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Abstract

Heuristica and Pessiland, introduced by Impagliazzo (CCC’95), are possibilities of our world that
are consistent with but far from our current knowledge. Heuristica is a world in which NP-problems
are hard in the worst case but easy in the average case. Pessiland is a world in which NP-problems
are hard in the average case, and there is no secure cryptography, particularly no central crypto-
graphic primitive called one-way functions. Excluding the possibilities of Heuristica and Pessiland,
i.e., basing a one-way function on the worst-case hardness of NP, is one of the most important
challenges for unifying the central notions in computational complexity theory and cryptography.
One natural approach for excluding Heuristic and Pessiland is to investigate algorithmic aspects
of these possible worlds; e.g., to exclude Pessiland, we need to magnify the algorithmic aspects of
Pessiland to efficient heuristic schemes that solve every NP-problem on average.

In this thesis, we study algorithmic aspects of Heuristica and Pessiland from the perspective
of learning. This is motivated by the known facts that both the worst-case hardness of NP and
the existence of one-way functions are characterized by the hardness of variants of Probability
Approximately Correct (PAC) learning, as proved by Pitt and Valiant (J. ACM, 1990) and Blum,
Furst, Kearns, and Lipton (Crypto’93), respectively. Our results are mainly classified into the
following three topics.

I. Learning in Heuristica. We investigate connections between learning and average-case com-
plexity of NP. The original PAC learning model, introduced by Valiant (J. Commun. ACM, 1984),
has a worst-case nature due to the requirement that a learner must learn all functions in the target
class under all unknown example distributions, and the feasibility thus seems not to follow from
the average-case easiness of NP. We falsify this intuition by showing that the feasibility of worst-
case PAC learning (even a more challenging task called agnostic learning) is indeed derived from
the errorless average-case easiness of NP when the unknown example distributions are efficiently
sampled by circuits. Namely, we obtain a reduction from worst-case learning to average-case NP
under the additional computational assumption on example distributions.

II. Learning in Pessiland. We establish a robust and unified theory of average-case learning,
which shows the equivalence between the non-existence of one-way functions and the feasibility of
various average-case learning tasks, including average-case agnostic learning, average-case distribu-
tional learning, weak average-case learning with membership queries under the uniform example
distribution, and learning adaptively changing distributions without knowledge of the distributions.
It is worthy of note that the last learning task was previously thought to be information-theoretically
impossible (Naor and Rothblum, ICML’06). We thus obtain a one-way function whose security is
based on the intractability of a seemingly impossible average-case learning. In addition, we also
present other duality results between learning and cryptography: (i) characterization of the exis-
tence of one-way functions by the average-case hardness of an NP-complete learning problem called
MINLT in a well-studied average-case setting and (ii) new learning-theoretic characterizations of im-
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portant cryptographic primitives, such as auxiliary-input one-way functions and polynomial-stretch
pseudorandom generators computable in constant parallel time.

III. New and Improved Oracle Separations. We study the limitations of the standard proof
framework called relativizing proofs. Here, relativizing proofs are proofs that hold even with ad-
ditional query access to an arbitrary oracle, and almost all results in theoretical computer science
shown by reductions, including the main results in this thesis, can be shown by relativizing proofs.
We show that, for further improvements of our results, we require profoundly new non-relativizing
proofs. First, we show a strong oracle separation between worst-case and average-case complexity.
Our result drastically improves the previous separation result by Impagliazzo (CCC’11) and is tight
because it matches the known upper bound shown by Hirahara (STOC’21). The oracle separation
shows strong evidence that the additional computational assumption on example distributions is
inevitable for any relativizing reduction from worst-case learning to average-case NP. Second, we
show a new oracle separation between errorless and error-prone average-case complexity, which was
asked in the seminal paper by Impagliazzo (CCC’95). We thus resolve the problem that had been
open for more than two decades. The second separation result shows strong evidence that (i) the
errorless condition is inevitable for any relativizing reduction from worst-case learning to average-
case NP, and (ii) average-case requirements cannot be improved to worst-case even partially in our
unified theory of average-case learning unless we develop a non-relativized technique.

Besides the topics above, we obtain a new characterization of the hardness of PAC learning by
an auxiliary-input cryptographic primitive, more precisely, an auxiliary-input hitting set generator
with a local condition. We further show that, for basing one-way functions on NP-hardness, it
suffices to base such auxiliary-input cryptographic primitives on NP-hardness by a restricted form
of nonadaptive black-box security reductions. Optimistically, this suggests a new approach towards
excluding Heuristica and Pessiland, which reduces constructing a one-way function to constructing
an auxiliary-input cryptographic primitive whose security condition is much more relaxed and even
weaker than the hardness of PAC learning.
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Chapter 1

Introduction

NP-problems are one of the most influential discoveries in theoretical computer science. Roughly
speaking, NP denotes the class of decision problems (i.e., a problem to which answered yes or no)
that have efficiently verifiable witness when the answer is yes; e.g., a problem of determining whether
a given linear system is satisfiable, and in this case, the witness for answering yes is the satisfying
assignment itself. From the perspective of algorithm theory, solving NP efficiently (i.e., P = NP) is
an ultimate goal because almost all problems we naturally care about are contained in NP. This
is supported by, for instance, the fact that there are more than 500,000 studies1 that discuss some
NP-complete problems involved in various fields such as physics, biology, chemistry, and social
theory. Here, an NP-complete problem is the most difficult problem in NP in the sense that if
an NP-complete problem is solvable efficiently, then all NP-problems are also solvable efficiently.
Imagine that, in the world of P = NP, we can solve all of such various problems efficiently, which
must be a dream world of algorithms. By contrast, from the perspective of cryptography, the class
NP has different importance as a source of computational hardness for preventing attacks from
adversaries. It is well-known that we cannot hope for any secure cryptographic protocol without
the computational hardness of NP because the existence of a secure cryptographic protocol (such
as a public-key encryption scheme) implies the hardness of NP-problems (i.e., P 6= NP).

The argument above shows that we cannot simultaneously obtain secure cryptography and a
powerful algorithm for an NP-complete problem. Then, can we guarantee either of them? More
generally, can we establish a duality of a strong algorithmic consequence and secure cryptography?
Achieving this is a desirable goal in the sense that it yields a win-win argument, i.e., our world is
an algorithmically or cryptographically dream world.

Question 1.0.1. Can we base the security of cryptography on the hardness of NP?

Unfortunately, there is a huge gap between secure cryptography and the feasibility of NP in
our current knowledge, and Question 1.0.1 is one of the central and longstanding open questions in
theoretical computer science. Namely, at present, we cannot deny the tragic possibility that there
is neither secure cryptography nor an efficient algorithm for solving NP-problems. In this thesis,
we further discuss the gap inherent in Question 1.0.1 from two different perspectives.

1The result of searching for the term “NP complete” with Google Scholar in November 2022.
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1.1 Average-Case Complexity and Impagliazzo’s Five Worlds

Impagliazzo [Imp95] explained the current gaps between secure cryptography and the feasibility of
NP more precisely based on the notion of average-case complexity, which was introduced by Levin
[Lev86] in context of complexity theory and by Blum and Micali [BM84] and Yao [Yao82] in context
of cryptography. Particularly, Impagliazzo [Imp95] presented five possibilities of our world that are
consistent with our current knowledge, which often called Impagliazzo’s five worlds2. Below, we
highlight the five possible worlds. Note that we consider randomized Turing machines as a standard
computational model, but we often do no care about the difference of computational models (e.g.,
deterministic Turing machine and circuits) when we discuss the notion of Impagliazzo’s five worlds.

I. Algorithmica. This is a possible world in which every NP-problem is solvable efficiently.
More precisely, Algorithmica is defined as a world in which NP ⊆ BPP holds, where BPP is the
class of decision problems solvable efficiently by randomized Turing machines.

II. Heuristica. This is a possible world in which an NP-problem is not solvable efficiently in
the worst-case sense that every efficient algorithm fails to solve the problem for some instance, but
every NP-problem is solvable in the average-case sense that an efficient algorithm solves the problem
for almost all instances. More precisely, Heuristica is defined as a world in which NP * BPP and
DistNP ⊆ AvgBPP hold, where DistNP and AvgBPP are the average-case analogues of NP and
BPP, respectively. We also often consider another formulation of the class HeurBPP of average-
case easy problems instead of AvgBPP. Roughly speaking, the difference between HeurBPP and
AvgBPP lies in the requirement when an algorithm fails to solve problems (remember that, in
the average-case setting, an algorithm is allowed to fail on a small fraction of instances). In the
formulation of HeurBPP, we force an algorithm to solve a problem for almost all instances, i.e., we
just discuss the success probability of the heuristic algorithm over instances. By contrast, in the
formulation of AvgBPP, we consider an additional errorless requirement that an algorithm must
output a special symbol ⊥ for hard-to-solve instances and never output a wrong answer. Namely,
AvgBPP ⊆ HeurBPP holds. For more formal descriptions of DistNP,AvgBPP, and HeurBPP, refer
to Section 2.2.

III. Pessiland. This is the worst one of all possible worlds, where we can hope for neither an
efficient algorithm that solves an NP-problem on average nor secure cryptography. More precisely,
Pessiland is defined as a world in which DistNP * AvgBPP (or DistNP * HeurBPP) and there exists
no one-way function, which is at the core of secure cryptography, as explained below.

IV. Minicrypt. This is the world in which we can construct minimum cryptographic protocols
but cannot hope for public-key encryption schemes. More precisely, Minicrypt is defined as a world
in which there is a one-way function, but there is no public-key encryption scheme. Again, a one-
way function is a cryptographic primitive like an atom of secure cryptography in the sense that
(i) it is necessary for almost all cryptographic schemes [cf. IL89; OW93] and (ii) it is sufficient
for many cryptographic primitives such as a pseudorandom generator [HILL99; VZ12; HRV13], a
pseudorandom function [GGM86], a digital signature [Rom90], a zero-knowledge proof [GMW91;
NOV06] and a private-key encryption scheme [GGM84]. Namely, a theory of cryptography has
been developed under the axiom that a one-way function exists, and Minicrypt is the world in
which the axiom of cryptography is unconditionally verified.

2Recently, the sixth possible world “obfustopia,” the world in which indistinguishably obfuscation is available, is
often discussed, but this is out of the scope of this thesis.
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V. Cryptomania. This is a world in which a public-key encryption scheme is available.
Cryptomania seems widely and unconsciously believed to be our world even by those who are not
familiar with computer science because we currently use many candidates for secure public-key
encryption schemes while believing and wishing that the candidates are indeed secure.

Again, either of the possible worlds above exactly corresponds to our world, and Question 1.0.1
can be generalized as follows.

Question 1.1.1. Identify which of Impagliazzo’s five worlds corresponds to our world.

Particularly, Question 1.0.1 corresponds to excluding Heuristica and Pessiland (and Minicrypt
if we consider a public-key encryption scheme as the goal), which is the main concern of this thesis.

Question 1.1.2. Can we exclude Heuristica and Pessiland?

By definitions, we can observe that

∃public-key encryption⇒ ∃a one-way function

⇒ DistNP * HeurBPP⇒ DistNP * AvgBPP⇒ NP * BPP. (1.1)

However, showing any converse is currently open and yields excluding the corresponding possible
world. A natural approach towards excluding the false possible worlds is to investigate the algo-
rithmic implications of the target world we try to exclude. For instance, to exclude Pessiland, we
need to strengthen the algorithmic aspect (i.e., the non-existence of one-way functions) of Pessiland
to efficient heuristic algorithms that solve every NP-problem on average.

1.2 Computational Learning Theory

Computational learning theory yields another perspective for discussing the gaps inherent in Ques-
tion 1.0.1, which is a less common approach compared with the one based on the average-case
complexity and Impagliazzo’s five worlds in this context but still one of the central topics in theo-
retical computer science.

Computational learning theory is the field whose main concern lies in computational resources
required for machine learning, which was opened by Valiant [Val84]. In the pioneering work,
Valiant [Val84] introduced the Probably Approximately Correct (PAC) learning model as a natural
formulation of learning some concepts from experience, and the learnability in the PAC learning
model has been intensively studied over decades in the community. We refer the reader to the
textbooks [KV94b; Wig19, Section 17] for further backgrounds of computational learning theory.
Here, we briefly explain the PAC learning model.

PAC Learning Model [Val84]. A learner L is defined as a randomized algorithm (unless
otherwise stated) and asked to learn a concept class C of Boolean-valued functions. More precisely,
the learner L is asked to learn all functions f ∈ C under all example distributions D (where f
and D are unknown for L) in the following sense: L is given an accuracy parameter ε ∈ (0, 1) and
sufficiently many samples (x1, f(x1)), . . . , (xm, f(xm)) (we call each xi an example, bi a label of xi,
and f a target function), where the examples x1, . . . , xm are drawn identically and independently
from the example distribution D, and with high probability, needs to output a good hypothesis h in
a hypothesis class H (the class of circuits unless otherwise stated) that approximates f within the
accuracy error ε under the same example distribution, i.e., Prx[h(x) 6= f(x)] ≤ ε, where x is drawn
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from D. We say that C is PAC learnable in polynomial time if there exists a polynomial-time
learner L that learns C in the PAC learning model. Note that we may drop the description “in
polynomial time” when the intention is clear in context. We also define a sample complexity of
L as the number of samples L requires in worst case with respect to target functions in C and
example distributions. We may allow L to have additional query access called membership queries
to the unknown target function f as additional resources, where the learner can ask the value of
f(x) for an arbitrary example x.

PAC learning is deeply related to cryptography and NP-problems. In the pioneering pa-
per, Valiant [Val84] has already observed that the existence of pseudorandom functions (whose
existence is equivalent to the existence of one-way functions [GGM86; HILL99]) implies the hard-
ness of PAC learning the class of polynomial-size circuits (denoted by P/poly). Namely, PAC learn-
ing is generally hard in Minicrypt and Cryptomania. By contrast, Blumer, Ehrenfeucht, Haussler,
and Warmuth [BEHW87] proved that P/poly is PAC learnable in polynomial time if NP ⊆ BPP. In
fact, it is known that every concept class PAC learnable in polynomial time must be contained in
P/poly [Sch90]. Therefore, in Algorithmica, every possibly learnable class is indeed PAC learnable
in polynomial time. To sum up, we have that

∃a one-way function⇒ P/poly is not PAC learnable in polynomial time ⇒ NP * BPP. (1.2)

However, proving any converse is a longstanding open question. Therefore, the hardness of PAC
learning is also regarded as an intermediate notion between cryptography and the hardness of NP,
as similar to the average-case hardness of NP.

Investigating the opposite directions of the implications of (1.2) provides one approach to resolve
Questions 1.0.1 and 1.1.2 from the perspective of computational learning theory. Here, we discuss
the usefulness of this approach by remarking that changing the requirements of PAC learning yields
characterizations of the existence of one-way functions and the hardness of NP.

NP-hardness and Proper Learning. The PAC learners constructed under NP ⊆ BPP
through the framework by Blumer, Ehrenfeucht, Haussler, and Warmuth [BEHW87] indeed has an
additional property: the learner for a concept class C always outputs a hypothesis in the same class
C (i.e., H = C ), which is called proper learning. In fact, the hardness of proper learning is known
to often characterize the worst-case hardness of NP; e.g., Pitt and Valiant [PV88] proved that the
class of 2-term DNF formulas (which is much simpler than P/poly!) is properly PAC learnable in
polynomial time if and only if NP ⊆ BPP.

Cryptography and Average-Case Learning. The original formulation of PAC learning
has the worst-case nature, i.e., a learner needs to learn all target functions under all example
distributions. Impagliazzo and Levin [IL90] claimed that an average-case formulation of learning
characterizes the existence of one-way functions in very abstract arguments even without using the
term “learning.” In a follow-up study, Blum, Furst, Kearns, and Lipton [BFKL93] interpreted the
ideas of [IL90] in context of PAC learning. Particularly, they introduced a natural average-case
variant of PAC learning, we call it the BFKL model in this thesis3, and proved the equivalence
between the existence of one-way functions and the average-case hardness of PAC learning in the
BFKL model. The BFKL model has two differences from the PAC learning model: (i) the target
function f is selected according to some efficiently samplable distribution F fixed in advance, and

3The BFKL model is often called merely average-case learning or PAC learning on average. The reason why we
use the unfamiliar term “BFKL model” is that we will consider other average-case formulations of learning and need
to distinguish them from the formulation in [BFKL93] explicitly.
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(ii) the example distribution D is also fixed to be some efficiently samplable distribution in advance.
A learner in the BFKL model is constructed depending on each F and D and outputs a good
hypothesis with high probability over the choice of the target function drawn from F and examples
drawn from D. They proved that there exists a one-way function if and only if an efficiently
computable class C (e.g., P/poly) is not PAC learnable on average in the BFKL model for some
efficiently samplable F and D. Notice that the worst-case requirements in the PAC learning model
with respect to target functions and example distributions totally vanish in the BFKL model.

The characterizations above provide some learning-theoretic interpretations of the inherent gaps
between the hardness of NP and cryptography.

Worst-case versus average-case. The original PAC learning has the two worst-case require-
ments with respect to target functions and example distributions, while the BFKL model has no
worst-case requirement. Naturally, we can consider various intermediate ways to relax the worst-
case requirements to average-case ones. For instance, what happens if we relax only one of the two
worst-case requirements? What happens if we consider the worst-case requirement with respect to
efficiently samplable distributions? By these step-by-step relaxations of worst-case requirements,
the hardness of learning is conjectured to go throughout Heuristica and Pessiland.

Proper learning versus improper learning. The worst-case hardness of NP is characterized
by the hardness of proper learning. However, extending the hypothesis class is known to change the
hardness of learning drastically, where learning with a hypothesis class larger than a concept class
is called improper learning. For instance, as already mentioned, Pitt and Valiant [PV88] proved
that proper learning 2-term DNF formulas implies NP ⊆ BPP, but they also showed that improper
learning the same class in feasible unconditionally. In cryptographic nature, it seems more natural
to consider improper learning (particularly a hypothesis-free case where H = P/poly) because a
malicious adversary does not need to consider a restricted class to learn secret information at all.
In fact, to the best of our knowledge, all previous studies on cryptographic hardness of learning
indeed discuss improper learning [e.g., Val84; Kha93; KV94a; AK95; AR16; OS17; DV21].

We remark that the average-case learner in [BFKL93] constructed from the non-existence of
one-way functions is implicitly a proper learner. Nevertheless, their result and the NP-hardness
of proper learning [PV88] do not imply excluding Pessiland. The reason of this is that we cannot
reduce the average-case variant of NP-complete problems to proper learning in the BFKL model
through the reduction [PV88], and we need to consider a more general average-case framework of
learning that was not discussed before. This observation further motivates us to revisit the theory
of average-case learning and investigate connections to Heuristica and Pessiland.

The arguments above are summarized in the following questions.

Question 1.2.1. How is the nature of learning changed by gradually relaxing (i) the worst-case
requirements to the average-case requirements and (ii) proper learning to improper learning?

Question 1.2.2. How strong are learning algorithms feasible in Heuristica and Pessiland?

The purpose of this thesis is, through the questions above, to provide deep connections be-
tween average-case complexity, learning, and cryptography for new learning-theoretic insights into
algorithmic aspects of Heuristica and Pessiland towards excluding them.
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1.3 Overview of The Thesis

In this thesis, we will answer Questions 1.2.1 and 1.2.2 by providing new connections between
learning, average-case complexity, and cryptography. It is worthy of note that many of our results
are characterization results involved in learnability. Below, we overview the organization of this
thesis with highlighting our contributions. We remark that some results are improved in this thesis
compared with the corresponding ones in the original publications.

Note that we mainly use the term learning to refer to improper PAC learning in the hypothesis-
free setting (i.e., the hypothesis class is the class of circuits) or its variant unless otherwise stated.

Chapter 2 Preliminaries

We introduce notations and basic knowledge used throughout the thesis, such as the basics of
computational complexity theory, average-case complexity, learning theory, cryptography, and so
on. Note that basic knowledge required only for one chapter (e.g., Fourier analysis) may be provided
in each chapter as additional preliminaries. This chapter also provides a brief survey on learning-
theoretic consequences in Algorithmica, where the main focus is NP-complete learning problems,
such as proper learning [PV88, e.g., ] and MINLT [Hir22a]. The purpose of this survey is to provide
knowledge helpful for the comparison between learning-theoretic aspects of Algorithmica and our
results on learning-theoretic aspects of Heuristica and Pessiland.

Chapter 3 Learning in Heuristica

We investigate learning-theoretic aspects of Heuristica, i.e., learnability results derived from the
average-case easiness of NP.

