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Abstract

Video Question Answering (Video QA) is a task to an-
swer a text-format question based on the understanding of
linguistic semantics, visual information, and also linguistic-
visual alignment in the video. In Video QA, an object detec-
tor pre-trained with large-scale datasets, such as Faster R-
CNN, has been widely used to extract visual representations
from video frames. However, it is not always able to pre-
cisely detect the objects needed to answer the question be-
cause of the domain gaps between the datasets for training
the object detector and those for Video QA. In this paper, we
propose a text-guided object detector (TGOD), which takes
text question-answer pairs and video frames as inputs, de-
tects the objects relevant to the given text, and thus provides
intuitive visualization and interpretable results. Our exper-
iments using the STAGE framework on the TVQA+ dataset
show the effectiveness of our proposed detector. It achieves
a 2.02 points improvement in accuracy of QA, 12.13 points
improvement in object detection (mAP50), 1.1 points im-
provement in temporal location, and 2.52 points improve-
ment in ASA over the STAGE original detector.

1. Introduction
The past decade has seen the rapid development of deep

learning in many fields, including computer vision (CV)
and natural language processing (NLP). The goal of CV
is to build a machine that can extract meaningful informa-
tion from images, videos, or other visual inputs. NLP, an-
other major domain for deep learning, aims to understand
and utilize human language. Question answering [1, 2, 3] is
its important problem, in which a model is required to an-
swer a natural language question by referring to a structured
knowledge database or unstructured text documents.

Information usually appears in more than one modality
in the real world. In order to make neural networks un-
derstand the world better, multi-modal learning, a task to
make a model which can interpret and reason from differ-
ent modalities, has attracted a lot of interest. As a derivative
of question answering, a model in video question answering

Figure 1. Proposed text-guided object detector (TGOD).
(a) TGOD takes as input a video frame and text, and outputs
bounding boxes for objects relevant to the text. (b) Two exam-
ples with different text guidance on the same video frame.

(Video QA) [4, 5, 6, 7] takes a video and the corresponding
question as inputs and answers the question based on its un-
derstanding of linguistic and visual information. It can be
used for many applications, such as video reviews, smart
robots, and personal assistants.

Several Video QA studies have utilized deep learning re-
cently. A standard Video QA system [8, 4, 9] consists of
visual information extractor, textual information extractor,
and multi-modal fusion module. For visual information in
videos, there are three fine- to coarse-grained levels, i.e., re-
gion, frame, and clip level. The widely used approach is the
region-level object feature extractor [10, 8, 4, 11], which is
usually the Faster RCNN [12] that has a ResNet-101 back-
bone and is pre-trained on the Visual Genome dataset [13].
However, it is trained in an object detection task whose tar-
get and data are largely different from those of the Video
QA task. Accordingly, the detection result is not precise
enough for the subsequent fusion and prediction procedure,
thus limiting QA performance.

To solve this problem, we propose the Text-Guided Ob-



ject Detector (TGOD), with which the model only pays at-
tention to the objects relevant to the question-answer pairs
and gets interpretable detection results. TGOD is a plug-
in module and can be used to replace the object detector in
Video QA models. As shown in Figure 1 (a), TGOD takes
a video frame as input, uses question-answer pairs as text
guiding signals, and outputs the bounding boxes of objects
which appear in both modalities. Figure 1 (b) shows that
TGOD’s output differs according to the different text guid-
ance. Some object detection methods with text guidance
[14, 15, 16, 17] are proposed recently. STVGBert[17] is the
most similar work to TGOD. Its highlighted ST-ViLBERT
module uses co-attention with two branches to extract text-
guided visual features. However, these features are ex-
tracted by TGOD with the novel-designed multi-modal to-
ken sequences as the input to a single branch transformer
decoder. This design saves computations and directly out-
puts regional object features for answering the related ques-
tion. To our best knowledge, we are the first to train a text-
guided object detector on the Video QA task. In summary,
our contribution is two-fold:

1. We propose the Text-Guided Object Detector
(TGOD) for Video Question Answering. TGOD uti-
lizes the text features from Question-Answer pairs in
the process of object detection to detect the objects rel-
evant to the QA pairs.

