each slice acquisition, or realign-

ment to correct displacement between slices caused by subject’s movement. However,

in case of connectivity analysis, temporal aspect of the signal is also a concern, be-

cause connectivity analysis is temporal sensitive. Global signal regression can be used

to remove temporal noise, but it is known to introduce negative correlation in the

connectivity result which reduces result’s interpretability. CONN toolbox avoid that

issue by utilizing component-based noise correction method (CompCor) instead of

global signal regression, which increase sensitivity and specificity of functional con-

nectivity, thus allow for better interpretability [92].

Additional to a software designed specifically for fMRI connectivity analysis, any

causal analysis framework has potential to carry out the task as well. Tigramite is

a time-lagged causal discovery framework [71]. Compare to Granger causality, this

framework relies on different set of assumptions to identify a causal graph. It per-

forms conditional independence testing using the assumptions of time-order, Causal

Sufficiency, the Causal Markov Condition, and Faithfulness, among others [73], hence

improve causal interpretability in comparison to Granger causality. In chapter 2, we

have discussed the detailed background and implementation of Tigramite framework.

Beside conventional fMRI analysis, resting-state fMRI is gaining more and more

attention in recent year. In contrast to conventional fMRI, which the experiment

design revolves around block- or event-related task, resting-state fMRI is a model-

free analysis for any steady-state fMRI dataset. It increases analytic options for

describing the functional organization of the brain [55].

In the study discussed in this chapter, we compare resting-state functional connec-

tivity model from CONN toolbox and effective connectivity model using Tigramite

framework. Functional connectivity models only consider temporal correlation (undi-

rected connection) while effective connectivity models consider temporal causality

(directed connectivity). Additional information obtained from directed connectivity

may improve fMRI connectivity interpretability, which is a major controversial in the
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field of brain connectivity modeling [19].

3.2 Method

3.2.1 Subjects

This study contains data from 120 subjects (of all 149 participants, 1 is removed

for biased questionnaire responses, 3 are removed because data incompletion, and

12 participants voluntarily withdrew from the study). The subject group included

in this study consists of 68 females and 52 males. Minimum age is 45 year-old and

maximum is 65 year-old (mean: 55.03, SD: 6.07).

3.2.2 Experiment design

A behavioral test is used to evaluate episodic memory recollection capabilities of

the subjects. Stimuli are presented to the subjects to invoke episodic recollection.

Stimulus used in this study is 3-word tuple cue consisted of descriptive time, place,

and action. This word combination is used to stimulate subject’s episodic recollection

because they are basic elements of episodic memory [83]. Each trial consists 30 cues.

Each cue has 2 corresponding responses, difficulty of recollection and confidence of

recollection.

There are 3 phases in a single resting-state fMRI data acquisition session, pre

resting-state fMRI, resting-state fMRI, and post resting-state fMRI. In pre resting-

state fMRI phase, a set of 30 stimuli is presented to the subject. The subject does

not need to respond to any of the stimuli in this phase. The pre phase is then followed

by 10 minutes resting-state fMRI acquisition session, where the subject is asked to

lie still inside fMRI scanner and to refrain from performing any cognitive task. In

post phase, the same set of stimuli presented to the subject during the pre phase is

presented to the subject. In this phase, the subject responding to each stimulus by

performing self-assessment of difficulty and confidence in episodic memory recollection

of the corresponding scenario associated with each stimulus. The summary of the
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Figure 3-1: Resting-state fMRI session paradigm. Before the scan, participants were
asked to perform recollection task using words-cue stimuli. The words-cue is a com-
bination of words describing time, place, and action. Each stimuli was shown for a
duration of 10 seconds with total of 30 stimuli. This session is followed by a 10 min-
utes resting-state fMRI scan session. After the scan, the participants were presented
with the same set of stimuli with additional new stimuli. However, for this post-scan
session, the participants were asked to evaluation the difficulty and confidence of the
recollection of the memory corresponding to the stimuli.

paradigm is shown in figure 3-1.

3.2.3 Data acquisition

Stimuli and self-assessment questionnaires are presented to subjects using ‘Presenta-

tion’ stimulus delivery program (Neurobehavioral Systems Inc, Albany, CA, USA). In

pre phase, a white fixate crosshair is displayed for 500 ms, followed by 500 ms blank

screen, then word-combination cue is displayed for 10 s. During resting-state fMRI

scan session, a blue fixate crosshair is displayed to the subject. The subject has not
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been given any instruction to perform any physical or cognitive task. In post phase,

word-combination cue is displayed along with self-assessment question for 20 s. The

response is in 1 to 5 integer scale. The subject responds to the question by press-

ing corresponding numeric button on keyboard. In addition to 30 stimuli presented

during pre phase, 10 novel stimuli and 5 attention checking stimuli are added to post

phase.

Resting-state fMRI was performed on 3 T MR scanner (Siemens). Forty contin-

uous axial slices (slice thickness 3.2 mm, 0.8 mm gap) were acquired in each volume

using a T2*-sensitive gradient echoplanar imaging sequence (TR: 2,500 ms, TE: 30

ms, flip angle: 80◦, FOV: 212 mm × 212 mm)

3.2.4 fMRI data preprocessing

The fMRI data in this study are preprocessed through CONN toolbox standard

preprocessing pipeline. The pipeline utilizes SPM8 for spatial preprocessing which

includes slice-timing correction, realignment, normalization, and smoothing (8-mm

FWHM Gaussian filter). Temporal preprocessing is done using component-based

noise correction (CompCor) implementation of CONN toolbox. The temporal covari-

ates removed by linear regression are the estimated subject motion (three-rotation

and three translation parameter, and another six parameters representing their first-

order temporal derivatives), the BOLD time-series within the subject-specific white

matter mask (three PCA parameters), and cerebrospinal fluid (CSF) mask (three

PCA parameters). The resulting residual BOLD time-series are band-pass filtered at

0.01 Hz < f < 0.10 Hz [92].

3.2.5 ROI BOLD extraction

The region of interest (ROI) BOLD signals used in both CONN and Tigramite anal-

ysis are extracted using CONN toolbox’s preprocessing pipeline. The ROI BOLD

signals are average BOLD time-series computed across all the voxel within the ROI.