Section 3.1 Worst-Case Learning in Heuristica

PAC learning has the worst-case nature due to the requirement that a learner must learn all target
functions under all example distribution, and thus average-case easiness of NP seems conceptually
insufficient to derive PAC learnability. In this section, we falsify this intuition by showing that
PAC learning P/poly is implied by the errorless average-case easiness of NP (i.e., DistNP ⊆ AvgP)
with an additional computational assumption that the unknown example distribution is efficiently
samplable by circuits (i.e., P/poly-samplable). Our result can be regarded as the first reduction
from worst-case learning to average-case NP, and it also holds in a more general learning model
called agnostic learning. We also discuss that the necessity of the errorless condition and the
additional computational assumption on example distributions. This section is based on the first
half of the joint work with Shuichi Hirahara [HN21], which originally appeared in FOCS2021. We
also remark that the assumption DistNP ⊆ AvgP was further relaxed to DistNP ⊆ AvgBPP in the
subsequent work by Goldberg, Kabanets, Lu, and Oliveira [GKLO22] building upon our technique.

Section 3.2 Conditional Extrapolation

We introduce conditional extrapolation as another natural formulation of learning, which is inspired
by the work by Impagliazzo and Levin [IL90]. Roughly speaking, conditional extrapolation is a task
of, for a given conditional string x drawn from an efficiently samplable distribution C, to sample a
string subsequent to x under a target (efficiently samplable) distribution D (e.g., simulating how
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Mozart continues the first eight measures written by Billie Eilish). We show that the feasibility
of conditional extrapolation exactly characterizes the error-prone average-case easiness of NP, i.e.,
conditional extrapolation is feasible if and only if DistNP ⊆ HeurBPP. This characterization result
is a natural generalization of [IL89; IL90] and also introduced as a technical lemma in joint work
with Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, and Igor Carboni Oliveira [HILNO23].

Chapter 4 Learning in Pessiland I: A Unified Theory of Average-Case Learning

We identify learning-theoretic consequences in Pessiland by establishing a robust and unified the-
ory of average-case learning, which shows the equivalence between the non-existence of one-way
functions and the feasibility of various average-case learning tasks, including average-case agnostic
learning, average-case distributional learning, weak average-case learning with membership queries
under the uniform example distribution, and learning adaptively changing distributions without
knowledge of the distributions. It is worthy of note that the last learning task was previously
thought to be information-theoretically impossible by Naor and Rothblum [NR06]. We thus obtain
a one-way function whose security is based on the intractability of a seemingly impossible average-
case learning. Our framework is based on universal extrapolation, which was outlined without any
formal description in the very first work by Impagliazzo and Levin [IL90] on learning-theoretic
implications from the non-existence of one-way functions. Surprisingly, we show that the previ-
ously known learnability results obtained from the non-existence of one-way functions [BFKL93;
NR06; NY19] can be improved, unified, and simplified by using the single algorithm of universal
extrapolation. This chapter is based on an unpublished joint work with Shuichi Hirahara [HN23a].

Chapter 5 Learning in Pessiland II: More Dichotomies between Learning and
Cryptography

We further investigate dichotomies between learning and cryptography, particularly in the BFKL
model (i.e., a restricted model compared with Chapter 4).

Section 5.1 MINLT vs. One-Way Functions

MINLT, introduced by Ko [Ko91], is a learning problem that asks the minimum description size
of the hypothesis consistent with a given sample set. Recently, Hirahara [Hir22a] proved the NP-
hardness of MINLT by a non-relativizing proof. Therefore, investigating the feasibility of MINLT
in average-case settings seems a hopeful approach to excluding Pessiland with breaking relativizing
barriers. In this section, we prove that MINLT is feasible on average in the BFKL model under the
non-existence of one-way functions with an additional standard derandomization assumption. Note
that this result is not sufficient for excluding Pessiland because, to reduce the average-case variant
of NP-complete problems to MINLT through Hirahara’s reduction, we need to consider the more
general framework of average-case learning discussed in Chapter 4. Our result is also regarded
as a follow-up result of a recent line of studies [LP22; ACMTV21] in meta-complexity theory
that characterizes the existence of one-way functions by the average-case hardness of NP-complete
problems over uniformly random instances. Compared with these previous studies, we show the
characterization of one-way functions in more general average-case settings (i.e., the BFKL model)
than the uniform distribution, instead require an additional assumption of derandomization. The
main result of this section originally appeared in the appendix of the manuscript [HN23a].

7



Section 5.2 Learning vs. Auxiliary-Input One-Way Functions

An auxiliary-input one-way function, introduced by Ostrovsky and Wigderson [OW93], is a variant
of one-way function that has a weakened security condition. An auxiliary-input one-way function
is defined as a collection of functions, and at least one function in the collection must be hard
to invert depending on each efficient adversary. This is a natural intermediate notion between
one-way functions and worst-case complexity because an adversary for an auxiliary-input one-way
function must break all functions in the collection in the worst case, but the task of inverting each
function has the average-case nature as the standard one-way function. In fact, Applebaum, Barak,
and Xiao [ABX08] observed that the existence of auxiliary-input one-way function is sufficient for
the hardness of PAC learning based on the same argument by Valiant [Val84]. In this section,
we study the opposite direction and show that the existence of auxiliary-input one-way functions
corresponds to the hardness of PAC learning under an efficiently samplable distribution over target
functions (as in the BFKL model) and arbitrary unknown example distributions (as in the original
PAC learning model). The main result of this section was subsumed in the work [Nan21a], which
originally appeared in COLT2021, but we present a much more simplified proof in this thesis, based
on the previous study [BFKL93].

Chapter 6 Learning versus Pseudorandom Generators in Constant Parallel Time

We further investigate the dichotomy between learning and cryptography in low complexity class,
motivated by both (i) constructing highly efficient cryptographic primitives based on hardness
assumptions of learning and (ii) identifying the capability of efficient learning for simple classes
based on cryptographic assumptions. In this chapter, we establish a dichotomy between learning
and polynomial-stretch pseudorandom generators (PPRGs) computable in constant parallel time
(i.e., NC0) and related classes. Note that PPRG in NC0 is a well-studied cryptographic primitive
because of its remarkable applications, such as highly efficient cryptography [IKOS08] and indis-
tinguishability obfuscation [JLS21; JLS22], and our result is the first characterization result for
such an important cryptographic primitive. More precisely, we show that the equivalence between
the existence of PPRGs in NC0 and the average-case hardness of various central classes, such as
F2-sparse polynomials, Fourier-space functions, parity decision trees, and OR decision trees, in the
BFKL model with sparse data and fixed-parameter tractable sample complexity. An important
property of PPRGs in NC0 constructed in our framework is that the output bits are computed by
various predicates; thus, it seems to resist an attack that depends on a specific property of one fixed
predicate. This chapter is based on the joint work with Shuichi Hirahara [HN23b], which originally
appeared in ITCS2023.

Chapter 7 PACland: A World Where PAC Learning is Easy

In previous chapters, we discussed learning-theoretic aspects of Heuristica and Pessiland. In this
chapter, we change the perspective and consider a possible world where PAC learning P/poly is
easy. For familiarity, we name such a possible world PACland in this thesis and investigate its
complexity-theoretic and cryptographic aspects. This chapter is composed of two characterization
results of the hardness of PAC learning. First, we study an auxiliary-input cryptographic primitive
whose existence corresponds to the hardness of PAC learning and show that PAC learning is hard if
and only if there exists an auxiliary-input variant of hitting set generators with a locality condition.
Second, we introduce a meta-computational problem that asks, roughly speaking, whether there
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exists an efficient learner for a given concept class C . We show that the hardness of the meta-
computational problem on PAC learning itself characterizes the hardness of PAC learning. This
chapter is based on the work [Nan20], which originally appeared in COLT2020.

Chapter 8 On Basing Auxiliary-Input Cryptography on NP-Hardness

The result in Chapter 7 sheds light on auxiliary-input hitting set generator whose security is
weaker than the hardness of PAC learning. Particularly, basing auxiliary-input hitting set genera-
tors or other auxiliary-input cryptographic primitives on NP-hardness seems a natural intermediate
step towards basing the hardness of PAC learning and cryptographic primitives on NP-hardness.
Previously, Bogdanov and Trevisan [BT06b] and Akavia, Goldreich, Goldwasser, and Moshkovitz
[AGGM06] presented evidence for the difficulty of basing one-way functions on NP-hardness. Par-
ticularly, they proved that such a result cannot be shown by nonadaptive black-box security re-
ductions under the widely believed conjecture that the polynomial hierarchy does not collapse.
Here, non-adaptive black-box reductions are a restrictive but still powerful form of reductions that
are sufficient for many previous results shown in theoretical computer science by using reductions.
We begin a study on basing auxiliary-input cryptography on NP-hardness by investigating whether
such a familiar form of nonadaptive black-box security reductions suffices for proving the security of
auxiliary-input cryptographic primitives. We show that if auxiliary-input hitting-set generators or
auxiliary-input one-way functions are based on NP-hardness by a nonadaptive black-box security
reduction, then by using the reduction repeatedly, one-way functions can also be based on NP-
hardness by an adaptive black-box reduction, i.e., we can resolve Questions 1.0.1 and 1.1.2! This
result can be interpreted from two different perspectives: optimistically, it provides new approach
for Question 1.1.2 that reduces constructing a one-way function to constructing a cryptographic
primitive that has much weaker security requirements, and pessimistically, basing auxiliary-input
cryptographic primitives on NP-hardness by a nonadaptive black-box reduction is harder than solv-
ing the longstanding open problem of excluding Heuristica and Pessiland. In any case, our result
enhances the significance of the further study of auxiliary-input cryptographic primitives. This
chapter is based on the work [Nan21b], which originally appeared in ITCS2021.

Chapter 9 New and Improved Oracle Separations

We discuss the limitations of the techniques presented in this thesis. Particularly, all the main
results in the previous chapters can be shown with relativizing proofs, i.e., the same results hold even
with additional access to an arbitrary oracle. We show that, for further conceptual improvement
of our results, we require profoundly new non-relativized ideas by presenting new strong oracle
separations. Our oracle construction also provides new insights into other important topics related
to average-case complexity.

Section 9.1 Worst-Case vs. Average-Case Complexity

We present a strong oracle separation between the worst-case and average-case complexity. Pre-
viously, Impagliazzo [Imp11] presented an oracle relative to which NP is easy on average in the
errorless setting (i.e., DistNP ⊆ AvgP), and UP ∩ coUP (⊆ NP) is hard in worst case even for

2O(n1/4)-size circuits. First, we improve the previous oracle construction drastically by constructing
an oracle relative to which PH (⊇ NP) is easy on average in the errorless setting, and UP ∩ coUP
is hard in the worst case even for 2o(n/ logn)-size circuits. Note that our oracle separation is tight
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because of the matching upper bound by Hirahara [Hir21a], who proved that the errorless average-
case easiness of PH implies that PH (thus also UP ∩ coUP) is solvable in 2O(n/ logn) time. We
further strengthen the oracle separation to provide a strong relativization barrier against removing
the computational assumption on example distributions of the main theorem in Section 3.1. More
precisely, we construct an oracle relative to which PH is easy on average in the errorless setting, and
PAC learning linear-size circuits is infeasible even in weak learning (with a fixed accuracy parameter
ε = 1/2 − 1/poly(n)) with additional membership queries by non-uniform 2o(n/ logn)-time learners
under uniform example distributions over a subset S ⊆ {0, 1}n with |S| = 2(1−α)n for an arbitrarily
small constant α > 0. Notice that if |S| = 2n (i.e. α = 0), then such an example distribution
is uniform and trivially samplable; thus, the feasibility of PAC learning follows from the theorem
in Section 3.1. This section is based on the last half of the FOCS2021 paper [HN21]. We remark
that we strengthen the original result in this thesis by considering the non-uniform computation
model instead of the uniform randomized computational model on the hardness part of the oracle
separation.

Section 9.2 Errorless vs. Error-Prone Average-Case Complexity

We present a strong oracle separation between the errorless and error-prone average-case complexity.
The question of showing such an oracle separation was first posed in the seminal paper by Impagli-
azzo [Imp95] and later remarked in [Imp11], but it has been open over two decades. We resolve
the problem open for decades by constructing an oracle relative to which NP is easy on average
in the error-prone setting (i.e., DistNP ⊆ HeurP) but hard on average in the errorless setting even
by 2o(n/ logn)-size circuits. Furthermore, we construct an oracle relative to which DistNP ⊆ HeurP,
but there is an auxiliary-input one-way function secure against 2o(n/ logn)-size circuits, which shows
(i) strong relativization barriers against improving the main results in Chapters 3 and 4 and (ii)
incomparability between auxiliary-input cryptography and average-case hardness of NP in the rela-
tivized world along with the previous work by Wee [Wee06], who presented an oracle that separates
the same notions in the opposite way. We also remark that our oracle separation result drastically
improves the previous separation result between one-way functions and auxiliary-input one-way
functions [Tre10; Nan21b]. This section is based on the joint work with Shuichi Hirahara [HN22],
which originally appeared in CCC2022.

Chapter 10 Conclusions and Future Directions

We conclude the thesis with several open questions on the relationships between learning, complex-
ity theory, and cryptography.

1.3.1 List of Original Publications

As outlined above, this thesis is mainly composed of the following studies made by the author (with
collaborators) during the doctoral degree program at Tokyo Institute of Technology.

[Nan20] M. Nanashima, Extending Learnability to Auxiliary-Input Cryptographic Primitives and
Meta-PAC Learning, in proceedings of COLT2020, Chapter 7.

[Nan21b] M. Nanashima, On Basing Auxiliary-Input Cryptography on NP-hardness via Non-
adaptive Black-Box Reductions, in proceedings of ITCS2021, Chapter 8.
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[Nan21a] M. Nanashima, A Theory of Heuristic Learnability, in proceedings of COLT2021, Sec-
tion 5.2.

[HN21] S. Hirahara and M. Nanashima, On Worst-Case Learning in Relativized Heuristica, in
proceedings of FOCS2021, Sections 3.1 and 9.1.

[HN22] S. Hirahara and M. Nanashima, Finding Errorless Pessiland in Error-Prone Heuristica, in
proceedings of CCC2022, Section 9.2.

[HN23b] S. Hirahara and M. Nanashima, Learning versus Pseudorandom Generators in Constant
Parallel Time, in proceedings of ITCS2023, Chapter 6.
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Chapter 2

Preliminaries

This chapter introduces basic notations and concepts required throughout the thesis.

2.1 General

All logarithms are base 2 unless otherwise specified. We use ε to represent an empty symbol.
Note that we distinguish ε from ε and often use ε for a small real value or an accuracy parameter.
For each n ∈ N, we let 1n denote a unary string 11 · · · 11 of length n. For each n ∈ N, let
{0, 1}≤n := ∪ni=1{0, 1}i.

Let 〈, 〉 be a (standard) paring function that maps N×N to N. For each k ∈ N and n1, . . . , nk ∈ N,
we use the notation 〈n1, . . . , nk〉 to represent 〈n1, 〈n2, 〈· · · , 〈nk−1, nk〉〉〉〉 ∈ N. For each k ∈ N and
x1, . . . , xk ∈ {0, 1}∗, we also abuse the notation 〈x1, . . . , xk〉 to represent the (standard) binary
encoding for the k-tuple (x1, . . . , xk). For every k, k′ ∈ N with k ≤ k′, let [k : k′] denote a set
{k, k + 1, . . . , k′}. For each k ∈ N, let [k] := [1 : k] = {1, . . . , k}.

For any x ∈ {0, 1}∗, we let |x| denote its length and let wt(x) denote the Hamming weight of x.
For every x, y ∈ {0, 1}∗, let x◦y denote the concatenation of x and y. For readability, we may omit
◦ from x ◦ y. For each x ∈ {0, 1}n and each i ∈ [n], we let xi denote the i-th bit of x. For every
x ∈ {0, 1}n and every S = {i1, . . . , ik} ⊆ [n] (where i1 < · · · < ik), we let xS denote xi1 ◦ · · · ◦ xik ,
particularly, x[k] = x1 ◦ · · · ◦ xk and x[k:k′] = xk ◦ · · · ◦ xk′ for each k ≤ k′ ≤ n. For convenience,
we define x[k:k′] for any k, k′ ∈ N with k ≤ k′ as x[k:k′]∩[|x|]; e.g., 01101[3:7] = 01101[3:5] = 101 and
011[10:20] = ε.

We use the notation negl to represent some negligible function, i.e., for any polynomial p and
sufficiently large n ∈ N, it holds that negl(n) < 1/p(n). We also use the notation poly to refer to
some polynomial.

For every function f : X → Y and every y ∈ Imf := {f(x) : x ∈ X}, let f−1(y) := {x ∈ X :
f(x) = y}. For any f : {0, 1}n → {0, 1} and any k ∈ N with k ≤ n, we say that f is k-junta if f
depends on only at most k out of n coordinates in the input. We say that a multi-output function
f : {0, 1}n → {0, 1}m has locality k if each output bit of f is computed by a k-junta.

For any distribution D, we use the notation x ∼ D to refer to the sampling of x according to D.
For any finite set S, we also use the notation x ∼ S to refer to the uniform sampling of x from S.
For any distribution D, we denote by supp(D) the support of D. For each n ∈ N, let Un denote the
uniform distribution over {0, 1}n. For simplicity, we may identify a distribution D with a random
variable drawn from D. For each distribution D and m ∈ N, let Dm denote the distribution of
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x1 ◦ · · · ◦ xm, where x1, . . . , xm ∼ D.
For each distribution D and each x ∈ {0, 1}∗, let D(x) = Pry∼D[y = x]. Furthermore, we let

D∗(x) denote the probability that a string whose prefix matches x is selected according to D, i.e.,
D∗(x) = Pry∼D[y begins with x].

For any distribution D, let H(D) denote the Shannon entropy of D. For any distributions D and
E , let L1(D, E) denote the total variation distance between D and E , i.e., if X = supp(D)∪ supp(E),
then

L1(D, E) :=
1

2

∑
x∈X
|D(x)− E(x)| = min

f : X→{0,1}

∣∣∣∣ Pr
x∼D

[f(x) = 1]− Pr
x∼E

[f(x) = 1]

∣∣∣∣ .
For every distribution D over {0, 1}∗, every x ∈ {0, 1}∗, and k ∈ N, we use the notation

Nextk(D, x) to refer to the conditional distribution of the k-bit prefix of a subsequent string of x
selected according to D. If x does not match any prefix in the support of D, we regard Nextk(D, x) as
the distribution of the empty symbol ε. For example, if D is a uniform distribution over {0, 1}≤n :=
∪i≤n{0, 1}i, then for every x ∈ {0, 1}≤n and every k ∈ N, Nextk(D, x) is a uniform distribution over
{0, 1}≤min{k,n−|x|}.

For any oracles O0 and O1, we let O0 +O1 denote the combination, i.e., for any b ∈ {0, 1} and
any x ∈ {0, 1}∗, (O0 + O1)(b ◦ x) = Ob(x). For simplicity, we identify oracle access to O0 + O1

with access to two separated oracles O0 and O1. For every distribution D over binary strings and
every oracle machine M , we write MD to mean that M is given access to the oracle that returns a
sample independently and identically drawn from D for each access.

For two distribution families D = {Dn}n∈N and E = {En}n∈N, we write D ≡s E to represent
that D and E are statistically indistinguishable, i.e., L1(Dn, En) ≤ negl(n) for each n ∈ N.

For every randomized algorithm A using s(n) random bits, for each input x ∈ {0, 1}n, and
for each internal random string r ∈ {0, 1}s(n) for A, we use the notation A(x; r) to refer to the
execution of A(x) with a random tape r. When an algorithm A is given some unary parameters,
we abuse the notation A(x; 1n1 , . . . , 1nm) to represent the execution of A(x) with unary parameters
1n1 , . . . , 1nm . When A is given unary parameters and a random string simultaneously, we use the
notation A(x; 1n1 , . . . , 1nm ; r).

In this thesis, we assume basic knowledge of probability theory, including the union bound,
Markov’s inequality, Jensen’s inequality, and Borel–Cantelli lemma. We often use the following
famous concentration inequality.

Fact 2.1.1 (Hoeffding inequality). For real values a, b ∈ R, let X1, . . . , Xm be independent and
identically distributed random variables with Xi ∈ [a, b] and E[Xi] = µ for each i ∈ [m]. Then for
any ε > 0, the following inequalities hold:

Pr
X1,...,Xm

[
1

m

m∑
i=1

Xi − µ ≥ ε

]
≤ e−

2mε2

(b−a)2 and Pr
X1,...,Xm

[
1

m

m∑
i=1

Xi − µ ≤ −ε

]
≤ e−

2mε2

(b−a)2 .

We assume basic knowledge of computational complexity such as Turing machines, universal
Turing machines, randomized Turing machines, and circuits. We also assume basic knowledge of
complexity classes such as P,BPP,P/poly,Σp

i ,Π
p
i ,PH, DTIME,BPTIME, and SIZE. Note that we

abuse the notation SIZE to refer to a concept class of circuits in context of learning, as explained
in Section 2.3. We often use the term nonuniform computation to refer to computation by circuit
families (equivalently Turing machines with advice). A reader not familiar with these notions in
complexity theory is referred to the textbook by Arora and Barak [AB09].
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For each t : N→ N, we say that a familyD = {Dn}n∈N of distributions (on binary strings) is t(n)-
time samplable if there exists a t(n)-time deterministic algorithm D (called a sampling algorithm or
a sampler for D) such that, for each n ∈ N, the distribution of D(1n, Ut(n)) is statistically identical
to Dn. We say that a family D = {Dn}n∈N of distributions is (polynomial-time) samplable if D is
p(n)-samplable for some polynomial p(n). Let PSamp denote a set of all samplable distributions.