2. We show that the proposed TGOD improved the in-
terpretability and the performance in terms of sev-
eral metrics. It is evaluated using STAGE [4] frame-
work on the TVQA+ dataset. Compared with the orig-
inal detector in STAGE, it improves the accuracy of
QA by 2.02 points, object detection (mAP50) by 12.13
points, temporal location by 1.1 points, and ASA by
2.52 points. Its detection visualization also indicates
interpretability improvement.

2. Related Work
2.1. Video Question Answering

The goal of Video QA is to answer the questions either in
the form of free text in natural language or by selecting one
answer out of a set of multiple candidate choices. Typically,
a Video QA model consists of visual information extractor,
textual information extractor, and multi-modal fusion mod-
ule.

A video contains visual features of different levels, from
fine-grained to coarse-grained. There are mainly three
kinds of visual information extractors in Video QA mod-
els. Region-level feature extractors[8, 4, 11] are widely
used and are usually Faster R-CNN [12]. Frame-level and
clip-level feature extractors are usually convolutional neu-
ral networks (CNN)[9, 18, 19] and 3D CNN[20, 6, 21] re-

spectively in early works, while recently vision transform-
ers based extractors[22, 23, 24] are explored inspired by its
promising results in various CV tasks[17, 25, 26, 27].

Linguistic information is highly abstract and can be well
encoded using pre-trained language models. The early stud-
ies [8, 19, 9, 20] usually used Word2Vec and GloVe as the
textual information extractor to extract static word embed-
dings, whereas recently, contextual word embeddings ex-
tracted by BERT [28, 4, 29, 7] are more preferred because
of its excellent performance.

The multi-modal fusion module can be subdivided into
three categories: encoder-decoder methods [6, 30, 8], mem-
ory network-based methods [7, 31, 29, 19, 9], and attention-
based methods [4, 20, 21, 32, 11]. The commonly used de-
sign is attention-based ones, which pays more attention to
the important part of the input. Transformer structure is also
widely used [22, 23, 33, 24] as a novel kind of attention-
based methods.

Among them, STAGE [4] uses Faster R-CNN to extract
region-level visual features, BERT to extract text features,
QA-guided attention to fuse features from the two modal-
ities and then make the prediction. It is one of the most
promising methods because it jointly performs spatial ob-
jects and temporal spans grounding with question answer-
ing. These spatial and temporal predictions help improve
the performance of QA and also provide explainable results.

2.2. Object Detection

Object detection has long been an important and chal-
lenging task in the field of CV, requiring the separation of
multiple objects from the background and the identification
of their specific locations and categories.

R-CNN [34], a seminal work on using deep learning for
object detection, divides images into multiple regions, feeds
them into a CNN to extract region-level features, and uses a
classifier and a regressor to get the prediction. Faster R-
CNN [12] shares the convolution and uses the RPN net-
work to extract ROI to do end-to-end detection, which also
lays the foundation for two-stage models [35, 36], namely
RPN+R-CNN. FPN [37] with lateral connections and top-
down paths aims to handle objects of different sizes in the
same semantic scene, and is widely used by following algo-
rithms [38, 39, 40].

Two-stage models bring with them additional time and
space overheads. One-stage models using unified end-to-
end regression to obtain both object locations and categories
simultaneously [38, 41, 40, 42, 43] comes on the stage.
RetinaNet [40] uses the focal loss to alleviate the extreme
imbalance between positive and negative samples in one-
stage detectors and significantly improves the performance.

A large number of studies [25, 26, 44, 27, 16] transfer-
ring Transformer to CV have proven that the powerful rep-
resentation capability brought by self-attention gives them



Figure 2. Overview of proposed text-guided object detector (TGOD). (a) The visual encoder takes a video frame as input, extracts
multiscale feature maps by ResNet50, adds position and scale embeddings to provide spatial information, and flattens them into a sequence.
Then, pass the flattened features to the transformer encoder to obtain a visual representation V . (b) The text encoder uses a BERT embedder
to encode the text, extracts nouns and proper nouns by POS tagging, and outputs their features as text representations T . (c) The object
decoder takes object tokens, a learnable [TEXT] token, and word tokens as inputs. Learnable object queries and type encoding are added
at each transformer decoder layer. The prediction header takes output object tokens as inputs and predicts their bounding boxes and labels.

competitive or even superior performance on various vision
tasks and benchmarks, including object detection.