The ROIs are defined by Harvard-Oxford Atlas. Ten ROIs are selected for connectiv-
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Figure 3-2: Data processing workflow. Raw BOLD signals of each region-of-interest
were extracted and preprocessed using CONN toolbox. The CONN toolbox performs
temporal preprocessing in addition to traditional spatial preprocessing to reduce tem-
poral variance in fMRI BOLD signal in an attempt to avoid spurious connection in
the connectivity analysis. The preprocessed signal were used to produce functional
connectivity model using CONN ROI-to-ROI correlation analysis tool, and effective
connectivity model using Tigramite causal analysis framework.
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Table 3.1: Selected regions of interest (Harvard-Oxford cortical structural probability
atlases).
Hemisphere Regions Abbreviation
Right hippocampus Hippocampus r
Left hippocampus Hippocampus l
Right anterior parahippocampal cortex aPaHC r
Left anterior parahippocampal cortex aPaHC l
Right posterior parahippocampal cortex pPaHC r
Left posterior parahippocampal cortex pPaHC l
- medial prefrontal cortex Default Mode network networks.DefaultMode.MPFC
Right lateral parietal Default Mode network networks.DefaultMode.LP (R)
Left lateral parietal Default Mode network networks.DefaultMode.LP (L)
- posterior cingulate cortex Default Mode network networks.DefaultMode.PCC

ity analysis (table 3.1). The selected ROIs consisted of Default Mode networks and

area that are known to be responsible for episodic memory related cognitive functions

[14]. Those regions are selected for this study to model the memory-related connectiv-

ity that shows the interaction among those region in relation to our memory-related

cognitive function of interest.

3.2.6 Behavioral test

Self-assessment memory recollection test questionnaire is used to evaluate subject’s

episodic recollection ability. The assessment measures 2 parameters, difficulty in per-

forming recollection, and confidence of the accuracy of the content of the recollection.

The difficulty level indicates how much effort the subject has to assert in order to

recall a memory of particular scenario specified by the stimulus. The confidence level

indicates how certain the subject feel about the accuracy of the recalled memory. The

assessment results are used as between-subject contrast for group-level analysis.

3.2.7 CONN ROI-to-ROI analysis

All aforementioned 10 ROIs (table 3.1) are used as seed for this analysis to esti-

mate the ROI-to-ROI functional connectivity (bivariate correlation measure) among

these ROIs. Between-subjects contrast is defined by behavioral results from memory
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recollection test.

The second-level between subject contrast is determined by memory recollection

self-assessment questionnaire with 2 parameters, recollection difficulty and confidence.

The difficulty show how much effort the subject need to assert to recall the memory.

The confidence shows how much confidence the subject has in regard of the accuracy

of the recalled memory. The self-assessed confidence level is shown to be associated

with episodic memory retrieval performance [38].

3.2.8 Tigramite analysis

We model causal relation among 10 ROIs (table 3.1) for each individual subjects us-

ing Tigramite causal time series analysis software package. It is a time-lagged causal

discovery frameworks [73]. There are 2 free parameters for the algorithm, the maxi-

mum time lag τmax, and the significance threshold α in the condition- selection step.

To determine maximum time lag τmax, we estimated lagged unconditional dependen-

cies of the BOLD time-series and found the dependencies diminish beyond a lag of

8. The significance threshold α is set to 0.1. The α is a regularization parameter in

model-selection techniques, and should not be seen as significance test level in the

condition-selection step [75]. Group representative model was constructed by median

aggregation of connection weight of corresponding link of each individual connectivity

graph. We use median to reduce the effect of outliers.

3.3 Results

3.3.1 Behavioral results

The behavioral profile of each subjects is determined by self-assessed memory rec-

ollection questionnaire. The subject is presented with 3-word combination stimuli

consisted of descriptive time, place, and action. Then subject is asked to recall the

memory related to the stimuli and determine the difficulty and the confidence of the

recollections.

66



Figure 3-3: ImPACT data acquisition paradigm. The subject was pre-exposed to the
words-cue stimuli in pre-scan phase (figure 3-1). Then the subject participated in
resting-state fMRI scan session where the resting-state brain activity of the subject
was acquired. In the resting-state session, the subject were asked to do nothing, both
mentally and physically, throughout the scan session. After that in the post-scan
phase, the subject was asked to perform the memory recollection task (figure 3-1)
which the result will be used as behavioral profile in resting-state fMRI analysis.
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Table 3.2: Category of subject based-on self-assessment memory recollection test
Group Number of subjects
High Confidence Low Difficulty (Red) 79
Low Confidence High Difficulty (Blue) 41

The subjects are divided into 2 groups by Euclidean distance clustering based on

episodic memory recollection performance obtained using self-assessment test during

post resting-state fMRI phase. The self-assessment test asked the subjects to deter-

mine their confidence in the correctness of their recollections and difficulty in recalling

those memories. Both assessments are quantify from low to high in 1 to 5 integer scale.