We further define P/poly-samplable distributions. In this thesis, for convenience, we fix a
universal Turing machine U when we discuss t(n)/a(n)-samplable distributions, and we regard
a(n) as a function that represents the upper bound on the program size of the sampler with respect
to U . This formulation of t(n)/a(n)-samplable corresponds to the standard meaning of time and
advice complexity up to the simulation overhead of U in time complexity and an additive constant
factor (precisely, the description size of the sampler that takes advice) in advice complexity.

Definition 2.1.2 (P/poly-samplable distributions). Fix a universal Turing machine U . A dis-
tribution family D = {Dn}n∈N is said to be t(n)/a(n)-samplable, where t, a : N → N, if for each
n ∈ N, there exist a problem Π ∈ {0, 1}≤a(n) such that Dn is statistically identical to the distribu-
tion of the output of executing U(Π, Ut(n)) in t(n) time. We let Samp[t(n)]/a(n) denote a class of
t(n)/a(n)-samplable distributions.

2.2 Average-Case Complexity

Here, we briefly introduce the notions in average-case complexity theory. Further backgrounds can
be found in a survey by Bogdanov and Trevisan [BT06a].

We define a distributional problem as a pair of a language L ⊆ {0, 1}∗ and a distribution
D = {Dn}n∈N on instances. For a standard complexity class C (e.g., NP), we define its average-case
extension DistC as DistC = {(L,D) : L ∈ C,D ∈ PSamp}. For convenience, we omit the description
“= {Dn}n∈N” from D = {Dn}n∈N when the intention is clear in context.

First, we present the errorless average-case easiness. We say that a distributional problem
(L,D) has an errorless heuristic algorithm A with failure probability δ : N→ (0, 1) if (1) A outputs
L(x) (:= 1l{x ∈ L}) or ⊥ (which represents “failure”) for every x ∈ supp(D), and (2) the failure
probability that A(x; 1n) outputs ⊥ over the choice of x ∼ Dn is bounded above by δ(n) for each
n ∈ N. Note that an errorless heuristic algorithm never outputs an incorrect value ¬L(x) for any
x ∈ supp(D). Then, for every δ : N → (0, 1), we define a class AvgδP as a class of distributional
problems that have a polynomial-time errorless heuristic algorithm with failure probability δ(n).
Furthermore, we say that a distributional problem (L,D) has an errorless heuristic scheme A if
A is given an instance x ∈ supp(Dn) and parameters 1n and 1δ

−1
, where n, δ−1 ∈ N, as input

and satisfies the condition of an errorless heuristic algorithm with failure probability δ. We define
a class AvgP as a class of distributional problems that have a polynomial-time errorless heuristic
scheme. It is not hard to verify that AvgP ⊆ Avg1/p(n)P for any polynomial p(n).

Next, we present the error-prone average-case easiness. We say that a distributional problem
(L,D) has an error-prone heuristic algorithm A with failure probability δ : N→ (0, 1) if the failure
probability that A(x) 6= L(x) over the choice of x ∼ Dn is bounded above by δ(n) for each n ∈ N.
Note that an error-prone heuristic algorithm may output an incorrect value ¬L(x), but the error
probability is bounded above by δ(n). Then, for every δ : N→ (0, 1), we define a class HeurδP as a
class of distributional problems that have a polynomial-time error-prone heuristic algorithm with
failure probability δ(n). We also define an error-prone heuristic scheme and the class HeurP in the
same manner as the errorless case.
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We also define classes AvgP/poly, HeurP/poly, AvgSIZE[s(n)], and HeurSIZE[s(n)] for each size
parameter s(n) in the same manner as above. Below, we explicitly describe the average-case easiness
in the randomized computational model because it is a little complicated due to the two kinds of
failures caused by hard instances and bad randomness. Note that the latter failure probability is
easily reduced by the standard repeating technique.

Definition 2.2.1 (Randomized heuristic scheme). A randomized algorithm A is said to be a ran-
domized errorless heuristic scheme for a distributional problem (L,D) if A satisfies that for any
n, δ−1 ∈ N,

1. A(x; 1n, 1δ
−1

) ∈ {0, 1,⊥} and PrA[A(x; 1n, 1δ
−1

) = ¬L(x)] ≤ 1/4 for any x ∈ supp(Dn);

2. Prx∼Dn [PrA[A(x; 1n, 1δ
−1

) = ⊥] ≥ 1/4] ≤ δ.

Furthermore, a randomized algorithm A is said to be a randomized heuristic scheme for a
distributional problem (L,D) if A satisfies that for any n, δ−1 ∈ N,

Pr
x∼Dn

[
Pr
A

[A(x; 1n, 1δ
−1

) 6= L(x)] ≤ 1/4

]
≤ δ.

AvgBPP, HeurBPP, AvgBPTIME[t(n)], and HeurBPTIME[t(n)] can be defined based on the
definition of randomized heuristic schemes as in the deterministic computational model.

2.3 Learning Theory

A concept class is defined as a subset of Boolean-valued functions {f : {0, 1}n → {0, 1} : n ∈ N}.
For any concept class C , we use the notation Cn to represent C ∩ {f : {0, 1}n → {0, 1}} for each
n ∈ N. We assume that every concept class C has a binary encoding and an evaluation C : {0, 1}∗×
{0, 1}∗ → {0, 1} satisfying C(f, x) = f(x) for each n ∈ N, f ∈ Cn, and x ∈ {0, 1}n, where we identify
f with its binary encoding. In this thesis, we assume that every concept class is evaluatable in
polynomial time in input size n unless otherwise stated, i.e., we consider concept classes that
have polynomial-length encodings and polynomial-time computable evaluations. For every C , we
use the notation `C to refer to a polynomial `C : N → N such that each f ∈ Cn has a binary
encoding of length at most `C (n). We define a dual C ∗ of a concept class C with the evaluation
C : {0, 1}∗×{0, 1}∗ → {0, 1} as a class determined by the evaluation C∗ : {0, 1}∗×{0, 1}∗ → {0, 1}
defined as C∗(u, x) = C(x, u) for each u, x ∈ {0, 1}∗.

We define an example distribution as a distribution D = {Dn}n∈N such that each Dn is over
{0, 1}n. Note that we often omit the description “= {Dn}n∈N” and implicitly assume that each
Dn is over {0, 1}n when we discuss an example distribution D. We also define a class of example
distributions as a set of example distributions. For any class D of example distributions and n ∈ N,
we use the notation Dn to represent Dn = {Dn : D ∈ D}.

First, we formally introduce the probably approximately correct (PAC) learning model, intro-
duced by Valiant [Val84], and a generalized model called the agnostic learning model, introduced
by Kearns, Schapire, and Sellie [KSS94]. Note that almost all learning models we discuss in this
thesis are variants of PAC learning and agnostic learning models.

Definition 2.3.1 (PAC learning and agnostic learning [Val84; KSS94]). Let C be a concept class
and D be a class of example distributions. We say that a randomized oracle machine L, referred to
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as an agnostic learner, agnostically learns C on D (with time complexity t : N× (0, 1]× (0, 1]→ N
and sample complexity m : N× (0, 1]× (0, 1]→ N) if L satisfies the following conditions:

1. L is given parameters 1n, 1ε
−1
, 1δ
−1

as the input (where n, ε−1, δ−1 ∈ N, and ε and δ are
called an accuracy parameter and a confidence parameter, respectively) and given access to an
example oracle EXf,Dn determined by a (possibly randomized)1 target function f : {0, 1}n →
{0, 1} and an example distribution Dn ∈ Dn.

2. For each access, EXf,Dn returns an example of the form (x, f(x)), where x is selected identi-
cally and independently according to Dn.

3. For all example distributions D ∈ D , all large enough n ∈ N, all ε−1, δ−1 ∈ N, and all
randomized target functions f : {0, 1}n → {0, 1}, the learner L outputs a description of a
polynomial-time-evaluatable function h : {0, 1}n → {0, 1} as a hypothesis with probability at
least 1− δ so that h is ε-close to the best function in C that approximates f under D, i.e., L
satisfies the following condition:

Pr
L,EXf,Dn

[
LEXf,Dn (1n, 1ε

−1
, 1δ
−1

) outputs h such that Pr
f,x∼Dn

[h(x) 6= f(x)] ≤ optC ,f,Dn + ε

]
≥ 1−δ,

where optC ,f,Dn = minf∗∈Cn Prf,x∼Dn [f∗(x) 6= f(x)].

4. L halts in time t(n, ε, δ) with access to the example oracle at most m(n, ε, δ) times in each
case.

A PAC learner L (with time complexity t(n, ε, δ) and sample complexity m(n, ε, δ)) on D is
defined as a randomized oracle machine L satisfying the above-mentioned conditions 1, 2, and 4,
as well as condition 3, except that we only consider the realizable case of f ∈ C , i.e., optC ,f,Dn = 0
(instead of all randomized target functions).

We say that C is agnostic (resp. PAC ) learnable in polynomial time on D if there is an agnostic
(resp. PAC ) learner for C on D with time complexity t(n, ε, δ) ≤ poly(n, ε−1, δ−1). In addition,
we say that C is weakly learnable on D if there exists a PAC learner for C on D with some fixed
accuracy and confidence parameters ε := ε(n) ≤ 1/2− 1/poly(n), δ := δ(n) ≤ 1− 1/poly(n).

We may grant a learner additional access to another oracle MQf , referred to as a membership
query oracle, that returns f(x) for each membership query x by the learner.

For a function s : N→ N, we define a concept class SIZE[s(n)] of circuits by

SIZE[s(n)] = {f : {0, 1}n → {0, 1} : n ∈ N and f is computable by an s(n)-size circuit}.

Note that agnostic (resp. PAC) learning SIZE[n2] is regarded as a complete problem for agnos-
tic (resp. PAC) learning in the following sense: if SIZE[n2] is agnostic (resp. PAC) learnable in
polynomial time iff all polynomial-time-evaluatable classes are agnostic (resp. PAC) learnable in
polynomial time by the simple padding argument.

1Namely, we assume that each f(x) is associated with some distribution Dx on {0, 1}, and the outcome of f(x) is
distributed according to Dx.
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2.3.1 Average-Case Learning: Blum–Furst–Kearns–Lipton Model

Blum, Furst, Kearns, and Lipton [BFKL93] proposed a natural average-case variant of the PAC
learning model to study implications from average-case hardness of learning to cryptography. In
this thesis, we call their model the BFKL model to explicitly distinguish it from other average-case
learning tasks.

In the BFKL model, we consider the average-case setting in which a target function is selected
at random according to a distribution F over C . A distribution F = {Fn}n∈N, where each Fn
is over Cn, is said to be samplable if there exists a polynomial-time sampling algorithm F such
that F outputs a binary representation of functions in C , and for each n ∈ N, the distribution of
F (1n, r) (where r is a random seed) corresponds to Fn. For simplicity, we omit the description
“= {Fn}n∈N” and implicitly assume that each Fn is over Cn when we define a distribution F over
a concept class C .

Definition 2.3.2 (Blum–Furst–Kearns–Lipton (BFKL) model). Let C be a concept class, let F be
a distribution over C , and let D be an example distribution. We say that C is PAC learnable on
average in the BFKL model with respect to D and F if there exists a randomized oracle machine
L? (i.e., a learner) such that for every large enough n ∈ N and every ε−1, δ−1 ∈ N,

Pr
f∼Fn,EXf,Dn ,L

[
LEXf,Dn (1n, 1ε

−1
, 1δ
−1

) outputs h such that Pr
x∼Dn

[h(x) 6= f(x)] ≤ ε
]
≥ 1− δ.

We also define weak learning in the BFKL model, where the parameters ε and δ are fixed to be
ε := ε(n) ≤ 1/2− 1/poly(n) and δ := δ(n) ≤ 1− 1/poly(n).

Blum, Furst, Kearns, and Lipton [BFKL93] (along with [Val84; GGM86; HILL99]) proved
that the average-case hardness in their model characterizes the existence of one-way functions (see
Section 2.5 for the formal definition of one-way functions).

Theorem 2.3.3 ([BFKL93]). The following are equivalent.

1. There exists an infinitely-often one-way function.

2. There exist a polynomial-time evaluatable concept class C , a samplable distribution F over
C , and a samplable example distribution D such that C is not PAC learnable in polynomial
time on average in the BFKL model with respect to D and F .

3. There exist a polynomial-time evaluatable concept class C and a samplable distribution F
over C such that C is not weekly learnable in polynomial time on average in the BFKL model
with respect to the uniform example distribution and F .

Strictly speaking, the original formulation of average-case weak learning in [BFKL93] is based
on the prediction model, introduced in [PW90], rather than the PAC learning model. These two
formulations are equivalent by a similar proof as in [HKLW88]. In this thesis, we also use the
original formulation based on the prediction model. For completeness, we prove the equivalence
between weak learning and weak prediction below.

Definition 2.3.4 (Weak prediction in BFKL model). Let C be a concept class, let F be a distribu-
tion over C , and let D be an example distribution. We say that C is weakly predictable on average
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in the BFKL model with respect to D and F if there exist polynomials m := m(n) and p(n) and a
randomized algorithm P such that for all large enough n ∈ N,

Pr
f∼Fn,P,x1,...,xm,x∗∼Dn

[
P
((
x1, f(x1)

)
, . . . , (xm, f(xm)) , x∗

)
= f(x∗)

]
≥ 1

2
+

1

p(n)
.

The function 1/p(n) above is called advantage of P , and x∗ is called a challenge.

Theorem 2.3.5. For any concept class C , any distribution F over C , and any example distribu-
tion, the following statements are equivalent in the BFKL model with respect to D and F :

1. C is weakly predictable in polynomial time on average.

2. C is weakly learnable in polynomial time for fixed parameters ε := ε(n) and δ := δ(n) such
that

ε ≤ 1

2
− 1

pε(n)
and δ ≤ 1− 1

pδ(n)
,

where pε and pδ are some polynomials.

Proof. (1 ⇒ 2) Let P be a prediction algorithm for C of advantage 1/p(n). Then we construct a
weak learner L as follows: on input 1n, the learner L outputs a hypothesis h defined as

hS,r(x) = P (S, x; r) ,

where S denotes a sample set required for executing P (notice that L can obtain a sample from
EX), and r denotes randomness for P selected by L. Obviously, L halts in polynomial time in n.

Since L executes P in the valid settings for the same target function f , we have

Pr
f∼Fn,r,S,x∼Dn

[hS,r(x) 6= f(x)] ≤ 1

2
− 1

p(n)
.

By Markov’s inequality,

Pr
f,r,S

[
Pr

x∼Dn
[hS,r(x) 6= f(x)] ≥ 1

2
− 1

2p(n)

]
≤

1
2 −

1
p(n)

1
2 −

1
2p(n)

= 1− 1

p(n)− 1
≤ 1− 1

p(n)
.

Therefore, L achieves the parameters ε = 1/2− 1/2p(n) and δ = 1− 1/p(n).
(2 ⇒ 1) Let L be a weak learner for C with parameters ε and δ as in Theorem 2.3.5. First,

we apply the standard repeating and testing technique to reduce the failure probability of L over
the choice of samples and randomness for L to 2−n with multiplicative loss of time poly(n) [cf.
HKLW88, Lemma 3.4]. For simplicity, we assume that L never fails over the choice of samples and
randomness for L, which is valid because the failure probability 2−n affects the success probability
only negligibly.

We construct a weak predictor P for C that takes large enough samples to successfully execute
L?(1n). If L outputs some hypothesis h, then P estimates the probability ph that h agrees with the
target function under the example distribution within accuracy ±1/2pε(n) with probability at least
1 − 2−n. By the standard empirical estimation, it is enough to take M = O(pε(n)2n) = poly(n)
samples for estimating ph, and again we can assume that the failure probability is 0 instead of 2−n.
If the estimate p̃ is at least 1/2 + 1/2pε(n), then P outputs h(x∗), otherwise outputs a random bit
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as P ’s prediction. It can be easily verified that the number of required samples is at most poly(n),
and P halts in time poly(n).

Notice that L always succeeds in learning with probability at least 1−δ over the choice of target
functions and succeeds in estimating ph within error ±1/2pε(n) with probability 1 (because of the
assumptions above). Let f denote a target function. If L outputs a hypothesis h that is ε-close
to f , then the estimate p̃ satisfies the condition p̃ ≥ (1− ε)− 1/2pε(n) ≥ 1/2 + 1/2pε(n), and h is
used for prediction. On the other hand, if a hypothesis h passes the test, then h must satisfy the
condition ph + 1/2pε(n) ≥ 1/2 + 1/2pε(n), i.e., ph ≥ 1/2. Even if h does not pass the test, P makes
a prediction at random. Thus, for any target function, P succeeds in predicting with probability
at least 1/2. Therefore, P ’s success probability is at least

(1− δ)(1− ε) + δ · 1

2
≥ (1− δ)

(
1

2
+

1

pε(n)

)
+ δ · 1

2

=
1

2
+

1− δ
pε(n)

≥ 1

2
+

1

pδ(n)pε(n)
.

2.3.2 Random-Right-Hand-Side Refutation

Next, we introduce a recent characterization of PAC learnability and agnostic learnability by an-
other task called refutation, which was studied independently by Vadhan [Vad17] and Kothari and
Livni [KL18].

First, we present the notion of random-right-hand-side (RRHS) refutation introduced by Vadhan
[Vad17]. Intuitively, RRHS refutation for a concept class C is a task of distinguishing sample sets
that have uniformly random labels from sample sets realizable by C with one-sided error.

Definition 2.3.6 (RRHS refutation). Let C be a concept class. We say that a randomized algorithm
A, called a refuter, RRHS-refutes C with m := m(n) samples if for any large enough n ∈ N, any
f ∈ Cn, and any x1, . . . , xm ∈ {0, 1}n, the refuter A satisfies that

1. Soundness: PrA[A(x1, . . . , xm, f(x1), . . . , f(xm)) = “realizable”] ≥ 2/3;

2. Completeness: Prb∼{0,1}m [PrA[A(x1, . . . , xm, b) = “random”] ≥ 2/3] > 1/2.

We say that C is RRHS-refutable (in polynomial time) if there exist a polynomial m and a polynomial-
time refuter for C with m samples.

Vadhan [Vad17] proved the equivalence between PAC learning and RRHS refutation. The
high-level idea is to use Yao’s next-bit generator [Yao82] and boosting [Sch90].

Theorem 2.3.7 ([Vad17]). A concept class C is PAC learnable in polynomial time if and only if
C is RRHS-refutable in polynomial time.

We also define a generalization of RRHS refutation introduced by Kothari and Livni [KL18],
where we use a different term correlative RRHS refutation to refer to the term refutation in the
original paper in order to distinguish it from RRHS-refutation and other refuting tasks for random
CSPs.
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For a randomized function f : {0, 1}n → {0, 1}, a concept class C , and a distribution D on
{0, 1}n, we define a correlation CorD(f,C ) ∈ [−1, 1] between f and C with respect to D by

CorD(f,C ) := max
c∈Cn

E
f,x∼D

[
(−1)f(x) · (−1)c(x)

]
= 2 ·max

c∈Cn
Pr

f,x∼D
[f(x) = c(x)]− 1.

In correlative RRHS-refutation, a refuter is asked to distinguish sample sets that have uniformly
random labels from sample sets that have correlation with a concept class rather than realizable
ones.

Definition 2.3.8 (Correlative RRHS refutation). Let C be a concept class, m : N× (0, 1]→ N be
a function, and D be an example distribution. We say that a randomized algorithm A correlatively
RRHS-refutes C with sample complexity m on D if for any large enough n ∈ N and any ε−1 ∈ N,
the refuter A satisfies the following conditions:

1. Soundness: if samples S = {(x(i), b(i))}mi=1 are selected identically and independently according
to EXf,Dn for a randomized function f such that CorDn(f,C ) ≥ ε, then

Pr
S,A

[A(1n, 1ε
−1
, S) outputs “correlative”] ≥ 2/3;

2. Completeness: if samples S = {(xi, bi)}mi=1 are selected identically and independently according
to EXfR,Dn for a truly random function fR (i.e., each label is selected uniformly at random),
then

Pr
S,A

[A(1n, 1ε
−1
, S) outputs “random”] ≥ 2/3.

We say that C is correlatively RRHS-refutable with sample complexity m on D if there exists a
randomized algorithm that correlatively RRHS-refutes C with sample complexity m on D. We also
define correlative RRHS refutation on a class of example distributions in the natural manner.