3. Text-Guided Object Detector
This section presents our proposed method, an object de-

tector for Video QA, namely Text-Guided Object Detector
(TGOD).

3.1. Overview

Figure 2 shows an overview of TGOD. It consists of
three components: a) visual encoder, b) text encoder and
c) object decoder. Unlike the traditional object detectors
widely used in Video QA that detect all the items appearing
in the image under the pre-defined categories [10, 4, 45, 11],
TGOD only detects those objects relevant to QA pairs.
First, the visual encoder extracts visual feature maps from
each input video frame by using a CNN backbone, and
feeds them with the position and scale encodings into the
transformer encoder to obtain the visual representation V .
In parallel, the text encoder extracts word-level text fea-
ture representations T by using a pre-trained BERT embed-
der and selecting words that may correspond to an object
among the input QA pair. Finally, the object decoder pre-
dicts bounding boxes with word labels based on the visual
representation V and the text feature representation T .

3.2. Visual Encoder

The visual encoder is composed of a CNN backbone and
a transformer encoder. It takes a video frame as input and
outputs its visual representation.

CNN backbone. The CNN backbone extracts multiscale
visual feature maps from each input video frame. Assum-
ing the CNN backbone consists of B > 0 convolutional
blocks, the visual feature map vb ∈ RCb×Hb×Wb is ex-
tracted at each block and then transformed by a 1×1 convo-
lution, where b = 2, 3, · · · , B is the index of the blocks and
(Cb, Hb,Wb) is the channel, height, width of the feature
map, respectively. With ResNet50 [46], we have B = 5
blocks with Cb = 256, (Hb,Wb) = (H/2b,W/2b) where
(H,W ) is the size of the input video frame.
Transformer encoder. Given the feature maps {vb}Bb=2,
the transformer encoder produces a visual representation V .
The input Z to the transformer encoder is a transformation
of the sum of flattened feature maps, scale embeddings, and
2D position embeddings. Specifically, a fixed position em-
bedding {eb}Bb=2 and a trainable scale embedding {sb}Bb=2

is applied to each feature map as zb = fb(vb + eb + sb),
where fb is a trainable linear layer that reduces the dimen-
sion from Cb to a lower hidden dimension D. The position
embeddings help to avoid the permutation-invariant prob-
lem, while scale embeddings identify the feature level each
pixel lies in. Each zb ∈ RD×Hb×Wb is then reshaped to a
matrix of shape (D,Lb) by applying a flatten function to it,
where Lb = HbWb. All the reshaped zb are concatenated
into Z ∈ RD×L where L =

∑B
b=2 Lb. This Z is a se-

quence of D-dimensional vectors of length L and is used as
the input sequence of the transformer encoder.

The transformer encoder is a stack of six encoder lay-
ers, each of which consists of a multiscale deformable self-
attention (MSDeformAttn) [47] and a feed-forward network
(FFN). In the self-attention, the D-dimensional query el-



ement is each pixel in the feature map Z. The attention
weights and sampling offsets are calculated for each query
pixel by linear projections, and the reference point is the
query pixel’s coordinates. The FFN consists of two linear
layers with a ReLU activation in between. The final output
is the visual representation V that has the same dimensions
as the input Z.

3.3. Text Encoder

The text encoder, composed of a BERT embedder and a
POS tagging module, is used to encode QA pairs into text-
feature representations T .
BERT embedder. The input QA pair is embedded by the
BERT language model [48] as