The clustering is done in 2-dimensional plane where each dimensions represents each

aforementioned confidence and difficulty parameters. The values of each paramenters

for an individual subject are mean averages value of the test across all recollection

stimuli. From the result of the clustering, the group with lower average confidence

is considered a low-confidence group, and vice versa. Likewise, the group with lower

average difficulty is considered low-difficulty group, and vice versa. Combining afore-

mentioned 2 parameters, the groups can be categorized into 2 characteristic groups,

high-confidence-low-difficulty group, and low-confidence-high-difficulty group, with 79

members and 41 members respectively (figure 3-4 and table 3.2). These categories

are used as between-subject contrast for group resting-state connectivity analysis.

3.3.2 Functional connectivity

After the standard fMRI data preprocessing protocol and additional temporal pre-

processing in preparation for connectivity analysis by CONN toolbox and Tigramite

framework, the BOLD signal of each regions of interest are extracted. The ROI

BOLD signals are average BOLD time-series aggregated across all the voxel covered

within the ROI. The 10 ROIs are selected for the analysis based on the background

knowledge that those areas are known to involve in memory related cognitive func-

tion (table 3.1). The purpose of including those area in the connectivity model is to

model how those areas interact with each other in relation to our cognitive function

of interest. The roles and functions of each individual regions will be discuss in detail
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Figure 3-4: Euclidean distance clustering of episodic recollection performance. The
group with lower average confidence is considered a low-confidence group, and vice
versa. Likewise, the group with lower average difficulty is considered low-difficulty
group, and vice versa.
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Table 3.3: CONN ROI-to-ROI connection weight. (thresholded at FDR-corrected
p < 0.05). A row represents source region and a column represent destination region.

Hippo l Hippo r aPaHC l aPaHC r pPaHC l pPaHC r LP (L) LP (R) MPFC PCC
Hippo l 0.0 36.82 15.96 12.99 24.17 19.55 10.58 9.48 14.55 7.07
Hippo r 36.82 0.0 15.03 16.29 20.32 21.38 8.98 8.92 13.65 6.26
aPaHC l 15.96 15.03 0.0 17.13 13.18 10.89 6.34 4.51 6.95 4.49
aPaHC r 12.99 16.29 17.13 0.0 12.74 13.58 6.4 7.05 9.03 5.16
pPaHC l 24.17 20.32 13.18 12.74 0.0 33.38 15.44 14.15 11.78 17.13
pPaHC r 19.55 21.38 10.89 13.58 33.38 0.0 13.04 12.19 8.13 13.35
LP (L) 10.58 8.98 6.34 6.4 15.44 13.04 0.0 30.37 10.36 21.72
LP (R) 9.48 8.92 4.51 7.05 14.15 12.19 30.37 0.0 14.4 26.78
MPFC 14.55 13.65 6.95 9.03 11.78 8.13 10.36 14.4 0.0 17.18
PCC 7.07 6.26 4.49 5.16 17.13 13.35 21.72 26.78 17.18 0.0

in the discussion section. The areas are defined using Harvard-Oxford Atlas.

Then the CONN toolbox ROI-to-ROI connectivity analysis is performed on the

aforementioned ROI BOLD data.

The resulting connectivities are shown in table 3.3 and the highest 10 connectiv-

ities are listed in table 3.4. CONN toolbox constructs a connectivity graph using

seed-based approach by iteratively considers each ROIs as seed, then combines the

results of every seeds (ROIs) into one single graph. This approach is acceptable for

functional connectivity analysis since functional connectivity concern only correlation

between seed and region-of-interest, the direction of the connection does not affect

correlation measures. It can be observed in table 3.3 that swapping a specific pair of

seed region and ROI does not yield different connectivity measure. This is completely

different from effective connectivity which a pair of regions has different connection

measure depends on the direction of the connections.

Table 3.4 shows consolidated highest 10 connections by intensity. Figure 3-6 is

a connectivity plot of the aforementioned consolidated connections (full connectiv-

ity plot is included in Figure 5 in Supplementary materials section). The highest

3 connections are the hemisphere pairs of the identical regions. The most intense

connectivity following those pairs is a connection between posterior cingulate cortex

Default Mode network and right lateral parietal Default Mode network, followed by

connections between hippocampus and anterior parahippocampal cortex on the left

hemisphere, left lateral parietal Default Mode network and posterior parahippocam-

pal cortex and hippocampus on the right hemisphere, left posterior parahippocampal
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Figure 3-5: CONN toolbox graphical model of resting-state fMRI connectivity with
10 seed area (table 3.4). Results are thresholded at FDR-corrected p < 0.05.
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Table 3.4: Consolidated top 10 ROI-to-ROI connections by intensity. (thresholded at
FDR-corrected p < 0.05)

ROI ROI Intensity
Hippocampus l Hippocampus r 36.82
pPaHC r pPaHC l 33.38
networks.DefaultMode.LP (L) networks.DefaultMode.LP (R) 30.37
networks.DefaultMode.PCC networks.DefaultMode.LP (R) 26.78
Hippocampus l pPaHC l 24.17
networks.DefaultMode.LP (L) networks.DefaultMode.PCC 21.72
pPaHC r Hippocampus r 21.38
pPaHC l Hippocampus r 20.32
pPaHC r Hippocampus l 19.55
networks.DefaultMode.MPFC networks.DefaultMode.PCC 17.18

Figure 3-6: CONN toolbox ROI-to-ROI simplified graphic model with 10 highest
connections (table 3.4) of resting-state fMRI connectivity with 10 seed area (table
3.4). Results are thresholded at FDR-corrected p < 0.05.
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Figure 3-7: Tigramite graphic model of resting-state fMRI connectivity with 10 seed
area (table 3.4). Results are thresholded at FDR-corrected p < 0.05.

cortex and right hippocampus, right posterior parahippocampal cortex and left hip-

pocampus, and finally medial prefrontal cortex Default Mode network and posterior

cingulate cortex Default Mode network.