Kothari and Livni [KL18] proved that correlative RRHS refutation characterizes agnostic learn-
ing.

Theorem 2.3.9 ([KL18]). Let C be a concept class, and let D be an example distribution. If
C is correlatively RRHS-refutable on D with m(n, ε) samples in time T (n, ε), then C is agnostic

learnable on D with sample complexity O(m(n,ε/2)3

ε2
) and time complexity O(T (n, ε/2) · m(n,ε/2)2

ε2
).

Furthermore, the same result holds for a class of example distributions.

We remark that the characterization of agnostic learning by correlative RRHS refutation holds
in distribution-specific cases because of distribution-specific boosting in agnostic learning [Fel10]. In
fact, the usage of distribution-specific boosting is essential to obtain the main result in Section 3.1
because a standard boosting technique [e.g., Sch90; FS96] uses a weak learner many times on various
example distributions adaptively depending on weak hypotheses in previous stages, but we consider
a weak learner whose complexity depends on the computational complexity for sampling according
to the example distribution. Namely, the standard boosting technique causes a super-polynomial
blowup of time complexity in our case.
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2.4 Meta-Complexity and Kolmogorov Complexity

Meta-complexity refers to the field that studies the complexity of determining complexity and has
deep connections to learning theory [e.g., CIKK16; CIKK17; OS17; San20; ILO20; Hir22a]. We
introduce several important notions in meta-complexity we require in this thesis.

First, we introduce one of the central complexity notions called Kolmogorov complexity. Intu-
itively, the t-time-bounded Kolmogorov complexity of a string x is the minimum size of a problem
that prints x in t time. In this thesis, we fix a universal Turing machine U with polynomial
simulation overhead.

Definition 2.4.1 (Kolmogorov complexity). For every t ∈ N and every x, z ∈ {0, 1}∗, we define
the t-time-bounded Kolmogorov complexity of x given z as

Kt(x|z) = min
p∈{0,1}∗

{|p| : U t(p, z) = x}.

We also define the (time-unbounded) Kolmogorov complexity of x given z as K(x|z) = limt→∞Kt(x|z).
We omit the description “|z” if z is the empty string, i.e., Kt(x) = minp∈{0,1}∗{|p| : U t(p) = x}.

For every x ∈ {0, 1}∗, it holds that K(x) ≤ |x|+O(1) because there exists a trivial machine Mx

that outputs the embedded string x.
We use the following inequality called weak symmetry of information that holds under the

average-case errorless easiness of NP. Note that further improvement of weak symmetry of infor-
mation was recently obtained by Hirahara [Hir22b], but the following statement suffices for our
purpose.

Theorem 2.4.2 (Weak symmetry of information [Hir21b]). If DistNP ⊆ AvgP, then there exist
polynomials p0 and pw that, for any n,m ∈ N, t ≥ p0(nm), ε ∈ (0, 1], and x ∈ {0, 1}n, satisfy

Pr
r∼{0,1}m

[
Kt(x ◦ r) ≥ Kpw(t/ε)(x) +m− log pw(t/ε)

]
≤ ε.

We define a problem GapMINKT that asks an approximation of Kt(x) for given x ∈ {0, 1}∗
and t ∈ N, which is one of the most central problems in meta-complexity theory.

Definition 2.4.3 (GapMINKT). For functions σ : N×N→ N and τ : N→ N, Gapσ,τMINKT is a
promise problem (ΠY ,ΠN ) defined as follows:

ΠY =
{

(x, 1s, 1t) : Kt(x) ≤ s
}
,

ΠN =
{

(x, 1s, 1t) : Kτ(|x|+t)(x) > s+ σ(s, |x|+ t)
}
.

We omit the subscript σ of Gapσ,τMINKT when σ(s, |x|+ t) = log τ(|x|+ t).

Hirahara [Hir20b] showed that GapτMINKT is efficiently solvable if DistNP ⊆ AvgP.

Theorem 2.4.4 ([Hir20b]). If DistNP ⊆ AvgP, then GapτMINKT ∈ pr-P for some polynomial τ .

Every algorithm A that solves GapτMINKT yields the approximation algorithm ApproxKτ sim-
ply as follows. On input x ∈ {0, 1}∗ and 1t, where t ∈ N, ApproxKτ outputs the minimum s ∈ N
such that A(x, 1s, 1t) = 1. Since (x, 1s−1, 1t) is not a YES instance and (x, 1s, 1t) is not a NO
instance for such s, the following lemma is easily verified.

22



Lemma 2.4.5. If GapτMINKT ∈ pr-P, then there exists an algorithm ApproxKτ that is given
(x, 1t), where x ∈ {0, 1}∗, t ∈ N, and outputs an integer s ∈ N in polynomial time to satisfy

Kτ(|x|+t)(x)− log τ(|x|+ t) ≤ s ≤ Kt(x).

Another central problem in meta-complexity is the minimum circuit size problem (MCSP) that
asks the minimum size of a circuit whose truth table corresponds to a given string. Particularly,
the approximation version of MCSP is stated as follows.

Definition 2.4.6 (Circuit complexity, GapMCSP). For each n ∈ N and x ∈ {0, 1}2n, we define the
circuit complexity cc(x) of x as the minimum size of an n-input circuit whose truth table corresponds
to x.

For a constant ε ∈ [0, 1], GapεMCSP is a promise problem (ΠY ,ΠN ) defined as ΠY = {(x, 1s) :
n ∈ N, x ∈ {0, 1}2n , cc(x) ≤ s} and ΠN = {(x, 1s) : n ∈ N, x ∈ {0, 1}2n , cc(x) > 2(1−ε)n · s}.

2.5 Cryptography

We formally introduce cryptographic primitives discussed in this thesis. Let C be a class of adver-
saries (e.g., polynomial-time randomized Turing machines and subexponential-size circuits). We
regard the complexity parameter (e.g., time and size) on C as a function in the size of a hidden
seed (referred as a security parameter) for primitives.

In this thesis, we mainly discuss cryptographic primitives with infinitely-often security to focus
on algorithmic aspects, particularly learnability for all large enough example sizes and all param-
eters, where cryptographic primitives with infinitely-often security are guaranteed to be secure for
infinitely many security parameters. In context of cryptography, however, cryptographic primitives
with sufficiently large security are often considered, where such primitives are guaranteed to be se-
cure for all sufficiently large security parameters. Our results on relationships between learnability
and cryptographic primitives with infinitely-often security also hold with sufficiently large security
by considering the learnability on infinitely many sample sizes n with arbitrarily small parameters
fixed beforehand as polynomial-time-computable functions in n. This follows from the observation
that, for each sample size n, the number of relevant security parameters is at most poly(n) in
our reductions, and all of them are efficiently computable and bounded by a polynomial in n and
the parameters (when the parameters are efficiently computable from n) and due to the standard
combining trick (cf. [NR06, Lemma 4.1]).

Now, we present the formal definitions of one-way functions, pseudorandom generators, and
pseudorandom functions with infinitely-often security. For further backgrounds of these crypto-
graphic primitives, refer to the textbook by Goldreich [Gol01; Gol04].

Definition 2.5.1 (Infinitely-often one-way function). A polynomial-time-computable family f =
{fn : {0, 1}s(n) → {0, 1}t(n)}n∈N of functions is said to be an infinitely-often one-way function secure
against C if, for every adversary A in C and every polynomial p, for infinitely many n ∈ N,

Pr
x∼{0,1}s(n),A

[A(1n, fn(x)) ∈ f−1
n (fn(x))] ≤ 1/p(n),

where the probability is taken over x ∼ {0, 1}s(n) and the internal randomness of A (if any).
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Definition 2.5.2 (Infinitely-often pseudorandom generators). A polynomial-time-computable fam-
ily G = {Gn : {0, 1}n → {0, 1}m(n)}n∈N of functions is said to be an infinitely-often pseudorandom
generator secure against C if, m(n) > n for each n ∈ N (i.e., stretching), and for every adversary
A in C and every polynomial p, for infinitely many n ∈ N,∣∣∣∣ Pr

x∼{0,1}n,A
[A(1n, Gn(x)) = 1]− Pr

w∼{0,1}m(n),A
[A(1n, w) = 1]

∣∣∣∣ ≤ 1/p(n).

Definition 2.5.3 (Infinitely-often pseudorandom function). A polynomial-time-computable family
f = {fn : {0, 1}s(n)×{0, 1}n → {0, 1}n}n∈N is said to be an infinitely-often pseudorandom function
secure against C if for every (oracle machine analogue of) A? in C and every polynomial p, for
infinitely many n ∈ N,∣∣∣∣ Pr

A,r∼{0,1}s(n)

[
Afn(r,·)(1n) = 1

]
− Pr
A,φn∼Fn

[
Aφn(·)(1n) = 1

]∣∣∣∣ ≤ 1/p(n),

where Fn is a set of all functions that maps n-bit strings to n-bit strings.

We consider polynomial-time randomized algorithms as a class C of adversaries unless otherwise
stated and omit the description “secure against C” in the default case.

The following is the well-known result in cryptography.

Theorem 2.5.4 ([GGM86; HILL99]). The existences of infinitely-often one-way functions, infinitely-
often pseudorandom generators, and infinitely-often pseudorandom functions are equivalent.

Next, we introduce auxiliary-input variants of cryptographic primitives, which were introduced
by Ostrovsky and Wigderson [OW93]. Roughly speaking, auxiliary-input primitives are defined as
a collection of candidates for secure primitives indexed by auxiliary input z ∈ {0, 1}∗ and have a
relaxed security condition that for each adversary A, there exists an auxiliary input zA ∈ {0, 1}∗
depending on A such that the primitive indexed by zA is secure for A. Auxiliary-input primitives are
also regarded as a generalization of infinitely-often primitives to binary security parameters. From
the algorithmic perspective, an adversary for auxiliary-input primitives must break all primitives in
the collection simultaneously, i.e., in the worst case with respect to auxiliary inputs. In this sense,
auxiliary-input primitives are a natural notion sandwiched by standard cryptographic primitives
and the worst-case hardness.

Definition 2.5.5 (Auxiliary-input one-way function). Let n,m : N → N be polynomials. We say
that f = {fz : {0, 1}n(|z|) → {0, 1}m(|z|)}z∈{0,1}∗ is an auxiliary-input one-way function (AIOWF)
secure against C if each fz(x) is polynomial-time computable from (z, x), and for any adversary A
in C, there exists an infinite subset ZA ⊆ {0, 1}∗ such that for every z ∈ ZA,

Pr
[
fz(A(z, fz(Un(|z|)))) = fz(Un(|z|))

]
< negl(|z|).

Definition 2.5.6 (Auxiliary-input pseudorandom generator). Let n,m : N → N be polynomials.
We say that G = {Gz : {0, 1}n(|z|) → {0, 1}m(|z|)}z∈{0,1}∗ is an auxiliary-input pseudorandom
generator (AIPRG) secure against C if each Gz(x) is polynomial-time computable from (z, x),
n(`) < m(`) holds for any ` ∈ N, and for any adversary A in C, there exists an infinite subset
ZA ⊆ {0, 1}∗ such that for every z ∈ ZA,∣∣∣∣ Pr

A,r∼{0,1}n(|z|)
[A(z,Gz(r)) = 1]− Pr

z∼{0,1}m(|z|)
[A(z, w) = 1]

∣∣∣∣ < negl(|z|).

24



Definition 2.5.7 (Auxiliary-input pseudorandom function). We say that f = {fz : {0, 1}|z| ×
{0, 1}|z| → {0, 1}|z|}z∈{0,1}∗ is an auxiliary-input pseudorandom function (AIPRF) secure against

C if each fz is polynomial-time computable from z and its input, and for any adversary A? in (an
oracle machine analog of) C, there exists an infinite subset ZA ⊆ {0, 1}∗ such that for every z ∈ ZA,∣∣∣∣ Pr

A,u∼{0,1}|z|

[
Afz(u,·)(z) = 1

]
− Pr
A,φ|z|∼F|z|

[
Aφ|z|(·)(z) = 1

]∣∣∣∣ < negl(|z|),

where Fn is a set of all functions that maps n-bit strings to n-bit strings.

When the auxiliary-input z is obvious in context, we write n(|z|) and m(|z|) as n and m,
respectively. Again, we consider polynomial-time randomized algorithms as a class C of adversaries
for auxiliary-input cryptographic primitives unless otherwise stated and omit the description “secure
against C” in the default case.

If there exists a secure cryptographic primitive, then its auxiliary-input variant trivially exists.
Note that Theorem 2.5.4 also holds for auxiliary-input cryptographic primitives.

Theorem 2.5.8 ([GGM86; HILL99]). The existences of AIOWFs, AIPRGs, and AIPRFs are
equivalent.

Valiant [Val84] and Applebaum, Barak, and Xiao [ABX08] observed that the existence of
AIOWF implies the hardness of PAC learning.

Theorem 2.5.9 ([Val84; ABX08]). If there exists an AIOWF, then P/poly is not PAC learnable
in polynomial time.

We further introduce a hitting set generator (HSG), first introduced by Andreev, Clementi, and
Rolim [ACR98], which is a pseudorandom generator with a weakened security condition that no
adversary distinguishes the outcome of the generator from random strings with one-sided error.

Definition 2.5.10 (Hitting set generator). Let `,m : N → N be polynomials. We say that G =
{Gn}n∈N, where Gn : {0, 1}`(n) → {0, 1}m(n) is a hitting set generator (HSG) secure against C if G is
polynomial-time computable, `(n) < m(n) holds for each n ∈ N, and G hits any language recognized
by adversaries in C in the following sense: For any adversary A in C, let LA = {LA,n}n∈N be the
language recognized by A, where LA,n ⊆ {0, 1}n for each n ∈ N. Then, for infinitely many n ∈ N,
the following holds:

|LA,m(n)| > γ · 2m(n) =⇒ LA,m(n) ∩ ImGn 6= ∅,

where γ = 1/2 (unless otherwise stated), and γ is called a largeness parameter.

We define the stretch of HSG G : {0, 1}`(n) → {0, 1}m(n) as a function `′ : N → N such that
`′(`(n)) = m(n) for each n ∈ N.

2.6 Learning in Algorithmica (A Brief Survey)

Algorithmica is the dream world in algorithm theory, where we can efficiently solve all NP problems.
In Algorithmica, we can accomplish many tasks we want to solve with a computer, particularly
almost all types of optimization problems, such as scheduling under many constraints, finding the
shortest route that visits each customer, finding the mathematically simplest proof for a given
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tautology, finding new medicine that matches individuals, and so on. For further insights into
Algorithmica, we recommend the reader to consult the book written by Fortnow [For13].

Impagliazzo [Imp95] also mentioned a learning-theoretic consequence in Algorithmica.

“Less obviously, P = NP would make trivial many aspects of the artificial intelligence
program that are in real life challenging to the point of despair. Inductive learning
systems would replace our feeble attempts at expert systems. One could use an Occam’s
Razor based inductive learning algorithm to automatically train a computer to perform
any task that humans can. . . .”

This section gives a brief survey on which learning tasks are efficiently solvable in Algorithmica.
A purpose for this is to provide a clear comparison with our learnability results in Heuristica
and Pessiland, where we make weaker algorithmic assumptions, instead, obtain weaker learning-
theoretic consequences. Particularly, we survey NP-complete learning problems for making our final
goal clear, i.e., which learning problems must be solved in Heuristica and Pessiland for excluding
them from the perspective of learning theory.

Occam’s Razor

First, we introduce a characterization of PAC learnability based on Occam’s razor by Blumer,
Ehrenfeucht, Haussler, and Warmuth [BEHW87], which yields a reduction from PAC learning to
an NP-search problem.

Occam’s razor is a philosophical principle that suggests choosing the simplest description for
explaining phenomena well. In the context of PAC learning, Occam’s razor suggests that the
learner should choose the simplest hypothesis that is consistent with the given sample set. Blumer,
Ehrenfeucht, Haussler, and Warmuth [BEHW87] demonstrated the validity of this approach even
in the relaxed sense that compressing the given sample set sub-linearly by a consistent hypothesis
suffices for PAC learning.

Theorem 2.6.1 (Occam’s razor ⇒ PAC learning [BEHW87]). Let C be a concept class. Suppose
that there exist a polynomial-time algorithm A (referred to as an Occam algorithm) and a constant
α > 0 such that for every n,m ∈ N, every x1, . . . , xm ∈ {0, 1}n, and every f ∈ Cn, the algorithm A
is given (x1, f(x1)), . . . , (xm, f(xm)) and outputs a hypothesis h : {0, 1}n → {0, 1} with probability
at least 2/3 such that (i) h(xi) = f(xi) for each i ∈ [m] (i.e., consistent) and (ii) h is encoded
by poly(n) ·m1−α bits. Then, A is also a polynomial-time PAC learner for C for sufficiently large
sample complexity m(n, ε, δ) = poly(n, ε−1, δ−1), and C is thus PAC learnable in polynomial time.

Furthermore, Schapire [Sch90] proved the converse of the result above. Therefore, PAC learning
is indeed characterized by finding a consistent hypothesis that compresses the given sample set.

Theorem 2.6.2 (PAC learning ⇒ Occam’s razor [Sch90]). If a concept class C is PAC learnable
in polynomial time, then there exists a polynomial-time Occam algorithm for C .

Notice that the task of finding a consistent hypothesis is an NP-search problem (as long as C
is polynomial-time evaluatable). Therefore, the characterization above implies that PAC learning
is feasible in Algorithmica.

Corollary 2.6.3. If NP ⊆ BPP, then every polynomial-time evaluatable concept class C is PAC
learnable in polynomial time.
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NP Hardness of PAC Learning with Additional Requirements

Although finding a consistent hypothesis is sufficient for PAC learning, in Algorithmica, we can find
a consistent hypothesis with an additional condition as long as its validity is verified in polynomial
time. By Theorem 2.6.1, such an Occam algorithm yields a PAC learner with the same additional
condition. Now, we present two previous results showing that the worst-case complexity of NP is
characterized by PAC learning with such additional requirements on hypotheses.

Proper Learning

The first NP-hard learning problem is proper learning, where a learner for a concept class C must
output a hypothesis contained in C . Notice that finding a consistent hypothesis in the same class C
is feasible if NP ⊆ BPP and C is polynomial-time evaluatable. Pitt and Valiant [PV88] showed the
NP-hardness of proper learning for a very simple class of 2-term DNF formulas (i.e., disjunctions
of two monomials).

Theorem 2.6.4 ([PV88]). The class of 2-term DNF formulas is properly PAC learnable in poly-
nomial time if and only if NP ⊆ BPP.

Furthermore, several followup studies presented NP-hardness results of proper learning for other
classes and semi -proper learning (i.e., learning by a hypothesis class mildly larger than a concept
class); e.g., proper learning for 3-node neural networks [BR93]; semi-proper learning for decision
lists [HJLT96], DNF formulas [ABFKP08; Fel09], intersections of two halfspaces [KS11], and de-
terministic finite automatons [CLN14]; proper agonistic learning of halfspaces [GR09] and pari-
ties [GKS10].

In general, however, consideration of hypothesis classes larger enough than concept classes can
change the difficulty of learning drastically. For instance, Pitt and Valiant [PV88] also showed that
the class of 2-term DNF formulas is unconditionally PAC learnable by 2-CNF formulas. Particularly,
showing NP-hardness of PAC learning in hypothesis-free setting is one of the central open problems
in computational learning theory. For instance, Applebaum, Barak, and Xiao [ABX08] presented
barrier results against standard proof frameworks for showing the NP-hardness of hypothesis-free
PAC learning, such as Karp reductions and Turing reductions with constant adaptivity.

Learning by Minimum Programs

The second NP-hard learning problem is from the recent breakthrough result by Hirahara [Hir22a],
who proved NP-hardness of MINLT that asks the minimum size of a program consistent with a
given sample set. In fact, his result holds even in approximating the minimum size of the program
that computes a parity and under P/poly-samplable distributions, which is stated as follows.

Theorem 2.6.5 ([Hir22a]). The following promise problem is NP-complete (by randomized reduc-
tions): For given parameters 1n, 1s, where n, s ∈ N, and a circuit C : {0, 1}`(n) → {0, 1}n × {0, 1},
let D be the distribution of C(r) for r ∼ {0, 1}`(n), and determine the following:

• (Yes instances) There exists a program M of size s such that M computes a parity and

Pr
(x,b)∼D

[M(x) = b] = 1.
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• (No instances) There exists no program M of size s · nε such that

Pr
(x,b)∼D

[M(x) = b] ≤ 1/2 + 2−n
1−δ
,

where δ > 0 is an arbitrary constant and ε = 1/(log log n)O(1).