S = BERT([Q,A]), (1)

where Q is the question sentence and A is the answer sen-
tence. Note that the question sentence and the answer
sentence are concatenated into a single sequence of words
(w1, w2, · · · , wl). The shape of S is given by (d, l), where
d is the embedding dimension for each word and l is the
number of words in the input sentence. We use the em-
bedding extracted from the second-to-last layer of BERT,
whose dimension d is 768. The BERT model is pre-trained
on the large-scale BookCorpus dataset, fine-tuned on all text
data of the TVQA+ dataset1, and then frozen during the
training of TGOD.
POS tagging. In parts-of-speech (POS) tagging, we assign
a part-of-speech label to each word in a sentence, and fil-
ter out words that are unlikely to be visual objects to let
TGOD focus more on distinguishing between possible ob-
ject words. The transformer-based pipeline of spaCy [49]
pre-trained on numerous English texts is used as a POS
tagger. Only the feature representations of two kinds of
POS words are selected as the input to the object decoder:
(1) PROPN: proper noun, e.g., Sheldon, Amy; (2) NOUN:
noun, e.g., girl, lunch. More specifically, text feature repre-
sentations T are extracted in the following two steps given
the input sequence of words (w1, w2, · · · , wl) and embed-
ding S = (s1, s2, · · · , sl) ∈ Rd×l. First, the POS tagger is
applied to an input sentence to obtain a set of proper nouns
and nouns P = {pj}l

′

j=1, where l′ is the length of selected
words. Second, for each pj , its embedding is computed as
follows:

tj = f

(
1

N

l∑
i=1

δ(wi = pj)si

)
, (2)

where δ(·) is a function that returns one if the input equa-
tion is true and zero otherwise, N =

∑l
i=1 δ(wi = pj) is

1For a fair comparison, we use the BERT features used in STAGE [4]
as input instead of fine-tuning BERT again in our experiments.

the number of appearances of the word pj in the input sen-
tence, and f is a trainable linear layer. We denote the same
hidden dimension of tj by d′. The output text-feature repre-
sentation is the sequence T = (t1, t2, · · · , tl′) ∈ Rd′×l′2.

3.4. Object Decoder

Our object decoder is a composition of a transformer de-
coder and prediction heads, takes the text-feature represen-
tation T and the visual representation V as inputs, and out-
puts pairs of a predicted bounding box and its corresponding
word label.
Decoder input. As shown in Figure 2 (c), the input of the
transformer decoder X is a sequence of tokens, which con-
tains three parts, object tokens oi, the special token [TEXT],
and word tokens tj , as follows:

X = (o1,o2, · · · ,olo , [TEXT], t1, t2, · · · , tlw), (3)

where lo and lw are pre-defined numbers of the object to-
kens and word tokens, respectively. All object tokens oi are
zero vectors of dimension d′, because trainable embeddings
(object queries) are added to them at each decoder layer, as
explained later. The special [TEXT] token is a trainable d′-
dimensional vector. This is a buffer between different types
of input. We only have lsp = 1 special token. The word to-
kens are the text representation t1, t2, · · · , tl′ obtained from
the text encoder (Eq. (2)). Here, we set lw such that it is
larger than l′ for any QA pairs. Note that zero padding is
used in order to have a fixed length sequence, i.e., the word
tokens are given by t1, t2, · · · , tl′ ,0l′+1, · · · ,0lw where 0j

are zero vectors. The total length of the input sequence is
given by ltotal = lo + lsp + lw.
Transformer decoder. The transformer decoder is a stack
of six layers, each of which includes four sub-layers: a
position embedding layer, a self-attention layer, a cross-
attention layer, and an FFN. The position embedding layer
adds two kinds of position embeddings: object queries [44]
and the type encoding to the input. The sequence of object
queries is given by

(q1, q2, · · · , qlo ,0,0, · · · ,0︸ ︷︷ ︸
lsp+lw

) (4)

where {qi}lo
i=1 is a set of trainable vectors, and 0 is a zero

vector. The sequence of type encoding is given by

(0,0, · · · ,0︸ ︷︷ ︸
lo

, t∗, t∗. · · · , t∗︸ ︷︷ ︸
lsp+lw

) (5)

where t∗ is another trainable vector. The object queries
and type encoding are shared across all decoder layers to
provide object location guidance and distinguish different
kinds of input tokens, respectively.

2The order of tj is the same as that in the input words.