3.3.3 Effective connectivity

The effective connectivity analysis is performed using the exact same data with the

functional connectivity analysis in previous section. The exact same preprocessing

protocol is performed on the data, so that any discrepancy in the resulting connec-

tivity model is a result of capability of the analytic algorithms, since one of the goal

in this study is to compare two models from different modal of analysis.

The resulting effective connectivity shows 7 connectivities among the selected

ROI (figure 3-9). Five out of 7 connections are interaction between two identical

region of difference hemisphere. The rest 2 connections are connection from right

hippocampus to right posterior parahippocampal cortex, and from posterior cingulate
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Figure 3-8: Tigramite time-series model of resting-state fMRI connectivity with 10
seed area (table 3.4). Results are thresholded at FDR-corrected p < 0.05.
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Figure 3-9: Tigramite simplified graphic model of resting-state fMRI connectivity
with 10 seed area (table 3.4). Results are thresholded at FDR-corrected p < 0.05.
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Table 3.5: Group Tigramite connection weight. (thresholded at FDR-corrected p <
0.05). A row represents source region and a column represent destination region.

Hippo l Hippo r aPaHC l aPaHC r pPaHC l pPaHC r LP (L) LP (R) MPFC PCC
Hippo l -0.051 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Hippo r 0.028 -0.052 0.000 0.000 0.000 0.027 0.000 0.000 0.000 0.000
aPaHC l 0.000 0.000 -0.239 0.000 0.000 0.000 0.000 0.000 0.000 0.000
aPaHC r 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000
pPaHC l 0.000 0.000 0.000 0.000 0.004 0.029 0.000 0.000 0.000 0.000
pPaHC r 0.000 0.000 0.000 0.000 0.030 -0.067 0.000 0.000 0.000 0.000
LP (L) 0.000 0.000 0.000 0.000 0.000 0.000 0.034 0.027 0.000 0.000
LP (R) 0.000 0.000 0.000 0.000 0.000 0.000 0.028 -0.055 0.000 0.000
MPFC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.079 0.000
PCC 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.022

cortex Default Mode network to left lateral parietal Default Mode network. All

connection weights (mutual conditional information measure), including auto mutual

conditional information measure, is shown in table 3.5. Tigramite’s graphic model

and time-series graph model are included in Supplementary material as Figure 6 and

7 respectively.

3.4 Findings

In this chapter, we have constructed functional and effective connectivity models from

the same resting-state fMRI BOLD data. By comparing these two models, we illus-

trate the practical advantage of effective connectivity over functional connectivity.

The Tigramite framework used to derived effective model provides performance ad-

vantage in comparison to CONN toolbox by eliminating trivial connection from the

connectivity model, in addition to connections’ directional information of the con-

nectivity model. These advantages increase intepretability of the model. Currently,

a large body of studies in brain connectivity focuses on only functional connectivity

analysis. As the result of this study has shown, we would like to emphasize the limita-

tion of functional connectivity analysis in terms of interpretability, and would like to

encourage brain connectivity study with effective connectivity model as it improves

interpretability of the actual brain function.

Nonetheless, the Tigramite framework is a novel framework and the application

on fMRI BOLD data is scarce. Further study need to be done to confirm its validity
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on BOLD data application.

We would like to also emphasize the importance of BOLD data noise reduction,

since these connectivity analysis frameworks are temporal sensitive and prone to

generate spurious connection from BOLD signal noise. The preprocessing pipeline

established in CONN toolbox is crucial to successful connectivity modeling in both

case.

3.4.1 Spontaneous BOLD fluctuations in resting-state connec-

tivity model

The spontaneous BOLD fluctuations or spontaneous neuronal activity is brain activity

that is not associated to any specific input or output. It is usually observable in

resting-state fMRI data since the resting-state data acquisition protocol attemps to

minimize both sensory input and subject response, the subject is also asked to refrain

from performing cognitive task. Thus, the spontaneous BOLD fluctuation represents

intrinsic neuronal activity generated by brain [22]. In traditional task-related fMRI

study, this fluctualtion is eliminated by process of averaging across many trials along

with other physiological artefacts, such as cardiac or respiratory activity, and non-

physiological artefacts, such as scanner instability.

It is reasonable to eliminate spontaneous BOLD fluctuation from tradition task-

related fMRI study because it increases confidence that the effect being studied is

related to the task. However, in resting-state connectivity study, eliminating the

fluctuation along with other artefacts poses a potential risk of decreasing validity.

Thus, spontaneous BOLD fluctuation is crucial to resting-state connectivity modeling.

The major concern of spontaneous BOLD data acquisition is to ensure that the results

are not contaminated by or originated from spurious sources of variance BOLD, or

other artefacts. CONN toolbox [92] address this issue by proposed and implemented

an anatomical component-based noise correction method (aCompCor) [6], which not

only increase the validity, but also the sensitivity and specificity of the connectivity

analysis.
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Several studies have show that many neuro-anatomical systems is coherent in their

spontaneous activity [22]including task-negative/default mode [47] [23] [34] [24], hip-

pocampus or episodic memory [88] [69]. The evidence of coherent of spontaneous

BOLD fluctuation is also observable in functional connectivity analysis of this study,

the temporal correlations between spatial coherence are shown by connections of hip-

pocapus, anterior parahippocampal cortex, and lateral parietal Default Mode network

(table 3.4). The coherent connections of hippocampus, and lateral parietal Default

Mode network also presence in resulting effective connectivity analysis. Additionally,

coherent connection of posterior parahippocampal cortex is also in the effective con-

nectivity model with the absence of connection of anterior parahippocampal cortex.

We will discuss about the difference of resulting functional and effective connectivity

in the next section.
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Chapter 4

Group Connectivity

In this chapter, I would like to discuss about the group connectivity modeling from

fMRI BOLD signal of subsequence memory task using Tigramite causal discovery

framework.