An immediate corollary to the result above is that NP ⊆ BPP is derived from polynomial-time
weak learning for parity functions under P/poly-samplable distributions by the minimum consistent
program (allowing the multiplicative approximation factor nε). One importance of this result lies in
that the proof of Theorem 2.6.5 is provably non-relativizing (see Chapter 9 for further backgrounds
of relativization). Therefore, even if we could exclude Heuristica and Pessiland by showing the
learnability result above in Heuristica and Pessiland, it does not contradict the known relativization
barriers against excluding Heuristica and Pessiland (see Section 9.3). This fact strongly motivates
us to investigate the learning-theoretic aspects of Heuristica and Pessiland.
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Chapter 3

Learning in Heuristica

In this chapter, we investigate how strong learning tasks can be feasible in Heuristica, i.e., learning-
theoretic implications from the average-case easiness of NP. By definition, every learning task
formulated directly as a distributional NP problem can be solvable in Heuristica. In Section 3.1,
surprisingly, we demonstrate that even worst-case agnostic learning P/poly is feasible under the
average-case errorless easiness of NP and a plausible computational assumption on example distri-
butions. In Section 3.2, we present a new characterization of the average-case error-prone easiness
of NP by a variant of the learning task called extrapolation.

3.1 Worst-Case Learning in Heuristica

In the original PAC learning model introduced by Valiant [Val84], a learner must satisfy two worst-
case requirements: it must be distribution-free and must learn every target function. The worst-
case nature of PAC learning becomes more apparent in the equivalent model of Occam learning
[BEHW87; Sch90]. In Occam learning, a learner is given an arbitrary set of examples and is asked to
find a small hypothesis consistent with all the given examples. Clearly, this task can be formulated
as a (worst-case) search problem in NP. As seen in Chapter 2.6, the fundamental results of Blumer,
Ehrenfeucht, Haussler, and Warmuth [BEHW87] and Schapire [Sch90] show that PAC learning and
Occam learning are in fact equivalent.

Despite the worst-case nature of PAC learning and Occam learning, basing the hardness of these
learning tasks on the hardness of NP has been a key challenges in computational learning theory
for decades. The difficulty of proving the NP-hardness of learning has been explained in the work
of Applebaum, Barak, and Xiao [ABX08], who showed that the NP-hardness of learning cannot
be proved via a many-one reduction unless the polynomial hierarchy collapses. Given the lack of
success in proving the NP-hardness of learning, it is natural to ask whether PAC learning is “NP-
intermediate.” In this section, we investigate whether PAC learning with worst-case requirements
is feasible in Heuristica.

Previous studies in computational complexity has provided some insights into the relationship
between learning and average-case complexity of NP. A line of studies [CIKK16; CIKK17; HS17;
ILO20] on natural proofs and the Minimum Circuit Size Problem (MCSP) has revealed that learn-
ing with respect to the uniform distribution can be formulated as an average-case NP problem.
Carmosino, Impagliazzo, Kabanets, and Kolokolova [CIKK16] presented a generic reduction from
the task of PAC learning with respect to the uniform distribution to a natural property [RR97];
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a natural property is essentially equivalent to solving MCSP on average [HS17] in the errorless
setting. Therefore, these results imply that PAC learning for P/poly with respect to the uniform
distribution is feasible under the assumption that MCSP ∈ NP is easy on average in the errorless
setting.1 Moreover, by combining this learning algorithm with inverters for distributional one-way
functions [IL89], it can be shown that PAC learning with respect to every fixed samplable dis-
tribution on examples is feasible in (errorless) Heuristica (cf. [BCKRS22]). Nanashima [Nan21a]
showed that, in (errorless) Heuristica, it is also possible to learn a target function chosen from
a fixed samplable distribution with respect to every unknown example distribution (the result is
found in Section 5.2). These results indicate that if either of the worst-case requirements on target
functions or example distributions is weakened, then a polynomial-time learner for P/poly can be
constructed from average-case errorless heuristics for NP problems.

Main Result in This Section

In this section, we present a PAC learner that satisfies the two worst-case requirements simulta-
neously in Heuristica. Under the assumption that NP admits average-case polynomial-time algo-
rithms, we construct a polynomial-time learner that learns all polynomial-size circuits (P/poly)
with respect to all unknown efficiently samplable example distributions. In fact, our learning al-
gorithm learns polynomial-size circuits agnostically, i.e., even if a target function is not in P/poly,
our learner outputs a hypothesis that is as good as the best hypothesis in P/poly.

Theorem 3.1.1. If DistNP ⊆ AvgP, then P/poly is agnostic learnable on all unknown P/poly-
samplable distributions in polynomial time.

Let us remark on several points. First, our learner works without knowing example distributions;
however, it needs to know an upper bound on the complexity of example distributions. Second,
the running time of our learner depends on the complexity of the concept class and example
distributions. Note that the complexity of a learner does not depend on an example distribution
in the standard agnostic learning model. This is the only difference between the original learning
model and our learning model of Theorem 3.1.1. Note that Theorem 3.1.1 is shown by relativizing
techniques, i.e., the above-mentioned theorem holds in the presence of any oracle.

Relativization Barriers against Further Improvements

The result above naturally leads us to the question of whether the standard learner that does not
depend on the complexity of example distributions can be constructed in Heuristica. Namely, can
we remove the condition of Theorem 3.1.1 that example distributions must be P/poly-samplable?
In Section 9.1, we will present strong negative answers by constructing “relativized Heuristica” in
which there is no PAC learner with respect to almost-uniform distributions. Here, we only present
the statement.

Theorem 3.1.2. For any arbitrary small constant ε > 0, there exists an oracle Oε such that

1. DistPHOε ⊆ AvgPOε;

1The learning algorithm of [CIKK16] requires a membership query. Ilango, Loff, and Oliveira [ILO20] showed that
PAC learning with respect to the uniform distribution (without a membership query) is reduced to an average-case
problem in NP.
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2. SIZEOε [n] is not weakly learnable with membership queries on all uniform distributions over
S ⊆ {0, 1}n such that |S| > 2(1−ε)n by nonuniform 2o(n/ logn)-time algorithms.

This theorem shows that, unless we use some non-relativizing techniques, we cannot improve
Theorem 3.1.1 for learning on almost-uniform example distributions even under the strong average-
case assumption that DistPH ⊆ AvgP. Moreover, the hardness of learning holds even with the
drastically weakened requirements: (a) weak learning (b) in sub-exponential time (c) with additional
access to a membership query oracle and (d) an additional subexponential-length advice string
(depending only on the example size).

Another question is whether we can obtain the same learnability result under the error-prone
average-case easiness of NP (i.e., error-prone Heuristica). However, in Section 9.2, we will present
strong negative answers by constructing “relativized error-prone Heuristica” in which there is no
PAC learner with respect to the uniform distributions.

Theorem 3.1.3. There exists an oracle O relative to which the following hold:

1. DistNPO ⊆ HeurPO;

2. SIZEO[n] is not weakly learnable with membership queries on the uniform example distribution
by nonuniform 2o(n/ logn)-time algorithms;

3. P/poly is not weakly learnable with membership queries on the uniform example distribution
by nonuniform 2n/nω(1)-time algorithms.

Note that 2n/nO(1) is the trivial upper bound on the running time for weak learning because
a learner can identify a polynomial fraction of the truth-table of a target function by collecting
2n/nO(1) samples and weakly learn the target function by predicting examples outside of the identi-
fied truth-table uniformly at random. Namely, without the errorless condition on the average-case
easiness of NP, we cannot beat the trivial algorithm for weak learning P/poly even on the uniform
example distribution with additional query access to the membership query oracle.

In summary, both (i) the computational complexity assumption on the example distribution
and (ii) the errorless condition are essential for relaxing the computational requirement for learning
to average-case easiness in Theorem 3.1.1.

Overview of Proof Ideas

We explain the ideas for constructing the agnostic learner of Theorem 3.1.1 under the assumption
that DistNP ⊆ AvgP. Our proofs are based on two results in previous studies.

The first result is the worst-case to average-case connection developed in [Hir18; Hir20b] for
GapMINKT. We use the result in the form of Lemma 2.4.5.

Lemma (reminder of Lemma 2.4.5). If DistNP ⊆ AvgP, then there exist a polynomial τ and an
algorithm ApproxKτ that is given (x, 1t), where x ∈ {0, 1}∗, t ∈ N, and outputs an integer s ∈ N in
polynomial time to satisfy

Kτ(|x|+t)(x)− log τ(|x|+ t) ≤ s ≤ Kt(x).

The second result is the characterization of agnostic learnability by random-right-hand-side
refutation (RRHS-refutation) obtained by [KL18]. Remember that the task of correlative RRHS-
refutation for C on a class D of example distributions is distinguishing the following two cases with
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high probability: on input ε ∈ (0, 1], (i) a “correlative” case where samples are chosen identically
and independently according to EXf,Dn for Dn ∈ Dn and a randomized function f such that
CorDn(f,C ) ≥ ε; and (ii) a “random” case where samples are chosen identically and independently
according to EXfR,Dn for Dn ∈ Dn and a truly random function fR. Kothari and Livni [KL18]
showed that a concept class C is correlatively RRHS-refutable in polynomial time iff C is agnostic
learnable in polynomial time (see Theorem 2.3.9).

In light of this characterization, our goal is to perform correlative RRHS-refutation using an
approximation algorithm for time-bounded Kolmogorov complexity.

Now, we present a proof idea for constructing a correlative RRHS-refutation algorithm using
an approximation algorithm ApproxKτ for time-bounded Kolmogorov complexity. Our refutation
algorithm operates as follows:

1. For a given sample set S = {(x(i), b(i))}mi=1, let X = x(1) ◦ · · · ◦ x(m) and b =
b(1) ◦ · · · ◦ b(m).

2. Use ApproxKτ to approximate Kt(X) and Kt′(X ◦ b) for some time bounds t and
t′, respectively. Let s and s′ denote the respective approximated values.

3. If ∆ = s′ − s is less than some threshold T , then output “correlative”; otherwise,
output “random”.

We explain why this algorithm distinguishes the “correlative” case and the “random” case. In
the former case, samples X and b are generated by a target function f such that CorD(f,C ) ≥ ε.
Thus, the best concept c∗ ∈ C satisfies that Prf,x∼D[c∗(x) 6= f(x)] ≤ 1/2− ε/2. Using this fact, we
claim that the t′-time-bounded Kolmogorov complexity of X ◦ b is small for a properly large t′. Let
e ∈ {0, 1}m denote the string that indicates the difference between c∗ and f , i.e., the i-th bit of e
is b(i) ⊕ c∗(x(i)) for every i ∈ [m]. Using the best concept c∗, a program dX that describes X, and
the string e that indicates an “error”, we can describe the string X ◦ b by the following procedure:
(1) compute X, (2) compute b∗ = c∗(x(1)) · · · c∗(x(m)) by applying c∗ to each input x(i) contained
in X, and (3) compute b (and output X ◦ b) by taking bit-wise XOR between b∗ and e. The length
of the description of this procedure is bounded above by

|dX |+ |c∗|+ |(a description of e)|+O(1) ≤ s+ `C (n) + (1− Ω(ε2)) ·m,

with high probability, where remember that `C (n) is the length of the representation for Cn. There-
fore, it holds that ∆ = s′ − s is at most `C (n) + (1− Ω(ε2)) ·m in a “correlative” case.

Thus, if ∆ ≈ m holds with high probability in a “random” case, then the algorithm distinguishes
a “random” case from a “correlative” case by taking sufficiently large m with respect to n, `C (n),
and ε−1. It seems reasonable to expect that ∆ ≈ m because b is a truly random string of m
bits selected independently of X. However, in general, this might not hold for the following two
technical reasons. First, we need nearly m bits to describe b with high probability; however, such b
might help generate X in a time-bounded setting. Second, we must choose a time bound t′ larger
than t to ensure the upper bound on ∆ in a “correlative” case, and this might also reduce the cost
of generating X.

To analyze the case in which ∆ becomes large, we consider the expected value of the computa-
tional depth of samples. Antunes, Fortnow, Melkebeek, and Vinodchandran [AFMV06] introduced
the notion of the t-time-bounded computational depth of x ∈ {0, 1}∗ (where t ∈ N), which is defined
as Kt(x)−K(x). Hirahara [Hir21b] extended this notion to the (t, t′)-time-bounded computational
depth of x ∈ {0, 1}∗ (where t, t′ ∈ N with t′ > t), which is defined as Kt(x) − Kt′(x). Here, we
further generalize these notions as follows:
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Definition 3.1.4 (Sampling-depth functions). Let t, t′ ∈ N such that t′ > t. For a family of

distributions D, we define a (t, t′)-sampling-depth function sdt,t
′

D = {sdt,t
′

D,n}n∈N, where sdt,t
′

D,n : N →
R≥0 by

sdt,t
′

D,n(m) = E
X∼Dmn

[
Kt(X)−Kt′(X)

]
.

We also extend the above-mentioned notion to a class of distributions. For a class D of families of

distributions, we define a (t, t′)-sampling-depth function sdt,t
′

D = {sdt,t
′

D ,n}n∈N, where sdt,t
′

D ,n : N→ R≥0

by

sdt,t
′

D ,n(m) = max
D∈D

sdt,t
′

D,n(m).

We verify that if the sampling depth of example distributions is small, then ∆ is large. We
remark that ∆ could become small because (i) the random string b and (ii) the larger time bound
t′(> t) could help generate X. However, if the sampling depth of the example distribution is
small for t and t′, the second case does not occur because Kt′(X) is close to Kt(X) with high
probability. To show that the first case does not occur, we apply the weak symmetry of information
(Theorem 2.4.2) that holds under the assumption that NP is easy on average. Informally speaking,
by using the weak symmetry of information, we show that for any time bound t ∈ N and string
X, and for a random string b, Kt(X ◦ b) is larger than Kt′(X) + |b| for some large t′ > t with high
probability over the choice of b. By the weak symmetry of information and the small sampling
depth of the example distribution, we can show that Kt′(X ◦ b) is large compared to Kt(X) + |b|,
i.e., the additional random string b does not help generate X so much.

To show Theorem 3.1.1, we will also observe that the sampling-depth function of a P/poly-
samplable distribution is logarithmically small. Roughly speaking, this follows from the fact that
samples selected according to a P/poly-samplable distribution have nearly optimal encoding with
an efficient decoder, which can be proved using the techniques developed in [AF09; AGMMM18;
Hir21b]. In other words, the term E[Kt(XD)] in the definition of a sampling-depth function is
nearly close to mH(D) ≈ E[K(XD)] for a sufficiently large t.

Now, we formally prove Theorem 3.1.1 in subsequent two sections.

3.1.1 Agnostic Learning on Shallow Sampling-Depth Distributions

First, we construct the agnostic learner that works on distributions of shallow sampling-depth.

Theorem 3.1.5. For any polynomial τ : N→ N, there exist polynomials pτ (n,m, t) and p′τ (n,m, t)
satisfying the following. If DistNP ⊆ AvgP, then there exists a learner L that agnostically learns
C on D in time poly(n,m(n, ε/2), t(n, ε/2), ε−1) with sample complexity O(ε−2 ·m(n, ε/2)3), where
m, t : N × (0, 1] → N are arbitrary functions satisfying the following conditions: for all sufficiently
large n and for all ε ∈ (0, 1],

t(n, ε) ≥ p0(nm(n, ε)2), and

m(n, ε) >
8

ε2

(
n+ `C (n) + 6sd

t(n,ε),pτ (n,m(n,ε),t(n,ε))
D ,n (m(n, ε)) + log p′τ (n,m(n, ε), t(n, ε))

)
.

Proof. Let m := m(n, ε) and t := t(n, ε). First, we specify the polynomials pτ and p′τ . Fix
x(1), . . . , x(m) ∈ {0, 1}n and f ∈ Cn arbitrarily. Let X = x(1) ◦ · · · ◦ x(m). Then, we can compute
f(x(1)), . . . , f(x(m)) in time m·poly(n) from X, the representation of f , and the evaluation algorithm
for C (where we use the assumption that `C (n) ≤ poly(n) and C is polynomially evaluatable). For
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any b ∈ {0, 1}m such that |{i ∈ [m] : bi = f(x(i))}| ≥ (1/2 + ε/4)m, we define e ∈ {0, 1}m
by ei = bi ⊕ f(x(i)). Then, e is reconstructed from H2(1/2 + ε/4)m bits in time poly(n,m) by
lexicographic indexing among binary strings of the same weight, where H2 is the binary entropy
function. Therefore, we can take a polynomial t′(n,m, t) such that, for any sufficiently large n,

Kt′(n,m,t)(X ◦ b) ≤ Kτ(nm+t)(X) + `C (n) + n+H2(1/2 + ε/4)m

≤ Kτ(nm+t)(X) + `C (n) + n+ (1− ε2/8) ·m, (3.1)

where we applied the Taylor series of H2 in a neighborhood of 1/2, i.e., for any δ ∈ [−1/2, 1/2],

H2(1/2 + δ) = 1− 1

2 ln 2

∞∑
i=1

(2δ)2i

i(2i− 1)
≤ 1− 2

ln 2
δ2 ≤ 1− 2δ2.

Now, we define the polynomials pτ and p′τ by

pτ (n,m, t) = pw(6τ(nm+ t′(n,m, t))), and

p′τ (n,m, t) = pw(6τ(nm+ t′(n,m, t)))τ(nm+ t′(n,m, t))τ(nm+ t)

Next, we construct a refutation algorithm R for C as follows. On input 1n, 1ε
−1

(where n, ε−1 ∈
N) and a sample set S =

(
(x(1), b(1)), . . . , (x(m), b(m))

)
, the refuter R computes t and t′ := t′(n,m, t),

executes s ← ApproxKτ (X, 1t) and s′ ← ApproxKτ (X ◦ b, 1t′) for X = x(1) ◦ · · · ◦ x(m) and b =
b(1) ◦ · · · ◦ b(m), and finally outputs “correlative” if s′ − s ≤ m+ `C (n) + n+ log τ(nm+ t)−mε2/8
and outputs “random” otherwise.

We can easily verify thatR halts in polynomial time in n,m, and t. We now verify the correctness
of R. Let f denote a target randomized function for refutation.

In “correlative” cases, there exists a function f∗ ∈ Cn such that

Pr
x∼D,f

[f(x) = f∗(x)] =
1

2
+

CorD(f,C )

2
≥ 1

2
+
ε

2
.

According to the Hoeffding inequality, the probability that |{i ∈ [m] : b(i) = f∗(x(i))}| <
1/2 + ε/4 holds is less than exp(−2m · (ε/4)2) ≤ exp(−n · 8/ε2 · ε2/8) ≤ 1/3 over the choice of S for
any sufficiently large n ∈ N. In such cases, by Lemma 2.4.5 and Eq. (3.1), we have

s′ ≤ Kt′(n,m,t)(X ◦ b)
≤ Kτ(nm+t)(X) + `C (n) + n+ (1− ε2/8) ·m
≤ s+ log τ(nm+ t) + `C (n) + n+ (1− ε2/8) ·m,

and
s′ − s ≤ m+ `C (n) + n+ log τ(nm+ t)−mε2/8.

Thus, R(1n, 1ε
−1
, S) outputs “correlative” with a probability of at least 2/3.

In “random” cases, b is selected uniformly at random from {0, 1}m. By the assumption that
DistNP ⊆ AvgP, t ≥ p0(nm ·m), and the weak symmetry of information (Theorem 2.4.2), for any
X ∈ {0, 1}nm, we have

Pr
b

[
Kτ(nm+t′(n,m,t))(X ◦ b) ≥ Kpw(6τ(nm+t′(n,m,t)))(X) +m− log pw(6τ(nm+ t′(n,m, t)))

]
≤ 1/6.
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Let D ∈ D be an arbitrary example distribution. By Markov’s inequality, we can show that

Pr
X

[
Kt(X)−Kpτ (n,m,t)(X) > 6sd

t,pτ (n,m,t)
D ,n (m)

]
≤

sd
t,pτ (n,m,t)
D,n (m)

6sd
t,pτ (n,m,t)
D ,n (m)

≤ 1

6
.

Thus, the following inequality holds with a probability of at least 1− (1/6 + 1/6) = 2/3:

s′ ≥ Kτ(nm+t′(n,m,t))(X ◦ b)− log τ(nm+ t′(n,m, t))

≥ Kpw(6τ(nm+t′(n,m,t)))(X) +m− log pw(6τ(nm+ t′(n,m, t)))τ(nm+ t′(n,m, t))

≥ Kpτ (n,m,t)(X) +m− log p′τ (n,m, t) + log τ(nm+ t)

≥ Kt(X)− (Kt(X)−Kpτ (n,m,t)(X)) +m− log p′τ (n,m, t) + log τ(nm+ t)

≥ s− (Kt(X)−Kpτ (n,m,t)(X)) +m− log p′τ (n,m, t) + log τ(nm+ t)

≥ s− 6sd
t,pτ (n,m,t)
D ,n (m) +m− log p′τ (n,m, t) + log τ(nm+ t).

By arranging the above, we get

s′ − s ≥ m− 6sd
t,pτ (n,m,t)
D ,n (m)− log p′τ (n,m, t) + log τ(nm+ t).