The self-attention uses the standard multi-head atten-
tion, in which the input tokens interact with each other,
while the cross-attention is implemented as a multiscale de-
formable attention, computing attentions between input to-
kens X and the visual representation V . The FFN outputs
d′-dimensional vectors, and thus the output of each decoder
layer is a vector sequence of length ltotal. With the decoder
layers, the first lo output vectors, i.e., output object tokens,
will gradually learn the content information.
Prediction heads. The prediction heads consist of two in-
dependent modules: a bounding-box predictor and a la-
bel predictor. Each module takes as input the output ob-
ject tokens ô1, ô2, · · · , ôlo obtained from the final decoder
layer. The bounding-box predictor is a 3-layer perceptron
that outputs the relative offset w.r.t. the reference points of
deformable attention, i.e., a four-dimensional vector b̂i re-
garding the position and the size of a bounding box for each
ôi. The label predictor is a linear layer that outputs a lw
dimensional vector q̂i. The j-th element of q̂i corresponds
to a confidence score of the word pj obtained from the POS
tagger. Note that the number of objects detected in a video
frame is usually smaller than the pre-defined number of ob-
ject tokens lo, and there are some tokens that don’t corre-
spond to any object. Thus, the last dimension of q̂i rep-
resents a special class ∅ (not matched), and the last word
token is always assumed to be a pad token. This special
class is used when the bounding box is not matched with
any visual object.

3.5. Loss function

Unlike the standard object detector which predicts an ob-
ject category for each bounding box given a pre-defined set
of object categories, TGOD predicts a matching between a
word and a bounding box. A combination of bounding box
loss [50], label cross-entropy loss, and contrastive feature
loss [51] is used to train TGOD.
Bounding box loss. The target for the bounding box predic-
tor is a four-dimensional vector b representing the position
and size of the bounding box. The loss is defined by

Lbox =

lGT
o∑

i=1

LGIoU(b
′
i, b̂

′
i) + λL1∥bi − b̂i∥1, (6)

where b̂i ∈ R4 is the bipartite-matched [44] bounding
box prediction, bi is its ground-truth, b′i, b̂

′
i is the top left

and bottom right coordinate format bounding box converted
from bi, b̂i, lGT

o is the number of ground-truth bounding
boxes, λL1 is a weight, and LGIoU is the scale-invariant Gen-
eralized IoU loss [50] given by

LGIoU(b
′, b̂′) = 1−

(
|b′ ∩ b̂′|
|b′ ∪ b̂′|

− |C \ (b′ ∪ b̂′)|
|C|

)
. (7)

Here, ∪ and ∩ indicate the overlap and union region be-
tween two bounding boxes, respectively, and C is the small-
est convex hull that encloses both b′ and b̂′.
Label cross-entropy loss. The target for the label predic-
tor is a one-hot encoding y of dimension lw, whose j-th
element (j < lw) corresponds to the word pj , and the last
dimension corresponds to ∅. Given the output q̂i ∈ Rlw of
the label predictor, the label cross-entropy loss is defined by

Llabel = −
lo∑

i=1

lw∑
j=1

wjyij log(q̂ij). (8)

where yi ∈ {0, 1}lw is the ground-truth target, and wj is the
relative classification weight, which is 0.1 for the ∅ class
and 1.0 for the others. With this loss, TGOD learns to pre-
dict the most relevant word to each bounding box.
Contrastive feature loss. In order to enhance the informa-
tion exchange between the two modalities, a bidirectional
contrastive feature loss is used, which is defined by the sum
of two losses: object contrastive loss Lo and word con-
trastive loss Lw. The former is InfoNCE loss [51] over the
output object tokens:

Lo = −
lo∑

i=1

log

(
sim(ôi, tj∗)∑lw
k=1 sim(ôi, tk)

)
, (9)

where ôi is the output object token, tj is the word tokens of
object decoder input X , j∗ is the index of the word match-
ing the i-th object, and sim(·, ·) is the similarity between
two kinds of tokens. The latter is similarly defined over
word tokens:

Lw = −
lw∑

j=1

1

|Ij |
∑
i∗∈Ij

log

(
sim(ôi∗ , tj)∑lo
k=1 sim(ôk, tj)

)
, (10)

where i∗ is the index of an object matching the j-th
word, and Ij is the set of all the indexes matching the
j-th word. The similarity is measured by sim(ô, t) =
exp

(
g1(ô)

⊤g2(t)/τ
)

where g1 and g2 are two linear layers
that reduce the dimension to do, and τ is a hyperparameter.
Total loss The total loss is a weighted sum of the three
losses:

L = wboxLbox + wlabelLlabel + wcl(Lo + Lw), (11)

where wbox, wlabel, wcl are weight hyperparameters.