4.1 Individual- and group-level validation and inter-

pretation problem

Observing how information are organized in human brain is a challenging task. How-

ever, in recent years, the progress in functional Magnetic Resonance Imaging (fMRI)

technology has allowed the study of brain connectivity, the statistical dependencies

between localized regional brain activity. In this context, we can model how infor-

mation flows in the brain by analyzing brain connectivity during the memory-related

cognitive task.

Currently, one of the problem in brain connectivity research is how to derive a

connectivity that represents the mechanism of the group of population. The difficulty

stems from the fact that there is the possibility that the order of activity between each

regions of the brain may varies across individual. While the temporal variation may

not affect the group brain activity localization analysis, those variation may affect the

precision of temporal-sensitive analysis such as connectivity analysis. This cause the
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problem to the validation of brain connectivity analysis where the connectivity model

that is a represent of a population rather than individual in preferable. Furthermore,

without the way to validate the connectivity model across the population, it is hard

interpret the generalized brain mechanism from the connectivity model.

To address this problem, this chapter will discuss about a proposed framework to

derive a group representative connectivity model using Tigramite framework.

4.2 Causal discovery analyses

Granger causality [33] is a mathematical framework commonly employed to model

causality of the neuronal activity from fMRI BOLD data. The underlying assumption

of this framework is that if X → Y if and only if a change in X has an effect on Y

[66]. However, all we can imply from observational data are statistical dependencies.

It is controversial to infer effective connectivity (directed connectivity) due to the low

temporal resolution nature of the BOLD signal as Granger causality is prone to under-

sampling signals. To avoid that issue in this study, we utilize Tigramite time-lagged

causal discovery framework [71]. This framework relies on different set of assumptions

to identify a causal graph. It performs conditional independence testing using the

assumptions of time-order, Causal Sufficiency, the Causal Markov Condition, and

Faithfulness, among others [73]. The detailed background and implementation of the

Tigramite framework is discussed in chapter 2.

While most conventional fMRI studies rely on pool of data collected across indi-

viduals, modeling of the connectivity from data across individuals is controversial [19].

Nonetheless, a method to establish a general model that represents brain connectivity

across individuals is essential. We propose a method of constructing a representa-

tive graph based on graph structure by using median aggregation of the weight of

corresponding edges and nodes of each individual graphs.
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4.3 Methods

4.3.1 Human Connectome Project

Human Connectome Project is a project conducted by the Washington University-

University of Minnesota Human Connectome Project Consortium (WU-Minn HCP)

[85]. We utilize this dataset because it provides access to large exceptional spatiotem-

poral resolution of well-characterized samples of healthy individuals.

This study made use of 376 subjects available in HCP data. Of all available 511

subjects, 52 subjects are excluded due to data incompletion, 83 subjects are excluded

from the study due to biased responses in picture sequence memory test (subjects

always respond to the stimuli in the test only either remember or know). Of the 376

subjects included in this study, 54 are between the ages of 22-25, 179 are between the

ages of 26-30, 141 are between the ages of 31-35, and 2 are above 35 year-old.

4.3.2 Subsequent memory paradigm

The HCP dataset does not include a specific task related to episodic memory, hence,

we employ a subsequent memory paradigm by combining HCP working memory

task-fMRI and corresponding picture sequence memory test. Subsequent memory

paradigm is a study of neural activity during an encoding phase of the stimuli that

are later subsequently remembered in contrast to the stimuli that are forgotten [18].

In the encoding phase, a subject is given a chance to study a series of stimulus

while their brain activity data are being collected. Later after the encoding phase is

completed, the subject then performs a recollection test. In this test, the subject is

shown a series of stimulus consists of both “old” stimuli presented during encoding

phase and completely new unseen stimuli. During this phase, the subject is allowed

to respond to the stimulus by indicating that they either remember, know, or seeing

new stimulus.

The response is collected and evaluated for memory recollection quality. The

correction and the confidence of the response is evaluated. If remember or know
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responses are given to the old stimuli, it indicates the subject’s correct recollection.

The remember response indicates subject’s confidence in their conscious recollection,

and the know response indicates subject’s doubt in their recollection, in which they

may feel familiarity with the stimulus but fails to consciously recall it precisely. Then

if the subject gives the new response to the old stimuli, it is considered that the stimuli

have subsequently been forgotten by the subject, and if remember or know response

is given to the new stimuli, that response is considered as a false recollection. If the

new response is given to the new stimulus, it indicates that the subjects remember

that the presented stimulus is not included in the set of stimuli previously shown

during encoding phase.

4.3.3 Univariate group subtraction

The scanned images are processed and analyzed using FSL 5.0.7 (FMRIB’s Software

Library, www.fmrib.ox.ac.uk/fsl) software suite. The HCP’s structural MRI and fMRI

were preprocessed using FSL 5.0.6 software suite. The preprocessing pipeline is done

by HCP using the pipeline derived from [31]. FEAT (FMRI Expert Analysis Tool,

v6.00) was used to analyze first- and second-level analysis. The General Linear Model

was used to model the event duration. The event-timing were specified in FSL’s 3-

column Explanatory Value file format. The explanatory file describes time when the

interested events occurred, the duration of the events, and the value of the input

during that time. The trial on which the stimuli are identified by the subjects as

“remember” and “know” are selected for the analysis. The reasons are that this study

wants to compare the condition where a subject encoded the memory of the stimuli

that later successfully be recalled with one that failed to be recalled.

Additional Psychophysiological Interaction (PPI) Analysis is done using parahip-

pocampal gyrus as a seed to identify additional memory encoding related region.