By the assumption that

m >
8

ε2

(
n+ `C (n) + 6sd

t,pτ (n,m,t)
D ,n (m) + log p′τ (n,m, t)

)
,

we have(
m− 6sd

t,pτ (n,m,t)
D ,n (m)− log p′τ (n,m, t) + log τ(nm+ t)

)
−
(
m+ `C (n) + n+ log τ(nm+ t)−mε2/8

)
= mε2/8−

(
n+ `C (n) + 6sd

t,pτ (n,m,t)
D ,n (m) + log p′τ (n,m, t)

)
> 0.

Thus, s′ − s > m + `C (n) + n + log τ(nm + t) − mε2/8 holds, and R outputs “random” in such
cases. Therefore, R(1n, 1ε

−1
, S) outputs “random” with a probability of at least 2/3

By the above-mentioned argument, R correlatively RRHS-refutes C on D in time poly(n,m, t)
with m samples. Thus, by Theorem 2.3.9, we conclude that C is agnostic learnable on D in time

O

(
poly(n,m(n, ε/2), t(n, ε/2)) · m(n, ε/2)2

ε2

)
= poly(n,m(n, ε/2), t(n, ε/2), ε−1),

with O(m(n,ε/2)3

ε2
) samples.

3.1.2 Sampling-Depth of P/poly-Samplable Distributions

Next, we observe that P/poly-samplable distributions have a logarithmically small sampling depth.
Then, we use Theorem 3.1.5 to establish the agnostic learnability on P/poly-samplable distributions.

To analyze the sampling depth of Samp[t(n)]/a(n), we introduce the following useful lemmas.
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Lemma 3.1.6 ([AGMMM18; Hir20a, Corollary 9.8]). If DistNP ⊆ AvgP, then there exists a poly-
nomial p : N × N → N such that for any t, a : N → N, n,m ∈ N, Dn ∈ Samp[t(n)]/a(n)n, and
x ∈ supp(Dmn ),

Kp(t(n),m)(x) ≤ − logDmn (x) +O(logm) +O(log t(n)) + a(n).

The following holds by the noiseless coding theorem.

Lemma 3.1.7 (cf. [LV19, Theorem 8.1.1]). For any distribution D, Ex∼D[K(x)] ≥ H(D).

Now, we show the upper bound on the sampling depth of Samp[t(n)]/a(n).

Lemma 3.1.8. If DistNP ⊆ AvgP, then there exists a polynomial p′0 : N×N→ N such that for any
t, a : N→ N, n,m ∈ N, the following expression holds: for all t′ ≥ p′0(t(n),m),

sdt
′,∞
Samp[t]/a,n(m) ≤ O(logm+ log t(n)) + a(n).

In this section, we use the notation p′0 to refer to the polynomial in Lemma 3.1.8.

Proof. Fix D ∈ Samp[t(n)]/a(n) arbitrarily. Let p′0 denote the polynomial p in Lemma 3.1.6.
Assuming that DistNP ⊆ AvgP and Lemma 3.1.6, for each m ∈ N, we have

E
x∼Dmn

[Kt′(x)] ≤ E
x∼Dmn

[Kp′0(t(n),m)(x)]

≤ E
x∼Dmn

[− logDmn (x)] +O(logm+ log t(n)) + a(n)

≤ H(Dmn ) +O(logm+ log t(n)) + a(n)

≤ E
x∼Dmn

[K(x)] +O(logm+ log t(n)) + a(n).

Thus, we conclude that

sdt
′,∞
D,n (m) = E

x∼Dmn
[Kt′(x)]− E

x∼Dmn
[K(x)]

≤ O(logm+ log t(n)) + a(n).

Theorem 3.1.5 and Lemma 3.1.8 imply the following corollary, which is the formal statement of
Theorem 3.1.1.

Corollary 3.1.9. If DistNP ⊆ AvgP, then for any polynomials s, ts, as : N → N, SIZE[s(n)] is
agnostic learnable on Samp[ts(n)]/as(n) in polynomial time with sample complexity O(ε−8+∆(n +
s(n) + as(n))3+∆), where ∆ > 0 is an arbitrary small constant.

We remark that the time complexity ts for the sampling algorithms above affects only the time
complexity of the agnostic learner.
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Proof. Let ∆ > 0 be an arbitrary small constant. By the assumption that DistNP ⊆ AvgP and
Theorem 2.4.4, there exists a polynomial τ such that GapτMINKT ∈ pr-P. Thus, we can apply
Theorem 3.1.5.

We define the functions m, t : N× (0, 1]→ N by

m(n, ε) = (ε−2 log ε−1 · (n+ s(n) log s(n) + as(n)))1+∆, and

t(n, ε) = max{dp0(n ·m(n, ε)2)e, dp′0(ts(n),m(n, ε))e}.

Obviously, t(n, ε) > p0(n ·m(n, ε)2) and t(n, ε) > p′0(ts(n),m(n, ε)) hold. By Lemma 3.1.8, we
get

sd
t(n,ε),pτ (n,m(n,ε),t(n,ε))
Samp[ts]/as,n

(m(n, ε)) ≤ sdt(n,ε),∞Samp[ts]/as,n
(m(n, ε))

≤ O(logm(n, ε) + log ts(n)) + as(n).

It is easily verified that t(n, ε) ≤ poly(n, s(n), ts(n), as(n), ε−1) = poly(n, ε−1) and

log p′τ (n,m(n, ε), t(n, ε)) ≤ O(log n+ log ε−1 + logm(n, ε)).

Therefore, for any sufficiently large n ∈ N, we have

8

ε2

(
n+O(s(n) log s(n)) + 6sd

t(n,ε),pτ (n,m(n,ε),t(n,ε))
Samp[ts]/as,n

(m(n, ε)) + log p′τ (n,m(n, ε), t(n, ε))
)

≤ ε−2 ·O(n+ s(n) log s(n) + log ε−1 + as(n) + logm(n, ε))

≤ O(ε−2 log ε−1(n+ s(n) log s(n) + as(n)))

≤ m(n, ε).

Thus, by Theorem 3.1.5, we conclude that SIZE[s(n)] is agnostic learnable in time

poly(n,m(n, ε/2), t(n, ε/2), ε−1) = poly(n, s(n), ε−1, ts(n), as(n)) = poly(n, ε−1).

The sample complexity is at most O(ε−2m(n, ε/2)3), which is bounded above by O(ε−8+∆′(n+s(n)+
as(n))3+∆′) for an arbitrary small constant ∆′ > 0 by selecting a sufficiently small ∆ compared to
∆′ in the above-mentioned argument.

Remark 3.1.10. In fact, it is not clear whether several techniques (e.g., the weak symmetry of
information) developed in [Hir20b; Hir21b] can be relativized when we only assume that DistNP ⊆
AvgP, owing to the pseudorandom generator construction presented in [BFP05]. However, all
of them can be relativized under the stronger assumption that DistΣp

2 ⊆ AvgP (refer to [HN21,
Appendix]). Thus, Theorem 3.1.5 and all the results in this section can be also relativized under
the assumption that DistΣp

2 ⊆ AvgP. Furthermore, when we restrict the target to the efficient
agnostic learning on P/poly-samplable distributions (i.e., Theorem 3.1.1), we can obtain the same
learnability result by using only relativized techniques from the following observations. First, the
same upper bound of the sampling-depth function in Lemma 3.1.8 is obtained by applying the
encoding developed in [AF09; AGMMM18] with additional random strings, and such additional
random strings are available for learners. Second, the same upper bound of the sampling-depth
function in Lemma 3.1.8 holds for t′ =∞; in this case, we can apply the symmetry of information
for resource-unbounded Kolmogorov complexity instead of the weak symmetry of information in
Theorem 3.1.5. Third, since the upper bound in Lemma 3.1.8 is logarithmically small, the algorithm
for GapMINKT in [Hir18] with a worse approximation factor is sufficient, which can be relativized.
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3.2 Conditional Extrapolation

In this section, we study learning-theoretic consequences of the average-case error-prone easiness
of NP, where we introduce another natural learning task named conditional extrapolation, inspired
by the notion extrapolation introduced by Impagliazzo and Levin [IL90]. Further background of
the previous work [IL90] can be found in Chapter 4.

Informally, we define conditional extrapolation as a task of, for a given conditional string x, to
statistically simulate a string subsequent to x under some distribution D. For instance, when D is
the distribution of music composed by Mozart, by conditional extrapolation, we can statistically
simulate how Mozart continues a given first eight measures x of, e.g., a song by Billie Eilish or
Japanese traditional song enka. Here, we consider the average-case setting over the conditional
string x, where x is selected by another samplable distribution C. Then, we can show that the
feasibility of conditional extrapolation exactly characterizes the average-case error-prone easiness
of NP!

Theorem 3.2.1. The following are equivalent.

1. DistNP ⊆ HeurBPP.

2. (Conditional Extrapolation) For every samplable distribution families {Cn}n∈N and {Dn}n∈N
over binary strings, there exists a polynomial-time randomized algorithm Ext such that for all
n, k, ε−1, δ−1 ∈ N,

Pr
x∼Cn

[
L1
(
Ext(x; 1〈k,ε

−1,δ−1〉),Nextk(x,Dn)
)
≤ ε
]
≥ 1− δ.

Note that Impagliazzo and Levin [IL90] characterized the existence of OWF in the special case
in which Cn corresponds to the prefix of Dn. In this sense, the result above generalizes their result.
In fact, the proof mainly follows from the well-known equivalence result between the existence of
OWF and the existence of distributional OWF [IL89] except that we use a heuristic scheme for the
circuit SAT problem (i.e., the average-case easiness of NP) instead of inverting algorithms.

3.2.1 From Conditional Extrapolation to Average-Case Easiness of NP

We first show a direction from conditional extrapolation to the average-case easiness of NP.

Lemma 3.2.2 (Item 2 ⇒ Item 1 in Theorem 3.2.1). DistNP ⊆ HeurBPP holds if for every sam-
plable distribution families {Cn}n∈N and {Dn}n∈N over binary strings, there exists a polynomial-time
randomized algorithm Ext such that for all n, k, ε−1, δ−1 ∈ N,

Pr
x∼Cn

[
L1
(
Ext(x; 1〈k,ε

−1,δ−1〉),Nextk(x,Dn)
)
≤ ε
]
≥ 1− δ.

Proof. Let (L, C) be an arbitrary distributional NP problem, where C = {Cn}n∈N ∈ PSamp. Let
VL be a verifier for L. Without loss of generality, we assume that there exists a polynomial p such
that for each n ∈ N and each x ∈ suppDn, there exists y ∈ {0, 1}p(n) satisfying that V (x, y) = 1 if
and only if x ∈ L (by a simple padding argument).
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We define another samplable distribution D = {Dn}n∈N as follows: each Dn is a distribution of
x ◦ VL(x, y) ◦ y, where x ∼ Cn and y ∼ {0, 1}p(n). By the assumption of conditional extrapolation,
there exists a randomized algorithm Ext such that for all n, ε−1, δ−1 ∈ N

Pr
x∼Cn

[
L1
(
Ext(x1; 1〈p(n),ε−1,δ−1〉),Nextp(n)(x1,Dn)

)
≤ ε
]
≥ 1− δ.

Notice that for every x ∈ supp Cn, if x ∈ L, then Nextp(n)(x1,Dn) is the uniform distribution over
witness strings y such that VL(x, y) = 1; otherwise if x /∈ L, then Nextp(n)(x1,Dn) is the distribution
over {ε}.

We define a randomized heuristic scheme A for (L, C) as follows: On input x ∈ supp Cn and
parameters n, δ−1 ∈ N, the algorithm A samples y ∼ Ext(x; 1〈p(n),1/4,δ−1〉) and outputs VL(x, y). It
is easy to verify that A halts in polynomial time in n and δ−1.

For correctness, it suffice to show that A(x; 1n, 1δ
−1

) outputs L(x) with probability at least 3/4
(over the choice of randomness for Ext) under the condition that

L1
(
Ext(x; 1〈p(n),1/4,δ−1〉),Nextp(n)(x,Dn)

)
≤ 1/4

because the conditional event occurs at least 1 − δ over the choice of x ∼ Cn. If x /∈ L, then A
always output 0 because no y satisfies VL(x, y) = 1. If x ∈ L, then

Pr
A

[A(x; 1n, 1δ
−1

) = 1] = Pr
y∼Ext(x;1〈p(n),1/4,δ−1〉)

[VL(x, y) = 1]

≥ Pr
y∼Nextp(n)(x,Dn)

[VL(x, y) = 1]− 1/4

= 1− 1/4 = 3/4.

Thus, we conclude that (L, C) ∈ HeurBPP.

3.2.2 From Average-Case Easiness of NP to Conditional Extrapolation

Next, we show the opposite direction, i.e., from the average-case easiness of NP to conditional
extrapolation by generalizing the proof by Impagliazzo and Rudich [IR89].

Lemma 3.2.3 (Item 1 ⇒ Item 2 in Theorem 3.2.1). If DistNP ⊆ HeurBPP holds, then for every
samplable distribution families {Cn}n∈N and {Dn}n∈N over binary strings, there exists a polynomial-
time randomized algorithm Ext such that for all n, k, ε−1, δ−1 ∈ N,

Pr
x∼Cn

[
L1
(
Ext(x; 1〈k,ε

−1,δ−1〉),Nextk(x,Dn)
)
≤ ε
]
≥ 1− δ.

To show Lemma 3.2.3, we use the following decision-to-search reduction.

Theorem 3.2.4 (Search-to-decision reduction [BCGL92]). If DistNP ⊆ HeurBPP, then for every
(L,D) ∈ DistNP, where L is determined by an NP relation RL ⊆ {0, 1}∗ × {0, 1}∗, there exists a
polynomial-time randomized algorithm M such that for every n, ε−1 ∈ N,

Pr
x∼Dn

[
x /∈ L ∨ Pr

M
[RL(x,M(x, 1n, 1ε

−1
))] ≥ 1− 2−n

]
≥ 1− ε.
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Proof of Lemma 3.2.3. Let C = {Cn}n∈N and D = {Dn}n∈N be arbitrary samplable distribution
families. Let `(n) be a polynomial that represents the seed length required for sampling according
to Dn. Based on the standard way to transform Turing machines into uniformly computable
circuits, we obtain a uniformly computable polynomial-size circuit family D = {Dn}n∈N, where
Dn : {0, 1}`(n) → {0, 1}t(n) for each n ∈ N such that the distribution of Dn(r) for r ∼ {0, 1}`(n) is
statistically equivalent to Dn, where t(n) is a polynomial, and we fix the output length of Dn by a
simple padding argument.

We define an NP language InvCirc as follows: For every x ∈ {0, 1}∗ and every (binary represen-
tation of) circuit C,

〈x,C〉 ∈ InvCirc ⇐⇒ ∃r ∈ {0, 1}∗ such that C(r) = x.

We define a samplable distribution E = {En}n∈N as follows. For each n,m ∈ N, let Hn,m be the
pairwise independent hash family that maps n bits to m bits. For each n ∈ N, we define En as a
distribution of 〈〈h, i, x, v〉, En〉, where h ∼ H`(n),`(n)+log2 n, i ∼ [`(n) + log2 n], x ∼ Cn, v ∼ {0, 1}i,
and En denotes a circuit that is given r ∈ {0, 1}`(n), h′ ∈ H`(n),`(n)+log2 n, i

′ ∈ [`(n) + log2 n] and
outputs 〈h′, i′, Dn(r)[|x|], h

′(r)[i′]〉. Here, we assume that 〈h, i, x, v〉 and 〈h′, i′, Dn(r)[|x|], h
′(r)[i′]〉 are

encoded to the same polynomial length for each n by the zero-padding. Since Dn is uniformly
computable in polynomial time, the distribution family E is samplable, and (InvCirc, E) ∈ DistNP.

By the assumption that DistNP ⊆ HeurBPP and Theorem 3.2.4, there exists a polynomial-time
randomized algorithm M such that for every n, ε−1 ∈ N,

Pr
z=〈〈h,i,y,v〉,En〉∼En

[
〈〈h, i, y, v〉, En〉 /∈ InvCirc ∨ Pr

M
[En(M(z, 1n, 1ε

−1
)) = 〈h, i, y, v〉] ≥ 1− 2−n

]
≥ 1−ε.

For simplicity, we assume that M does not fail, i.e., we assume that

Pr
z=〈〈h,i,y,v〉,En〉∼En

[
〈h, i, y, v〉 /∈ ImEn ∨ En(M(z, 1n, 1ε

−1
)) = 〈h, i, y, v〉

]
≥ 1− ε.

This additional assumption is valid in the following sense: The algorithm Ext (specified later)
executes M only polynomially many times. Thus, the probability that M does not satisfy the
above is negligible. Therefore, this affects the result negligibly, and we can manage this by selecting
slightly better parameters.

The outline of the proof is the following: First, we construct an algorithm M ′ that approximates
the number of consistent inverses of a given y ∼ Cn with respect to Dn based on M . Then, we
construct the extrapolation algorithm Ext based on M and M ′.

We construct the approximation algorithm M ′ as follows: On input x ∼ Cn and 1δ
−1

, where
δ−1 ∈ N is an additional error parameter, M ′ executes M(〈〈hi,j , i, x, vi,j〉, En〉, 1n, 1(`(n)+log2 n)γ2

)
for each i ∈ [`(n) + log2 n] and j ∈ [`(n)], where hi,j ∼ H`(n),`(n)+log2 n, vi,j ∼ {0, 1}i, and γ :=

max{δ−1, 16}. Then, M ′ outputs the maximum value of i (denoted by i∗) satisfying that M
succeeds in finding an inverse with respect to En for some j ∈ [`(n)], i.e., i∗ is the maximum value
of i satisfying that there exists j ∈ [`(n)] such that

En(M(〈hi,j , i, x, vi,j〉, 1n, 1(`(n)+log2 n)γ2
)) = 〈hi,j , i, x, vi,j〉.

If there is no such i, then let i∗ = 0.
It is easy to verify that M ′ halts in polynomial time. Let Rx = {r ∈ {0, 1}`(n) : D(r)[|x|] = x},

Nx := |Rx|, and nx := blogNxc. Then, M ′ satisfies the following claim.
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Claim 3.2.5. For every parameter δ−1 ∈ N, it holds that

Pr
x∼Cn,M ′

[
nx + 2 ≤ i∗ ≤ nx + log δ−1

]
≥ 1− 2(`(n)2 + `(n) log2 n+ 1) · δ

Proof of Claim 3.2.5. First, we show the upper bound. Fix x and each hi,j arbitrarily. For each i
and j, the number of hash values of Rx, i.e., |{hi,j(r)[i] : r ∈ Rx}| is at most |Rx| = Nx. Notice
that M can find an inverse of 〈hi,j , i, x, vi,j〉 only if vi,j corresponds to one of the at most Nx hash
values. Thus, M is successful with probability at most Nx · 2−i over the choice of vi,j ∼ {0, 1}i.
Particularly, for every i > nx+ log δ−1 and every j ∈ [`(n)], the success probability of M is at most

Nx · 2−i < 2nx+1 · 2−(nx+log δ−1) = 2δ.

By the union bound, with probability at least 1 − 2`(n)(`(n) + log2 n)δ, the algorithm M fails to
find an inverse for all i ∈ [`(n) + log2 n] with i > nx + log δ−1 and for all j ∈ [`(n)]. In this case, it
holds that i∗ ≤ nx + log δ−1.

Next, we show the lower bound. Let i = nx + 2. For readability, we omit parameters 1n and
1(`(n)+log2 n)γ2

for M below. Remember that

Pr
x,h,i′,v

[
〈h, i′, x, v〉 /∈ ImEn ∨ En(M(〈h, i′, x, v〉)) = 〈h, i′, x, v〉

]
≥ 1− (`(n) + log2 n)−1γ−2,

where x ∼ Cn, h ∼ H`(n),`(n)+log2 n, i′ ∼ [`(n) + log2 n], and v ∼ {0, 1}i.
By Markov’s inequality, with probability at least 1− γ−1 ≥ 1− δ over the choice of x ∼ Cn,

Pr
h,i′,v

[
〈h, i′, x, v〉 /∈ ImEn ∨ En(M(〈h, i′, x, v〉)) = 〈h, i′, x, v〉

]
≥ 1− (`(n) + log2 n)−1γ−1.

Since i′ corresponds to i = nx + 2 with probability (`(n) + log2 n)−1, we have

Pr
h,v

[〈h, i, x, v〉 /∈ ImEn ∨ En(M(〈h, i, x, v〉)) = 〈h, i, x, v〉] ≥ 1− γ−1.

We fix any x ∈ {0, 1}n satisfying the above inequality. Remember that Rx = {r ∈ {0, 1}`(n) :
D(r)|x| = x}. For every r, r′ ∈ Rx with r 6= r′, the collision probability that h(r)[i] = h(r′)[i] is
2−i over the choice of h. By the union bound, for every r ∈ Rx, the probability that there exists
another r′ ∈ Rx \ {r} satisfying that h(r)[i] = h(r′)[i] is at most |Rx| · 2−i = |Rx| · 2−nx−2 ≤ 2−1.
For each r ∈ Rx and h ∈ H`(n),`(n)+log2 n, let Ar,h be a random variable that takes 1 iff there exists
no r′ ∈ Rx \ {r} such that h(r)[i] = h(r′)[i] (otherwise, Ar,h = 0). Then, it holds that

E
h

[∑
x∈Rx

Ax,h

]
=
∑
x∈Rx

E
h

[Ax,h] ≥ Nx

2
.