4. Experiments
4.1. Experimental Settings

Dataset. The TVQA+ Dataset [4] is used for evaluation.
It contains 4,198 video clips, 29,383 multiple-choice QA



pairs, and 148,468 video frames with 310,826 bounding
boxes. On average, there are 2.09 bounding box annota-
tions for each image, 10.58 annotations for each question,
and 2,527 object categories. The questions comprise two
parts: a question part (what, who, where, etc.), and a tempo-
ral location part (before, when, after) to locate a small clip
of the video indicating when things happened. For exam-
ple, “What instrument is Raj playing when Raj and Howard
have their show?”. For each question, there are five candi-
date answers, and one of them is the correct answer. This
dataset is the first to provide both spatial and temporal anno-
tation for the answers. It is challenging because it requires
the model to locate the relevant temporal moment and rec-
ognize relevant visual concepts indicating the reason why
it chooses the answer. We follow the official training, val-
idation, and test-public splits to train and test the proposed
method, which consists of 23,545, 3,017, and 2,821 ques-
tions, respectively. For pre-training, the COCO 2017 train
set [52] is used, which consists of 118K images.
Evaluation measures. Video-QA performance is measured
with the following four metrics [4]: 1) Classification accu-
racy (QA Acc), 2) Temporal mean Intersection-over-Union
(T-mIoU), 3) Object grounding mean Average Precision (G-
mAP), and 4) Answer-Span joint Accuracy (ASA).

In addition, object detection performance is measured
with the following COCO metrics [52]: 1) AP (average pre-
cision over IoU thresholds from 0.50 to 0.95 with a step
size 0.05), 2) APθ (AP at IoU = 0.01θ for θ = 50 and 75),
3) APs (AP for small objects with area h·w < 322), 4) APm
(AP for medium objects with area 322 ≤ h · w < 962),
5) APl (AP for large objects with area h · w ≥ 962),
6) ARp (average recall given p detection per image for
p = 1, 10, 100).

4.2. Implementation Details

Baseline Video QA architecture. The STAGE architec-
ture [4] is chosen as the QA framework, which consists of
an object detection module, text encoding module, and QA-
attention module. The object detection module generates
object representations from the video and is the module on
which our proposed method TGOD is implemented. The
text encoding module computes text embeddings for the hy-
pothesis(QA pairs) and subtitle sentences with the BERT
encoder [48]. All objects and text embeddings are inputted
to the QA-attention module and prediction head to get the
predicted answer. STAGE learns to answer questions via
three losses (answer loss, span loss, and attention loss; see
[4] for details). Note that we only modify the object detec-
tion module in this work.
TGOD architecture and hyperparameters. The visual
encoder uses ResNet50 [46] as the CNN backbone. The
hidden dimension of transformer encoder input D and that
of decoder input d′ are 256. Both the transformer en-

Table 1. Comparison on TVQA+ validation set (%).

Model QA Acc G-mAP T-mIoU ASA

ROLL [53] 69.61 - - -
STAGE [4] 71.10 25.48 30.34 18.73
RHA [45] 72.58 - 31.30 20.64
TGOD STAGE (Ours) 73.52 38.03 31.67 20.75

coder and decoder consist of six layers with eight atten-
tion heads and four reference points. The text encoder con-
sists of the BERT model used in [4], and the POS tagger of
spaCy [49]. The length of the object decoder input is 300
(lo = 280, lsp = 1, and lw = 19). The loss weights are
wbox = 2, wlabel = 2, wcl = 1, λL1 = 2.5. In contrastive
feature loss, the dimension do is 300 and τ is 0.07.
Training details. The AdamW optimizer with a base learn-
ing rate of 2.0×10−4, and weight decay of 10−4 is used for
training for 50 epochs with a batch size of 16. The learn-
ing rate is decayed by a factor of 0.1 at epoch 30 and 40.
The learning rates of the CNN backbone and of the object
query linear projections are multiplied by a factor of 0.1.
Two NVIDIA A100 GPUs are used in the experiments.