82



Figure 4-1: HCP subsequent memory analysis paradigm. Firstly, the subject was
asked to perform working memory task during the fMRi scan session. The subject
was presented with a sequence of image stimuli. The subject performed the task
by recalling previously shown images. This is considered as memory encoding phase.
Then after the scan, the subject were asked to perform picture sequence memory test.
In this test the subject were presented with the image from the same set presented
during the working memory task fMRI scan session mixed with some new additional
images. The subject responded to each image with remember, know, or new to deter-
mine if the subject was able to remember images previously shown during the fMRI
session correctly. This is considered as recollection phase.
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4.3.4 Tigramite and Causal Modeling

To determine maximum time lag for the causal algorithm, we estimate lagged uncon-

ditional dependencies and found the dependencies diminish beyond a lag of 8.

We perform causal analysis on BOLD data from 4 regions of interest of each

individual subjects to construct individual model of each subjects. Then, a represen-

tative model is constructed by aggregated all of each individual models using median

operator.

4.4 Results

4.4.1 Univariate group subtraction and regions of interest

The peak activated region yielded by fMRI group subtraction analysis is large (17,529

voxels) and cover wide area of the brain (figure 4-2). Harvard-Oxford cortical and

subcortical structural probability atlases are used to identify the activated region.

The major activated regions are selected as regions of interest. Additionally, the

PPI shows that lingual gyrus has significant correlation with parahippocampal gyrus.

Therefore, 4 ROIs shown in table 4.1 are selected for connectivity modeling.

Table 4.1: Selected regions of interest (Harvard-Oxford cortical structural probability
atlases).

Regions Hemispheres
parahippocampal gyrus Left and right
temporal occipital fusiform cortex Left and right
occipital gyrus Left and right
lingual gyrus Left and right

4.4.2 Causal modeling and group representative model

The resulting group representative graphical model and time series graph are pre-

sented in figure 4-3 and 4-4, respectively. In the representative model, only 2 signif-

icant connections, a connection from occipital gyrus to temporal occipital fusiform
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Figure 4-2: Activated cluster from univariate group subtraction analysis of all 376
subjects on Successful recollection > Failed recollection (threshold at Z > 2.3, P <
0.05).

cortex, and from lingual gyrus to parahippocampal gyrus, are presented. Its average

Levenshtein distance from our test is 6.35 (SD: 0.28).

The main concern of connectivity measure derived from fMRI data is that move-

ment and physiological noise sources, which vary from subject to subject and session

to session, can potentially induce spurious correlations between ROIs, which could

confound the interpretation of the results by increasing chance of false positive [92].

The effect of aforementioned spurious correlations may contribute to the variation

among individual graphs. The number of connections in the individual graph varies
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Figure 4-3: Representative connec-
tivity graphical model of subsequent
memory task.

Figure 4-4: Representative connectiv-
ity resulting time series graph of sub-
sequent memory task.

from only 1 to as many as 12 connections. Group model is calculated using median

aggregation to reduce the effect of outlier. The Levenshtein distance is introduced to

measure the reliability of the resulting group model by showing that the model is in

the average distance among the population.

4.4.3 Univariate group subtraction and regions of interest

The peak activated region yielded by fMRI group subtraction analysis is large (17,529

voxels) and cover wide area of the brain (figure 4-2). Harvard-Oxford cortical and

subcortical structural probability atlases are used to identify the activated region.

The major activated regions are selected as regions of interest. Additionally, the

PPI shows that lingual gyrus has significant correlation with parahippocampal gyrus.

Therefore, 4 ROIs shown in table 4.1 are selected for connectivity modeling.

4.5 Findings

4.5.1 Episodic memory encoding

In the subsequent memory paradigm of this study, brain’s activity is observed only

during the encoding phase. Cognitive functions related to memory beyond memory

encoding, such as, memory organization or memory recollection are not addressed.
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According to previous studies, the resulting peak activated regions are known to

have roles in memory formation. A study by Ofen et al. [64] found that middle

temporal gyrus, fusiform gyrus, and parahippocampal gyrus play significant role in

development of declarative memory formation development from child to adult. Oc-

cipital area and fusiform gyrus are known to play important roles in face recognition

[29] and declarative memory forming [64]. The protocol used by HCP may contribute

to the activation of this region since images of human face are used as stimuli for work-

ing memory task fMRI [54]. Lingual gyrus is a part of declarative memory system

[59] and also contributes to visual memory forming [77].

The results of this study agree with previous studies and affirm that the prior

knowledges hold in large population since most of the previous fMRI studies included

only small number of subject due to technical difficulty of fMRI experiment protocol.
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Chapter 5

Connectivity Deduction

5.1 Functional vs effective connectivities

Functional connectivity is defined as the temporal correlation among the activity of

different brain area. Effective connectivity is defined as the causal relation among the

activity of different brain area [41]. The fundamental difference between functional

and effective connectivity is the temporal implication of the source of the effect. Con-

sider the simplified connectivity of brain regions X, Y, and Z, functional connection

between X and Y implies region X ’s activity temporally correlated to activity of

region Y. However, there is a possibility that this correlation is cause by region X

and region Y react to the input from the region Z. The disregard of temporal order

in functional connectivity analysis decreases the validity of the interpretation of the

resulting connectivity. On the other hand, the effective connectivity considers tempo-

ral order of the source and destination of the connection, thus, improve the validity

of the connectivity interpretation.

This aspect is especially important when analyzing the connectivity from fMRI

BOLD signals because the low temporal resolution nature of the BOLD signal and

other confounding factor, such as, movement and physiological artefacts. In [92], the

authors emphasis the importance of temporal preprocessing step on BOLD signal in

addition to traditional spatial preprocessing step of fMRI study to remove temporal

confounding factor. Inadequate noise reduction of BOLD data may result in spurious
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connection in both functional and effective connectivity which could lead to faulty

interpretation of the connectivity of interest. Both functional and effective connec-

tivity in this study use the same CONN toolbox preprocessing pipeline to preprocess

BOLD signals before connectivity analysis.