For each h, the number of hash values of Rx, i.e., |{h(r)[i] : r ∈ Rx}| is at least
∑

x∈Rx Ax,h.
Thus, the random value v ∼ {0, 1}i corresponds to one of the hash values with probability at least
2−i ·

∑
x∈Rx Ax,h. Therefore, we have

Pr
h,v

[〈h, i, x, v〉 ∈ ImEn] ≥ E
h

[
2−i ·

∑
x∈Rx

Ax,h

]
≥ Nx

2 · 2i
≥ 2nx

2 · 2nx+2
=

1

8
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Since γ ≥ 16, we obtain that

Pr
h,v

[En(M(〈h, i, x, v〉)) 6= 〈h, i, x, v〉|〈h, i, x, v〉 ∈ ImEn]

= Pr
h,v

[〈h, i, x, v〉 ∈ ImEn ∧ En(M(〈h, i, x, v〉)) 6= 〈h, i, x, v〉|〈h, i, x, v〉 ∈ ImEn] ≤ 8γ−1 ≤ 2−1,

and

Pr
h,v

[En(M(〈h, i, x, v〉)) = 〈h, i, x, v〉]

≥ Pr
h,v

[〈h, i, x, v〉 ∈ ImEn] · Pr
h,v

[En(M(〈h, i, x, v〉)) = 〈h, i, x, v〉|〈h, i, x, v〉 ∈ ImEn]

≥ 1

8
· 1

2
≥ 1

16
.

Since (hi,j , vi,j) is selected independently at random for each j ∈ [`(n)], there is no (hi,j , vi,j) for
which M is successful with probability at most (1− 1/16)`(n) ≤ 2−Ω(`(n)). Notice that if this event
does not occur, then i∗ ≥ i = nx + 2. Thus, we conclude that

Pr
x∼Cn,M ′

[i∗ ≥ nx + 2] ≥ (1− δ)(1− 2−Ω(`(n))) ≥ 1− 2δ,

where we assume that δ ≥ 2−Ω(`(n)); otherwise, we can directly compute Nx and nx by trying all
r ∈ {0, 1}`(n) in time 2`(n) ≤ poly(δ−1).

By the union bound, we have

Pr
x∼Cn,M ′

[
nx + 2 ≤ i∗ ≤ nx + log δ−1

]
≥ 1− 2`(n)(`(n) + log2 n)δ − 2δ

= 1− 2(`(n)2 + `(n) log2 n+ 1)δ.

This completes the proof of Claim 3.2.5. �

We construct the extrapolation algorithm Ext based on M and M ′: On input x ∼ Cn, 1〈k,ε
−1,δ−1〉,

(i) Ext executes i∗ ←M ′(x, 12δ−1γ0γ1) and sets ĩ := i∗+2 log γ2−1, where γ0 = 2(`(n)2+`(n) log2 n+
1), γ1 = 4ε−1, and γ2 = max{8ε−1, 2}, (if M ′ outputs 0, then Ext outputs the empty symbol ε and
halts); (ii) Ext picks h ∼ H`(n),`(n)+log2 n and repeats the following execution m := 4γ0γ1γ

2
2δ
−1`(n)

times:

M(〈〈h, ĩ, x, v〉, En〉, 1n, 12δ−1(`(n)+log2 n)γ3)

for r ∼ {0, 1}ĩ (where r is selected independently for each trial) and γ3 = 4γ0γ1γ
4
2δ
−1. If M

outputs a valid inverse (r′, h, ĩ) of 〈h, ĩ, x, v〉 (the validity can be easily verified), then Ext outputs
C(r′)[|x|+1:|x|+k] and halts; and (iii) if no inverse was found within the m trials, then Ext outputs
the empty symbol ε and halts. It is not hard to verify that Ext halts in polynomial time.

We verify the correctness of Ext. For readability, we omit the unary parameters for Ext, M ′,
and M .

By Claim 3.2.5,

Pr
x∼Cn,M ′

[
nx + 2 ≤ i∗ ≤ nx + log δ−1γ0γ1 + 1

]
≥ 1− δ

2
· 2(`(n)2 + `(n) log2 n+ 1)γ−1

0 γ−1
1 = 1− δ

2
γ−1

1
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Thus, by Markov’s inequality, the following holds with probability at least 1− δ/2 over the choice
of x ∼ Cn:

Pr
M ′

[
nx + 2 ≤ i∗ ≤ nx + log δ−1γ0γ1 + 1

]
≥ 1− γ−1

1 (3.2)

Furthermore, on step (ii), we have

Pr
x,h,i,v

[〈h, i, x, v〉 /∈ ImEn ∨ En(M(〈h, i, x, v〉)) = 〈h, i, x, v〉] ≥ 1− δ

2(`(n) + log2 n)
· γ−1

3 ,

where x ∼ Cn, h ∼ H`(n),`(n)+log2 n, i ∼ [`(n) + log2 n], and v ∼ {0, 1}i. By Markov’s inequality, the
following holds with probability at least 1− δ/2 over the choice of x ∼ Cn:

Pr
h,i,v

[〈h, i, x, v〉 /∈ ImEn ∨ En(M(〈h, i, x, v〉)) = 〈h, i, x, v〉] ≥ 1− 1

(`(n) + log2 n)
· γ−1

3 .

In this case, it holds that

∀i ∈ [`(n) + log2 n] Pr
h,v

[〈h, i, x, v〉 /∈ ImEn ∨ En(M(〈h, i, x, v〉)) = 〈h, i, x, v〉] ≥ 1− γ−1
3 , (3.3)

because each i is selected with probabilitx (`(n) + log2 n)−1.
By the union bound, with probability 1 − δ over the choice of x ∼ Cn, Eq. (3.2) and (3.3) are

satisfied. For the theorem, it suffices to show that, under this condition,

L1 (Ext(x),Nextk(Dn, x)) ≤ ε.

Thus, we fix x that satisfies (3.2) and (3.3) arbitrarily and show the above.
On the execution of Ext, let B an event that M ′ does not output i∗ satisfying that

nx + 2 ≤ i∗ ≤ nx + log δ−1γ0γ1 + 1

Then, we show the following claims:

Claim 3.2.6. Pr[B] ≤ ε/4.

Claim 3.2.7. Under the condition that ¬B, it holds that L1 (Ext(x),Nextk(Dn, x)) ≤ 3ε/4

These claims imply Lemma 3.2.3 as

L1 (Ext(x),Nextk(Dn, x)) ≤ 1 · Pr[B] + 3ε/4 · Pr[¬B] ≤ ε.

Thus, the remaining of the proof is to show Claims 3.2.6 and 3.2.7.

Proof of Claim 3.2.6. The claim immediately follows from Eq. (3.2) and γ1 = 4ε−1. �

Proof of Claim 3.2.7. Under the condition ¬B, we have

nx + 2 log γ2 + 1 ≤ ĩ ≤ nx + 2 log γ2 + log δ−1γ0γ1.

For each r ∈ Rx and h ∈ H`(n),`(n)+log2 n, we use the notation Ar,h again to refer to the binary
random variable that takes 1 iff there exists no r′ ∈ Rx \ {r} such that h(r)[̃i] = h(r′)[̃i]. Then, for

each r ∈ Rx, it holds that Prh[Ar,h = 0] ≤ Nx · 2−ĩ by the union bound; thus,

E
h

[∑
r∈Rx

Ar,h

]
=
∑
r∈Rx

E
h

[Ar,h] ≥ Nx · (1−Nx2−ĩ) ≥ Nx · (1− 2nx2−(nx+2 log γ2+1)) ≥ Nx · (1−
1

2γ2
2

).
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By Markov’s inequality,

Pr
h

[∑
r∈Rx

Ar,h ≥ (1− 1

γ2
) ·Nx

]
≥ 1− 1

2γ2
.

Furthermore, by Eq. (3.3),

Pr
h,v

[
〈h, ĩ, x, v〉 /∈ ImEn ∨ En(M(〈h, ĩ, x, v〉)) = 〈h, ĩ, x, v〉

]
≥ 1− γ−1

3 .

By Markov’s inequality, with probability at least 1− 1/(2γ2) over the choice of h,

Pr
v

[
〈h, ĩ, x, v〉 /∈ ImEn ∨ En(M(〈h, ĩ, x, v〉)) = 〈h, ĩ, x, v〉

]
≥ 1− 2γ2γ

−1
3 . (3.4)

Let Sh = {r ∈ Rx : Ar,h = 1} and Th = {h(r)[̃i] : r ∈ Sh}. Notice that |Sh| = |Th| =
∑

r∈Rx Ar,h

holds. We call a hash function h satisfying Eq. (3.4) and |Th| ≥ (1 − γ−1
2 ) · Nx a good hash

function. By the union bound, h is good with probability at least 1 − γ−1
2 over the choice of

h ∼ H`(n),`(n)+log2 n.
We fix a good hash function h arbitrarily. Then,

Pr
v∼{0,1}ĩ

[v ∈ Th] = |Th| · 2−ĩ ≥ (1− γ−1
2 ) · 2nx · 2−(nx+2 log γ2+log δ−1γ0γ1) = (2γ0γ1γ

2
2)−1δ,

where we use the fact that γ2 ≥ 2.
If v ∈ Th, then 〈h, ĩ, x, v〉 ∈ ImEn. Therefore, we have

Pr
v

[
En(M(〈h, ĩ, x, v〉)) 6= 〈h, ĩ, x, v〉|v ∈ Th

]
= Pr

v

[
〈h, ĩ, x, v〉 ∈ ImEn ∧ En(M(〈h, ĩ, x, v〉)) 6= 〈h, ĩ, x, v〉|v ∈ Th

]
≤ 2γ2γ

−1
3 ·2γ0γ1γ

2
2δ
−1 = γ−1

2 .

Let S′h = {r ∈ Sh : M(〈h, ĩ, x, h(r)[̃i]〉)) = 〈h, ĩ, x, h(r)[̃i]〉} and T ′h = {h(r)[̃i] : r ∈ S′h}. Then, we

have |S′h| = |T ′h| and |S′h| ≥ (1− γ−1
2 )|Sh| ≥ (1− γ−1

2 )2Nx ≥ (1− 2γ−1
2 )Nx.

Under the condition that v ∈ T ′h, Ext obtains r ∈ S′h from M at uniformly random over S′h.
The total variation distance between the uniform distribution over S′h and the uniform distribution
over Rx is at most 2γ−1

2 . Therefore, under the condition Ih that M finds a valid inverse (r′, h, ĩ) of
〈h, ĩ, x, v〉 (i.e., D(r′)[|x|] = x), the total variation distance between the conditional distribution D̃
of r′ and the uniform distribution over Rx (denoted by URx) is bounded as follows:

L1(D̃, Rx|Ih) ≤ 2γ−1
2 + 1 · Pr

v
[v /∈ T ′h|v ∈ {h(r)[̃i] : r ∈ Rx}] ≤ 2γ−1

2 + 2γ−1
2 Nx ·N−1

x = 4γ−1
2 ≤ ε/2.

In this case,

L1(Ext(x),Nextk(Dn, x)|Ih) = L1(D(D̃)[|x|+1:|x|+k], D(Rx)[|x|+1:|x|+k]|Ih) ≤ L1(D̃, Rx|Ih) ≤ ε/2.

Next, we show that, for every good h, the algorithm M finds a valid inverse (i.e., the condition

Ix is satisfied) at some trial with probability at least 1 − 2−Ω(`(n)) over the choices of v ∼ {0, 1}ĩ.
This implies the claim as

L1(Ext(x),Nextk(Dn, x)) ≤ 1 · Pr
h

[h is not good] + L1(Ext(x),Nextk(Dn, x)|h is good, Ih)

+ 1 · Pr[M finds no valid inverse for all m trials|h is good]

≤ γ−1
2 + ε/2 + 2−Ω(`(n))

≤ ε/8 + ε/2 + ε/8 = 3ε/4,
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where we assume that ε/8 ≥ 2−Ω(`(n)); otherwise, we can try all r ∈ {0, 1}`(n) and perfectly simulate
Nextk(Dn, x) in time 2`(n) ≤ poly(ε−1).

Remember that

Pr
v

[v ∈ Th] ≥ (2γ0γ1γ
2
2)−1δ and Pr

v

[
En(M(〈h, ĩ, x, v〉)) = 〈h, ĩ, x, v〉|v ∈ Th

]
≥ 1− γ−1

2 ≥ 2−1.

Therefore,

Pr
v

[
En(M(〈h, ĩ, x, v〉)) = 〈h, ĩ, x, v〉

]
≥ Pr

v

[
En(M(〈h, ĩ, x, v〉)) = 〈h, ĩ, x, v〉|v ∈ Th

]
· Pr
v

[v ∈ Th]

≥ (4γ0γ1γ
2
2)−1 · δ.

Therefore, M fails to find some inverse with probability at most 1 − (4γ0γ1γ
2
2)−1 · δ. Thus, the

probability that M finds no inverse in all m trials is at most

(1− (4γ0γ1γ
2
2)−1 · δ)m ≤ (1− (4γ0γ1γ

2
2)−1 · δ)4γ0γ1γ2

2δ
−1`(n) ≤ 2−Ω(`(n)),

as desired. �

This completes the proof of Lemma 3.2.3.
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Chapter 4

Learning in Pessiland I: A Unified
Theory of Average-Case Learning

In this chapter, we study which learning tasks is efficiently feasible in Pessiland to reveal a deep
connection between learning theory and cryptography. Namely, we investigate learning-theoretic
implications from the non-existence of a one-way functions.

4.1 Background

A one-way function (OWF) is a function that is easy to evaluate but hard to invert on average,
and it is one of the most important cryptographic primitives. One importance of OWF lies in its
robustness, i.e., the existence of OWF characterizes the existence of other various cryptographic
primitives, such as a pseudorandom generator (PRG) [HILL99; VZ12; HRV13], a pseudorandom
function (PRF) [GGM86], a digital signature [Rom90], a zero-knowledge proof [GMW91; Ost91;
OW93; NOV06] and a private-key encryption scheme [GGM84]. In this sense, a rich theory of
cryptography has been developed over decades under the axiom that OWF exists.

An opposite and less understood research direction is an algorithmic implication of the non-
existence of OWF. This question was posed by Impagliazzo [Imp95], who asked whether there is a
rich theory even under the axiom that there is no OWF. This research question is also fundamental
because improving such an algorithmic consequence yields a characterization of OWF by weaker
and more reliable hardness assumptions. For instance, the well-known open question of basing
OWF on the hardness of NP is the ultimate goal of the research direction, where we need to show
that the non-existence of OWF is sufficient to solve every NP problem.

Impagliazzo and Levin [IL90] first studied efficient learning under the non-existence of OWF and
revealed a deep connection between two central fields in theoretical computer science, i.e., learning
theory and cryptography. Particularly, Impagliazzo and Levin [IL90] introduced the notion of
universal extrapolation, and it seems to solve some average-case tasks of learning efficiently. The
reason why we use the vague words “seems” and “some” in the previous sentence is that they
specified neither which learning tasks can be solved by their ideas nor a concrete statement of what
they called universal extrapolation. In fact, their notion of learning appears very different from
standard models in learning theory, such as the PAC learning model introduced by Valiant [Val84].

Since the work [IL90] introduced universal extrapolation and hinted at the connection between
learning theory and cryptography, several follow-up works have investigated learning-theoretic im-
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plications from the non-existence of OWF in more popular learning models. Blum, Furst, Kearns,
and Lipton [BFKL93] introduced a natural average-case variant of the PAC learning model and
showed that polynomial-sized circuits are learnable on average under the non-existence of OWF.
In their model, a learner is given a sample set (x1, f(x1)), . . . , (xpoly(n), f(xpoly(n))), where each
xi ∈ {0, 1}n is identically and independently drawn from a fixed samplable example distribution D,
and f is an unknown target circuit selected according to a fixed samplable distribution F . Here,
by “fixed distributions”, we mean that the distributions are fixed beforehand, and the learner LD,F
can depend on the distributions D and F . The task of the learner is to output a good hypothesis
h that approximates f well under the same example distribution D with high probability over the
choices of f, x1, . . . , xpoly(n) and randomness for the learner. In fact, Impagliazzo [Imp95] explained
the unspecified learning-theoretic consequence of [IL90] in this form. Another work by Naor and
Rothblum [NR06] showed that learning adaptively changing distributions (ACDs) is feasible under
the non-existence of OWF. Their learning setting is the following: (i) at the initial step, a hidden
initial state s := s0 ∈ {0, 1}poly(n) is selected according to a fixed samplable distribution G; (ii) at
each i-th stage, a sample xi is generated by a fixed polynomial-time sampler D as xi ← D(s; r),
where r is a hidden random seed, and D can update its internal state s according to r; (iii) a learner
is given a stream of the samples x1, x2, . . ., and the task of the learner is to choose a stage i and to
approximately simulate the conditional distribution of the next outcome xi given the initial state
s0 and the past stream x1, . . . , xi−1 at stage i without observing xi. Later, Naor and Yogev [NY19]
studied the relationships between OWF and a Bloom filter in an adversarial setting. Here, the
Bloom filter is a space-bounded and efficiently computable filtering algorithm of which no efficient
adversary can find a false positive during adaptive interactions. By using the learner for ACDs,
they showed that for any nontrivial Bloom filter, there exists an adversary that finds a false positive
under the non-existence of OWF, i.e., a false positive of a fixed Bloom filter is efficiently learnable
by adaptive interactions.

These follow-up works no longer used the original idea of universal extrapolation, and the
relationships between their learning methods and the original idea of universal extrapolation remain
unclear. Furthermore, the learners in the follow-up works are distribution specific in the sense that
the underlying samplable distributions are fixed beforehand. Namely, the learners need to know
the underlying samplable distribution. This is undesirable in learning because usually, we have no
way to know the underlying distribution that generates data before the learning process starts.

4.2 Our Results

In this work, we present a general framework for constructing various learning algorithms that
work in average-case settings under the non-existence of OWF. The framework unifies, generalizes,
simplifies, and improves the currently known learning algorithms that follow from the non-existence
of OWF. Surprisingly, the framework is based on universal extrapolation. Namely, the very first
idea described by the pioneering work of Impagliazzo and Levin [IL90], if interpreted correctly,
improves the learnability results that have been discovered over the last decades! For instance, the
following learnability results are obtained from universal extrapolation.

Theorem 4.2.1 (Universal learning ACDs, informal). If there exists no infinitely-often one-way
function, then there exists an efficient randomized algorithm that learns every unknown ACD.

It is worthy of note that learning unknown ACDs was thought to be information-theoretically
impossible in the previous work [NR06]. Therefore, in Theorem 4.2.1, we obtain a one-way function
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whose security is based on the intractability of a seemingly impossible average-case learning. We
will elaborate on this point later in this section.

Theorem 4.2.2 (Universal agnostic learning on average, informal). If there exists no infinitely-
often one-way function, then polynomial-length multi-output functions are efficiently agnostic learn-
able on average when samples are independently and identically drawn from an unknown sampling
algorithm with s(n) = poly(n)-bit secret advice that is selected according to another unknown sam-
plable distribution. Furthermore, the sample complexity is O(s(n)ε−2) for any accuracy parameter
ε ∈ (0, 1].

Agnostic learning was introduced by Kearns, Schapire, and Sellie [KSS94] as a generalization of
PAC learning. In agnostic learning, a learner is given samples of the form (x, b) (we call x and b an
example and a label of x, respectively) that are selected identically and independently according to
an unknown distribution. The difference from PAC learning is that the label b can also be selected
according to some distribution determined by x. The goal of the learner for a target class C of
functions is to find a good hypothesis that approximates (within an additive accuracy parameter ε)
the best function f ∈ C that approximates the labels1. In Theorem 4.2.2, we introduce a natural
average-case variant of agnostic learning, where we consider the average-case performance over the
choice of P/poly-samplable distributions on samples. Note that the well-known learning problems
learning parity with noise (LPN) and learning with errors (LWE) are special cases of our agnostic
learning model, where labels are computed by a linear function and affected by classification noise
independently of examples, and the target class C is the class of linear functions. Our model
includes more general noise distributions that depend on examples. Furthermore, we consider the
entire class of functions as the target class C , i.e., our learner can approximate the best function
that predicts labels in all (possibly not efficiently computable) functions. This is impossible in the
original (worst-case) agnostic learning model because a function that computes labels is possibly not
efficiently approximated. We also remark that the sample complexity O(s(n)ε−2) (i.e., the number
of samples required for learning) is optimal with respect to s(n) and ε−1 (see Section 4.9.4).