4.3. Experimental Results

Video QA performance. We evaluate our proposed model
TGOD with several previous studies on the TVQA+ dataset.
These previous models are retrained on the TVQA+ dataset
using the official code, if it was provided. The STAGE us-
ing Faster R-CNN as object detector [4] is chosen as our
baseline. Table 1 shows the results on TVQA+ validation
set. The TGOD STAGE outperforms all the previous mod-
els on all the metrics. It shows relative gains of 2.42 points
in QA accuracy, 12.55 points in G-mAP, 1.33 points in T-
mIoU, and 2.02 points in ASA compared with the original
STAGE. This result shows that using TGOD as the object
extractor indeed improves the Video QA performance and
provides interpretable detection results. Table 2 shows the
results on the TVQA+ test set. The TGOD STAGE model
outperforms almost all the others except SSP [54] that uses
a two-stage training strategy: self-supervised pretraining
and auxiliary contrastive learning. Although SSP is better
than TGOD in some metrics, it can’t perform object detec-
tion, thus, the result of TGOD is more interpretable. Com-
pared with the vanilla STAGE, TGOD shows a 2.02 points
improvement in QA Acc, 12.13 points improvement in G-
mAP, 1.1 points improvement in T-mIoU, and 2.52 points
improvement in ASA.
Training and inference speed. Table 3 reports the train-
ing and inference speed. Note that training uses batched
input and only on frames with annotations, while inference
uses batch size one and on all the frames (much more than
annotated ones), so the inference speed is slower than train-
ing. As can be seen, the Video QA model and object de-
tection speed of TGOD is 16% faster than that of the base-



Table 2. Comparison on TVQA+ public-test set. (%)

Model Box pred QA Acc G-mAP T-mIoU ASA

ST-VQA[18] - 48.28 - - -
SSP [54] - 76.21 - 39.03 31.05

Two-stream [8] ✓ 68.13 - - -
STAGE [4] ✓ 72.49 29.15 30.65 19.92
ISR [55] ✓ 73.81 29.76 33.15 23.09
RHA [45] ✓ 74.34 - 31.53 21.77
TGOD STAGE (Ours) ✓ 74.51 41.28 31.75 22.44

Human [4] - 90.46 - - -

Table 3. Computation time for training and inference
(sec/video). TGOD STAGE (ours) is compared with
the STAGE baseline using Faster R-CNN. Two A100
GPUs are used to measure the speed.

OD QA Total

Baseline Training 0.313 0.039 0.352
Inference 2.212 0.606 2.818

Ours Training 0.261 0.033 0.294
Inference 1.837 0.535 2.372

Table 4. COCO object detection metrics on TVQA+ validation set. (%)

Model AP AP50 AP75 APs APm APl AR1 AR10 AR100

STAGE 9.3 25.4 4.6 0.6 4.1 13.4 11.1 15.8 15.8
TGOD STAGE (Ours) 22.0 37.8 21.1 1.1 8.4 29.7 24.0 28.1 28.2

line using naı̈ve Faster R-CNN. This is because TGOD has
fewer parameters (41.0M vs. 60.6M), detects fewer objects
and doesn’t need a post-process procedure. It is also worth
noting that the transformer encoder and decoder layers are
composed of deformable attention [47], whose complexity
is linear with the spatial size and is comparable with that of
the convolution layers.
Object detection performance. Table 4 lists the object de-
tection performance in terms of the COCO metrics for the
TGOD STAGE and vanilla STAGE. TGOD outperforms the
Faster R-CNN used by the baseline on all metrics, reveal-
ing its high performance in the object detection task. Fig-
ure 3 illustrates the adaptability of TGOD. Each row shows
the same visual frame input with different text inputs (QA
pairs). In TGOD, the attended important objects change
with the text input.
Analysis by VQ Types. Table 5 shows the performance
for different question types on the TVQA+ validation set.
TGOD has a great improvement for the questions related
to visual objects (‘what’, ‘who’, ‘where’), and achieves
the best performance, indicating its superiority. For ‘why’
questions, the performance of TGOD is lower than that of
RHA, which uses additional object and label relationship in-
formation, but it still outperforms the STAGE baseline. Sur-
prisingly, TGOD improves the accuracy of ‘how’ questions,
even if they are not usually directly related to visual objects,
revealing that the feature extracted by TGOD is more gen-
eral and can be of help in the reasoning of the following
process to some extent.