In the study discussed in chapter 3, CONN toolbox was used to analyze functional

connectivity. It utilizes seed-based correlation framework to determine functional

connectivity in individual-level analysis, then the resulting measures are input into a

second-level general linear model to obtain population-level result. The seed-based

correlation analysis obtains a full connectivity model by iteratively input each ROI

as a seed to analyzing correlation between it and other ROIs, then combine all of

the seed connections together. This approach does not take temporal order relation

between each seed into account.

In the same study, for effective connectivity analysis, we utilized Tigramite, a

time-lagged causal discovery framework [71] to analyze effective connectivity from the

preprocessed BOLD signals. This framework differ from CONN toolbox approach in

that it consider time-lagged, or temporal order of each connectivity as shown in fig-

ure 3-9. The lagged unconditional dependencies of the BOLD time-series is estimated

to determine the time point when the dependencies diminish. The framework then

estimates the connectivity along the lagged time, thus achieving temporal-ordered

connectivity, or effective connectivity. The population-level connectivity was calcu-

lated by median aggregation of individual subject’s connectivity.

Comparing the resulting connections from these analyses (figure 3.3 and 3.5), we

can clearly see that the effective connectivity yields more concise connectivity as most

low intensity connections were eliminated and the result from Tigramite also provide

directional (causal relation) information between the connected brain regions. For

example, we can see that coherent connection of posterior parahippocampal cortex

and lateral parietal Default Mode network are bidirectional (figure 3-6), while what

we can inferred from functional connectivity as a coherent connection of hippocampus

is just a connection from right hippocampus to left hippocampus (figure 3-6). The

advantages of having directional information also apply to the connection from right
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hippocampus (Hippo r) to right posterior parahippocampal cortex (pPaHC r), and

from posterior cingulate cortex Default Mode network (PCC) to left lateral parietal

Default Mode network (LP(L)), including coherent connection between 2 hippocampi

(Hippo r and Hippo l). This additional information gives effective connectivity ad-

vantage in term of interpretability in comparison to functional connectivity, as these

3 aforementioned connections are not difference from other connections, however in

effective connectivity model, these 3 connections are unidirectional while the rest are

bidirectional.

5.2 Individual- and group-level connectivities

The goal of brain research is to describe biological mechanic of the brain that respon-

sible for any particular cognitive function. Most researches identify brain function

in forms of active region and pathway. Sensory pathways is one of the well-known

example. However, the knowledge of higher cognitive function’s pathway, such as,

consciousness or memory organization is limited since these functions lack physical

interaction that can be observed. Causal interaction analysis on fMRI BOLD time-

series is a common way to study said brain functions.

Granger causality [33] is a popular approach among numerous techniques devel-

oped to analyze causal interactions in fMRI data [55]. However, inferring causal rela-

tionship (effective connectivity or directed connection) using this framework on fMRI

BOLD data is controversial because low temporal resolution nature of the BOLD

signal may confound its statistical dependencies implication. Without the temporal

order integrity, the framework shows only correlation (functional connectivity or undi-

rected connection). Consequently, we use Tigramite framework [73] for our studies

to avoid temporal sensitivity issue of Granger causality framework.

In fMRI study, the localization of specific brain function is observed across indi-

viduals using statistical inference, and therefore the location can be generalized across

population. However, fMRI statistical framework does not account for temporal order

of activation. We have no statistical basis that guarantee temporal order of activation
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or activation time lag across individual to be able to infer general causal model of

a group of individuals. Nonetheless, the general representative model is needed for

drawing a general conclusion.

To address this issue, we compare difference between the resulting representative

model with model of random sub-groups using Levenshtein distance. The average

distant is 6.35 (SD: 0.28), with the maximum distance at 11, and the minimum at 1.

While structure of individual subject’s model varies, ranged from a graph with only

one connection to a complete graph, our test shows that the representative graph is

balanced.

Therefore, we conclude that the graph is a general representative model of this

sample population. However, it is important to emphasize that this method only

concerns structural similarity, the connection weights are ignored.

5.3 Interpreting connectivity models

Even after we have the connectivity model from our analysis, we need to interpret

those model to be able to describe the underlying mechanism of our brain function

of interest. Usually, we need to compile knowledges about brain regions involved in

the connectivity then infer the mechanism from the relationship represented by the

connectivity model.

For example, consider the study in chapter 3. Hippocapus is known to play crucial

role in both memory encoding [65], and memory recollection [50] [60]. Considering

our experiment paradigm where the subject is presented with memory recollection

stimuli during pre resting-state fMRI phase, the hippocampus is likely to active dur-

ing resting-state fMRI scan phase even without the subject consciously perform the

recollection task, as the hippocampus performs memory consolidation and strength-

ening of the recalled memories in pre resting-state fMRI phase [37]. Moreover, there

also is an evidence shows that left and right hippocampi responsible for difference

cognitive roles. The left hippocampus plays a critical role in episodic verbal memory

while the right is more important for spatial memory processing [21]. This might in-
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dicate that the right hippocampus is processing projected spatial memory in recalled

episodic memory, then pass the information to the left hippocampus for it to process

the information into abstract concept to be consolidated and reinforced. Considering

the between-subject contrast of this study, which is High-Confidence-Low-Difficulty -

Low-Confidence-High-Difficulty, it is reasonable to see this effect.

While the unique contribution of posterior parahippocampal cortex is unclear,

several study suggest that it contributes to memory function as patients with lesions

involving the parahippocampal cortex are impaired on a memory task [86]. From

the resulting effective connectivity of this study, it suggests that activity in right

hippocampus cause activity in right posterior parahippocampal area. Several studies

suggest that the parahippocampal cortex is functionally dissociable from the hip-

pocampus [8] [44] [96]. However, the dissociation does not eliminate the possibility of

information exchange between hippocampus and parahippocampal cortex as shown

in an fMRI study of incidental target detection task, the parahippocampal cortex was

active only for novel scenes while the hippocampus was selectively active to changes

in the spatial relationship between objects and their background context [42]. In

case of the result of this study, the connection from right hippocampus to posterior

parahippocampal cortex may suggest that posterior parahippocampal cortex is en-

coding memory that it recognizes as novel from information formerly processed by

hippocampus.

Posterior cingulate cortex and lateral parietal Default Mode network are known to

involve episodic memory retrieval function [62] [79]. While the functional relationship

between these two network is unclear, there is a hypothesis stated that the posterior

cingulate cortex is a central node in the default mode network of the brain [67]

[11]. There are evidences show increase in activity in the posterior cingulate cortex

during episodic recollection [35], and mental time-travelling [3]. Some study also

suggests it regulate balance between internally and externally focused thought [49] as

it active both during task-related and rest cognitive state [56]. Since the evidences of

specific role of posterior cingulate cortex default mode network in response to specific

cognitive function are inconclusive, this particular connection may only reflect the
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intrinsic default mode network activity of the brain.

5.4 Results summary

In chapter 3, we have compared 2 types of connectivity models, the functional and

effective connectivity. In the study, we have discussed that the effective connectivity

yields more concise and comprehensive model that improve the interpretability of

the brain function of interest. In chapter 4, we have discussed a framework for

constructing group connectivity model and shown that the group with higher episodic

memory recollection performance has an active network in hippocampus and posterior

parahippocampal area. Within-region interaction and coherent connection may also

contribute to the performance gain of the group, but it is outside the scope of this

study.
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Chapter 6

Conclusion

We have been discussing about how we study brain mechanism using connectivity

modeling concept. In chapter 1, I have introduced the basic anatomy of human brain

showing that there are distinction among different region inside the brain, both in

term of cellular formation and their corresponding function. I have pointed out the

important aspect of one of the function of the brain, the episodic memory. I have

discussed by episodic memory is an interesting aspect of study, namely it is considered

to be the basic of human self awareness and consciousness, the very distinct cognitive

function. I have given a brief introduction to the technology that can be used to

observe brain activity non-invasively in real-time. The fMRI technology yields high

spatial resolution brain image which benefits our understanding of how each region

of the brain activated during a given task. However, the drawback of fMRI is that it

relies on detecting the movement of blood, which is slow, thus gives it low temporal

resolution characteristic.

Now that we can measure brain activation, how could we extract the knowledge

out of that data? In chapter 2, I have discussed about how the data acquisition

paradigm can help us make the brain activity data more informative when we aim

to extract some useful information out of it. From fMRI data, we can observe the

localization and temporal order of the brain activation. From those information, we

can construct a connectivity model that illustrate the working mechanism of the brain.

I have introduced several frameworks that can be used to extract connectivity model
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from fMRI data, and discussed their advantages and disadvantages with each others.

I have pointed out the Tigramite is one of the framework that could be useful in brain

connectivity study, and demonstrate its application with motor task-fMRI data. The

results show that Tigramite can construct an informative effective connectivity model

from fMRI dataset.

Next, I have discussed about the difference between functional and effective con-

nectivity in chapter 3. A large body of research in brain connectivity mostly concerns

only with functional connectivity. In the chapter, I have explained what is functional

and effective connectivity, and discussed about why we should aim for more use of

effective connectivity in this field. The effective connectivity is more informative

in comparison to the functional one, which will improve the interpretability of the

connectivity model resulting in deeper understanding of the brain function. I have

demonstrate the difference between the functional and effective connectivity by com-

paring the functional model from CONN tool box and effective model from Tigramite

framework using the same resting-state fMRI dataset of memory recollection behav-

ioral task. The result of the comparison shows that the effective connectivity model

is more concise and informative that the functional one.

To be able to imply brain mechanism across broad population, the group-level

connectivity analysis is needed. However, there is no established method for general

group-level connectivity analysis. In chapter 4, I propose the use of topological aspect

of the connectivity graph to create a group-level connectivity framework by comparing

graphs with Levenshtein distance to see how similar or how difference one graph to

others. I have demonstrate the proposed framework using the graph generate by

Tigramite framework from subsequent memory task-fMRI dataset, and the result is

supported by the other memory-task related researches.

Finally in chapter 5 I have discussed about how we can extract useful information

from the connectivity model using the result models from chapter 3 and chapter 4.

While the connectivity models are proved to be useful in aiding our understanding of

brain mechanism, there are some obstacles in interpreting the connectivity model due

to characteristic of fMRI data, such as low temporal-resolution. In interpreting the
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higher cognitive function such as episodic memory, the temporal variable, along with

other confounding factor common for fMRI BOLD signal may lead to inconclusive

interpretation of the brain function of interest.

6.1 Going forward

There are a lot of areas in this study where they can be improved. For one, we can

find a way to improve quality of fMRI signal just like the CONN tool box applying

additional preprocessing step discussed in chapter 3.

The group-level connectivity algorithm is also still need further improvement. The

framework we discussed in chapter 4 concern only topological aspect, or shape of the

graph while disregard the weight of each individual connection. Currently, there is

no standardize measure of brain connection weight and there is no guarantee that the

weight might be vary across individual. This aspect warrant further investigation in

the future.
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