Figure 4 shows some examples of object detection re-
sults using the Faster R-CNN detector in STAGE baseline,
TGOD, and the ground truth. It’s obvious that TGOD of-
ten detects the crucial objects to answer the question even if
they are not annotated in the ground truth, indicating its ro-

Figure 3. Examples of the adaptability of TGOD.

bustness and interpretability. On the other hand, the Faster
R-CNN tends to detect all the objects with a label irrele-
vant to the QA pairs. It has difficulty paying attention to
essential items, and thus less interpretable and more easily
predicts the wrong answer.
Ablation study. The ablation study was conducted on the
TVQA+ valid set, as shown in Table 6. The first row is
the performance of the complete TGOD STAGE, and we
remove the POS tagging, contrastive loss supervision, and
multiscale feature maps respectively from the row above
it to measure its necessity. After removing the POS tag-
ging, all the metrics dropped, especially QA Acc and G-



Table 5. QA Accuracy (%) by question type on TVQA+ validation set.

Model
Question Type

What (60.52%) Who (10.24%) Where (9.68%) Why (9.55%) How (9.05%) Total (100%)

STAGE [4] 70.70 71.52 70.55 76.74 68.50 71.10
RHA [45] 72.23 69.57 73.63 81.60 69.23 72.58
TGOD STAGE (Ours) 72.84 72.17 74.66 79.86 72.16 73.52

Figure 4. Examples of detected objects. (a) Our TGOD model can detect the key object toolbox to answer the question even if the
ground truth didn’t include it, while the Faster RCNN in vanilla STAGE detects many dispensable objects that may harm performance. (b)
Similarly, the Faster RCNN detects lots of objects, while our TGOD detects the key object, wine, correctly.

mAP (0.59% and 3.24%), indicating negative word tokens
filtration of POS tagging is crucial. The removal of con-
trastive loss supervision has less influence on object detec-
tion (0.51% drop for G-mAP) but has a significant influ-
ence on other metrics. It implies that the early alignment
of visual and textual features in the object detection stage
is helpful for the Video QA task. Lastly, using the last fea-
ture map instead of multiscale feature maps causes a signif-
icant performance drop for all four metrics (1.32%, 5.23%,
0.52%, 0.47% respectively). We believe the reason is that
it’s hard to use only the single-scale high-level feature to de-
tect small objects, which is often the crucial clue to answer
the question, leading to a huge performance drop.

5. Conclusion

In this paper, we proposed Text-Guided Object Detector
(TGOD) for the Video Question Answering task. TGOD
detects important objects appearing both in the video and in
the question-answer pairs to improve the accuracy of object
detection and performance of the Video QA task. Our ex-
periments on the TVQA+ Dataset show that TGOD STAGE
outperforms the original STAGE with Faster R-CNN detec-
tor by a large margin on all four metrics, and is compet-

Table 6. Ablation study. (%)

Model QA Acc G-mAP T-mIoU ASA

TGOD STAGE 73.52 38.03 31.67 20.75
− POS tagging 72.93 34.79 31.55 20.56
− contrastive loss 72.18 34.28 31.01 19.72
− multiscale feat 70.86 29.05 30.49 19.25

itive with previous works. This study therefore indicates
that given more precise visual object features, the model
can achieve stronger performance on the Video QA task.

Finally, we discuss limitations and future work. First,
deeper information behind detected objects, like object re-
lations, is not fully used, on which we observe that the main
reason for false predictions lies. Future work should there-
fore include adding another branch to make use of these fea-
tures. Second, this work was also limited to the rare number
of Video QA datasets providing frame-level object annota-
tion, making it less general. Future research should be un-
dertaken to make a larger dataset with the QA-mentioned
object bounding box and temporal annotations.
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