The learnability results in Theorems 4.2.1 and 4.2.2 yield characterizations of OWF because
efficient learners in Theorems 4.2.1 and 4.2.2 are sufficient to break the security of a cryptographic
primitive called a pseudorandom function family, and the existence of a pseudorandom function
family and the existence of OWF are equivalent [GGM86; HILL99]. In addition, by the well-
known reduction from breaking the security of a pseudorandom function family to weak learning
with membership queries under the uniform example distribution [Val84], our results establish the
robustness of average-case learning.

Corollary 4.2.3. The following are equivalent:

• The non-existence of infinitely-often one-way function;

• Average-case weak learning for P/poly with membership queries under a uniform example
distribution and a known samplable distribution that selects a target function;

• Average-case universal agnostic learning (as in Theorem 4.2.2);

• Universal learning ACDs (as in Theorem 4.2.1); and

1Strictly speaking, we focus on agnostic learning for the 0-1 loss (i.e., the prediction loss in [KSS94]) in this work.
Note that our learner can be generalized to the case of general (polynomial-time computable) loss functions if the
number of labels is polynomially bounded (see also Sections 4.3.3 and 4.9.3).

49



• Average-case universal distributional learning.

We mean by average-case universal distributional learning the special case of learning ACDs,
where the internal state never changes, i.e., samples are drawn independently and identically from
an unknown P/poly-samplable distribution D, and D is selected from another unknown samplable
distribution G. This is a natural average-case variant of distributional learning introduced in [KM-
RRSS94].

In Corollary 4.2.3, we can observe many surprising phenomena, such as (i) a reduction from
agnostic learning to PAC learning, (ii) a reduction from universal learning to distribution-specific
learning (particularly, under the uniform example distribution), (iii) boosting of accuracy, (iv) a
reduction from learning distributions to learning binary classification, (v) a reduction from learning
with membership queries to learning with random samples. Furthermore, Corollary 4.2.3 yields the
first equivalence between the existence of OWF and average-case hardness of agnostic learning. To
the best of our knowledge, such a characterization of OWF by hardness of learning in noisy settings
was not known before even in the restricted case of learning with independent random noise.

Before presenting the relationships between the results above and universal extrapolation, we
highlight the differences from the previous results and the difficulty of the improvements.

Theorem 4.2.1 strengthens the result of [NR06] in that the learner is universal and does not
need the description of the underlying distribution, i.e., a samplable distribution G of the initial
state and a polynomial-time sampler D that generates samples and updates the internal state. We
remark that making their learner universal is very challenging. In fact, Naor and Rothblum [NR06]
explicitly mentioned that their learner requires the description of (G, D) and even claimed that
universal learning ACDs is information-theoretically impossible. Their arguments are as follows.
An algorithm for learning ACDs must use its knowledge of (G, D) to decide, on-the-fly, at what
stage it tries to simulate the next outcome (remember that a learner can select a prediction stage by
itself) because (for example) an unknown (G, D) can keep specific i ∈ N hidden from the universal
learner, and D may output some fixed distribution up to round i, and only then begin to use its
secret state2. However, our result falsifies their claim. Our learner predicts successfully for most
stages i and thus decides the prediction stage uniformly at random without using any knowledge
of (G, D). We also improve the dependence of a (confidence) parameter in sample complexity (see
Theorem 4.8.5). Note that, by replacing [NR06] in [NY19] with Theorem 4.2.1, we also strengthen
the result [NY19] in the sense that we construct a “universal” adversary that breaks all unknown
nontrivial Bloom filters if there is no OWF. Namely, even if we can hide the algorithms of Bloom
filters from adversaries, OWF is necessary for a nontrivial Bloom filter in the adversarial setting.

Theorem 4.2.2 strengthens the result of [BFKL93] (i.e., the average-case easiness of PAC learn-
ing) in the following four points: (i) the label is generalized from binary to polynomial length; (ii)
the framework is generalized from PAC learning to agnostic learning and (iii) from distribution-
specific to universal, and (iv) the applicable settings of distributions on samples are broadened.
Particularly, the work [BFKL93] only considered the case in which a target function is selected in-
dependently of the example distribution, while our learner works on average for randomly selected
P/poly-samplable joint distributions over samples. Note that the previous learner in [BFKL93]
obtained from the non-existence of OWF does not work in the general case of joint distributions
unless we solve the notorious open problem of basing OWF on the average-case hardness of NP
(i.e., excluding Pessiland). This is because (i) the learner in [BFKL93] is a proper learner, where

2Even trying all possibilities of (G, D) does not yield universal learning ACDs because it produces many hypotheses
but there seems to be no way to verify the performance of the hypothesis in universal learning ACDs (see Section 4.3.5).
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the learner outputs a hypothesis in the same class of target functions, and (ii) the NP-hardness
result of proper learning [PV88] implies that every distributional NP problem is reducible to proper
learning 2-term DNFs in our average-case setting. We bypass this difficulty by considering improper
learning.

4.3 Techniques: Universal Extrapolation, Revisited

Now, based on universal extrapolation, we present the general framework for constructing learners
that work in average-case settings. Universal extrapolation has the capability for improving the
previous learnability results as seen in Section 4.2. In addition, one of the main theorems of the
recent work [IRS22] easily follows from a proposition for universal extrapolation [IL90, Proposi-
tion 1]. Nevertheless, its significance has been overlooked for decades in the theoretical computer
science (TCS) community. First, we review what was known for universal extrapolation and why
the significance has been overlooked.

4.3.1 Universal Extrapolation Outlined in [IL90]

The main reason why the significance of universal extrapolation has been overlooked for decades
is that it was only hinted at so abstractly that researchers could not understand the outlined ideas
and study their consequences. The ideas outlined in [IL90] are described as follows.

1. Under the non-existence of OWF, there exists a polynomial-time algorithm that is given a
string x selected according to any known samplable distribution D and approximates the
probability D(x) that x is drawn from D well on average ([IL90, Lemma 1]).

2. By applying the algorithm in step 1 to the distribution Qt of outcomes of a time-bounded
universal Turing machine U t, we obtain a universal approximation algorithm that is given a
string x selected according to an unknown samplable distribution D and approximates the
probability Qt(x) that x is drawn from Qt in polynomial time on average ([IL90, Proposi-
tion 1]).

3. By applying the algorithm in step 2, they approximate the likelihood of the bit subsequent
to x under Qt, where x is selected according to an unknown samplable distribution D. Then,
they apply Solomonoff’s inductive inference [Sol64a; Sol64b] in a time-bounded setting, and
“it yields the universal extrapolation” (but no formal statement can be found in [IL90]).

We remark that the ideas above seem to be lost in the current TCS community. For example, even
the intermediate step 2 implicitly contains the recent important result [IRS22] in meta-complexity
that established a new characterization of the existence of OWF by the average-case hardness
of approximating Kolmogorov complexity, which follows from the known fact that the value of
− log Qt(x) approximates the Kolmogorov complexity of x well on average.3 In addition, verifying
the correctness of the ideas above is also hard because they presented only a high-level proof
sketch of step 1, and there is no proof sketch of steps 2 and 3, except an abstract introduction
of Solomonoff’s inductive inference. Furthermore, understanding the proof sketch of step 1 is also
difficult. Although several recent studies [Nan21b; IRS21] tried to formally prove step 1, what

3In [IRS22, page 1580], the authors discussed the reason why their results were not shown earlier. Surprisingly,
we show that the algorithm implicit in [IL90, Proposition 1] gives an algorithm better than [IRS22]. See Section 4.6.
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they showed is worse approximation factors than the original lemma in [IL90]. Other important
studies [OW93; ABX08; LP20] also mentioned universal extrapolation as related work or a lemma
for showing main theorems, but the statements vary and seem weaker than the original ideas
above; for instance, [OW93] stated universal extrapolation as a distribution-specific algorithm that
extrapolates a given prefix under a known samplable distribution. However, this directly follows
from the non-existence of distributional inverters [IL89] and seems to lose the universality. As seen
above, the TCS community has no longer known what universal extrapolation is, let alone the
algorithmic consequences.

The main contribution of this work is to formalize the original ideas of [IL90] and make them
available in the TCS community. Particularly, we first revisit the formal statement of universal
extrapolation and then investigate the general framework to translate universal extrapolation into
various learning algorithms. Then, the results in Section 4.2 are obtained as special cases.

4.3.2 Formulating Universal Extrapolation

We fix a universal Turing machine U arbitrarily. For every t ∈ N, we use the notation U t to refer
to the execution of U in t steps4. Then, U gives rise to the following important distribution.

Definition 4.3.1 (Universal distribution). For each t ∈ N, the t-time-bounded universal distribu-
tion Qt is defined as the distribution of the output of U t(r) for a uniformly random seed r ∼ {0, 1}t.

In this study, we formulate universal extrapolation as a randomized algorithm UE that, for a
given k ∈ N and a prefix x of a string drawn from an unknown samplable distribution, extrapolates
the next k bits subsequent to x under the time-bounded universal distribution Qt. We construct
UE under the non-existence of OWF.

Theorem 4.3.2 (Universal extrapolation). If there exists no infinitely-often one-way function, then
there exists a randomized polynomial-time algorithm UE such that for every samplable distribution
D = {Dn}n∈N over binary strings, for all large enough n, t ∈ N, and for all i, k, ε−1, δ−1 ∈ N,

Pr
x∼Dn

[
L1
(
UE(x[i]; 1〈n,k,t,ε

−1,δ−1〉),Nextk(Q
t, x[i])

)
≤ ε
]
≥ 1− δ.

Here, n must be larger than 2d = O(1), where d is the description length of the sampling algo-
rithm for D, and t must be polynomially larger than the time complexity of Dn (see Theorem 4.7.1
for a more precise statement about parameters).

In this work, we formally prove Theorem 4.3.2 above by two different constructions of UE. The
first one is based on the well-known equivalence between distributional OWF and OWF [IL89], and
the second one is based on a universal approximation algorithm of the universal a priori probability.
The former is simpler in the sense that it extrapolates the next bits simultaneously, and it is
analogous to the extrapolation algorithms that have been considered for decades in TCS [Ost91;
OW93; NR06; ABX08; Xia10; NY19]. The latter extrapolates next k bits inductively one by one,
and this seems to be the original intention in [IL90]5.

4More precisely, we assume that each Turing machine has a write-only output tape, and we do not take into
account whether it halts or not when we consider U t.

5It is unclear whether extrapolating multiple bits was the original intention in [IL90] because the inductive genera-
tion based on inverting functions usually causes the super-polynomial blowup of computational time for extrapolating
the next ω(1) bits.
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4.3.3 Translating Universal Extrapolation into Learning

Next, we investigate the relationship between UE in Theorem 4.3.2 and learning algorithms. Par-
ticularly, we formulate the idea outlined in [IL90] of applying Solomonoff’s inductive inference in
a time-bounded setting. In this section, we present the general framework for translating UE into
learning algorithms and verify that the results in Section 4.2 are obtained as special cases. Then,
in Section 4.3.4, we explain why the framework works based on Solomonoff’s inductive inference.

We consider the following general framework of online learning. At each discretized stage
i ∈ N, a learner first observes a string xi ∈ {0, 1}∗ (which represents auxiliary information for
the i-th prediction) and then obtains another string yi ∈ {0, 1}∗ (which represents the i-th re-
sult), where xi (resp. yi) can be correlated with previous observations x1, y1, . . . , xi−1, yi−1 (resp.
x1, y1, . . . , xi−1, yi−1, xi). At stage i, the task of the learner is to predict the next outcome yi from
xi and the previous observations x1, y1, . . . , xi−1, yi−1 before observing yi.

The general framework above captures many learning problems, including PAC learning, ag-
nostic learning, and learning ACDs. In PAC learning, each xi is an example independently and
identically drawn from an example distribution D, and each yi is f(xi), where f is a target func-
tion. At some stage m, an input xm to the hypothesis is drawn from D, and the goal of the learner
is to output b as the prediction of ym = f(xm). In this case, the prediction stage m represents
the number of samples required for PAC learning (i.e., sample complexity). Agnostic learning is
also captured in the same way except that each yi is also selected according to some distribution
determined by xi. In learning ACDs, each xi is an empty string ε, and each yi is the i-th sample
drawn from ACD. At some stage m, the learner tries to statistically simulate the distribution of
the next outcome ym. Note that, as seen in the examples above, the stage m at which a learner
makes some prediction generally captures the sample complexity required for learning.

Now, we consider a cheating6 learner L∗ that predicts the next outcome yi at step i with
additional access to oracle that returns a sample selected according to the distribution of yi (i.e., the
conditional distribution given previous observations x1, y1, . . . , xi−1, yi−1, xi) for each access. Note
that the additional oracle access is powerful and suffices for the learning tasks given as examples
above. In PAC learning and learning ACDs, it is enough to directly output a sample obtained from
the oracle, and it trivially simulates the distribution of the next outcome. The case of agnostic
learning is less obvious, but it suffices to obtain enough labels from the oracle and outputs the label
generated most frequently.

The general framework for translating universal extrapolation to learning algorithms is the
following: for any cheating learner L∗, if we construct a (standard) learner L by replacing the
oracle with universal extrapolation UE given x1, y1, . . . , xi−1, yi−1, xi as input, then the behavior of
L is not much different from the one of L∗ on average as long as the total number m of stages
(i.e., sample complexity) is large enough. Namely, universal extrapolation enables us to reduce
constructing a learner for some task to constructing a cheating learner for the same task. Below,
we present the details, particularly, we explain the intention of the term “on average” and how
large the total number m of stages should be.

We consider the following average-case setting on the framework above: (i) the offline stream of
data x1, y1, . . . , xm, ym is selected according to an unknown P/poly-samplable distribution, i.e., a
sampling algorithm with advice z of s(n) = poly(n) bit (we regard this z as secret information), and
(ii) the secret advice z is selected according to an unknown samplable distribution. For instance, in

6The term “cheating” is due to the fact that the learner can freely read the future by the oracle without making
any prediction from the past.
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Theorem 4.2.1, the secret information z corresponds to the initial state s0, and in Theorem 4.2.2,
the secret information z corresponds to the secret advice for generating samples. Then, the learner
L obtained from UE performs as well as the corresponding cheating learner L∗ with high probability
over the choice of z, a random position i ∼ [m], and the choice of past data x1, y1, . . . , xi−1, yi−1 as
long as m is sufficiently large. This is stated as the following meta-theorem, where the requirement
of m is also indicated. For a more detailed statement, see Theorem 4.8.1.

Theorem 4.3.3. For a randomized cheating learner L∗,? of query complexity q(·), let L be the
learner obtained by simulating the oracle access by UE (with a proper choice of parameters of UE).

Then, for every samplable distribution G = {Gs}s∈N and every P/poly-samplable distribu-
tion D = {Dz}z∈{0,1}∗, where each Gs is over s-bit strings, and each Dz is over offline streams
x1, y1, . . . , xm, ym (for m := m(z)), for every large enough s, t ∈ N, every δ−1, λ−1 ∈ N, and every
auxiliary input w ∈ {0, 1}∗, if m ≥ m0 = O(s · q(w) · δ−1λ−2), then

Pr
z,i,x1,...,yi−1,xi

[
L1

(
L(x1, y1 . . . , xi−1, yi−1, xi, w; 1〈r,t,δ

−1,λ−1〉), L∗,D
yi

z (w)

)
≤ λ

]
≥ 1− δ,

where z ∼ Gs, i ∼ [m], x1, y1 . . . , xi−1, yi−1, xi are selected according to Dz, and Dy
i

z is an oracle
that returns a sample drawn from the conditional distribution of yi given x1, y1 . . . , xi−1, yi−1, xi

with respect to Dz.

In words, if the total number m of steps is sufficiently large with respect to the amount s of
secret information z and the query complexity q of the cheating learner L∗, then UE yields good
statistical simulation of the cheating learner L∗. The parameter t is used for determining the time
bound t of Qt simulated by UE and must be polynomially larger than the time complexity of the
sampling algorithm for offline streams. By applying Theorem 4.3.3 to the trivial 1-query cheating
learner that directly outputs a sample from the oracle, we obtain Theorem 4.2.1 and average-case
PAC learnability results, e.g., the setting in [BFKL93] and Theorem 4.2.2 with the additional
promise that a label b is determined only by an example x.

Theorem 4.3.3 shows that every polynomial-time cheating learner can be statistically simulated
by UE on average for any sufficiently large polynomial m because any polynomial-time cheating
learner can make only polynomially many queries. However, m depends on the number of queries q
in Theorem 4.3.3, and if the query complexity of the cheating learner depends on some parameters
for learning, Theorem 4.3.3 may cause bad dependence of the parameter on sample complexity.
For instance, in agnostic learning with an accuracy parameter ε ∈ (0, 1), the learner tries to find
a hypothesis h that approximates the best function for computing labels with the additive error
ε over the choice of a sample. To implement this by the cheating learner that outputs the most
frequent label, the cheating learner needs at least q = Ω(ε−2) samples for empirical estimation to
determine the most frequent label within an additive error Θ(ε). As a result, the learner obtained
by Theorem 4.3.3 requires at least Ω(q · ε−1) = Ω(ε−3) samples (where the additional factor ε−1

comes from the guarantee on xi), which is worse than the optimal dependence ε−2 in Theorem 4.2.2.
For agnostic learning with sample complexity of the optimal dependence ε−2, we show another

meta-theorem. Note that the idea of replacing the oracle with UE is the same, and the only
difference is the analysis of the total number m. Particularly, for the second bound on m, we
restrict the task of cheating learners to minimizing expected loss, as discussed below. Instead, we
obtain the lower bound of m that does not depend on the query complexity of the cheating learner,
and it yields better sample complexity in agnostic learning than the application of Theorem 4.3.3.
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We consider the following specific task of cheating learners: Let b ∈ N be the length of each
label yi. At stage i, (i) a learner is given a past stream x<i := x1, y1 . . . , xi−1, yi−1 and advice
information xi and chooses an action ax<i,xi from a set A of actions; and (ii) the goal of the learner
is to minimize the expected loss with respect to a loss function l : A×{0, 1}b → [0, C] (where C > 0
is constant), i.e., the learner tries to minimize

E
xi,yi

[l(ax<i,xi , y
i)].

For instance, agnostic learning discussed above is captured as the case in which the action set is
{0, 1}b (i.e., the label set), and a loss function l : {0, 1}b × {0, 1}b → [0, 1] is the 0-1 loss function
defined as

l(a, y) =

{
0 if a = y

1 if a 6= y,

because
E
xi,yi

[l(ax<i,xi , y
i)] = Pr

xi,yi
[ax<i,xi 6= yi].

Note that, in this case, the upper bound C of the loss function is 1.
The second meta-theorem is stated as follows, where we show the bound on m based on C. For

a more detailed statement, see Theorem 4.9.2.

Theorem 4.3.4. Let b ∈ N. Let A be a set of actions, and let l : A × {0, 1}b → R≥0 be a loss
function satisfying that there exists C > 0 such that l(a, y) ≤ C for every a ∈ A and y ∈ {0, 1}b.
For a cheating learner L∗,? that outputs an action in A, let L be the learner obtained by simulating
the oracle access by UE (with a proper choice of parameters of UE).

Then, for every samplable distribution G = {Gs}s∈N and every P/poly-time samplable distri-
bution D = {Dz}z∈{0,1}∗, where each Gs is over s-bit strings, and each Dz is over offline streams
x1, y1, . . . , xm, ym (for m := m(z)), for every large enough s, t ∈ N, every ε−1, δ−1 ∈ N, and every
auxiliary input w ∈ {0, 1}∗, if m ≥ m0 := O(s · C2 · ε−2δ−2), then

Pr
z,i,x<i

[
E

xi,yi,L

[
l(L(x<i, xi, w; 1〈n,r,b,t,ε

−1,δ−1〉), yi)
]
≤ E

xi

[
min
α∈A

E
yi

[l(α, yi)]

]
+ 2∆L∗ + ε

]
≥ 1− δ,

where z ∼ Gs, i ∼ [m], x<i := x1, y1 . . . , xi−1, yi−1 is selected according to Dz, and xi, yi are selected
according to the conditional distribution of the i-th observation given x<i under Dz, and

∆L∗ := ∆L∗(w, b) = sup
O:distribution over {0,1}b

(
E

O,y∼O
[l(L∗,O(w), y)]−min

α∈A
E
y∼O

[l(α, y)]

)
.

In words, if the total number m of stages is sufficiently large with respect to the amount s of
secret information z and the square of the upper bound C of the loss function, then L performs
in the same quality as the cheating learner up to an additive error. For agnostic learning with
accuracy parameter ε (i.e., Theorem 4.2.2), we first construct a cheating learner that estimates the
most frequent label (i.e., approximates the best predictor) within the additive estimation error ε/4
by collecting sufficiently many labels (i.e., ∆L∗ ≤ ε/4), and then we apply Theorem 4.3.4 with the
additive error ε/2. As a result, we obtain an agnostic learner that outputs a hypothesis within
accuracy error ε with high probability7 on average with sample complexity O(s(n) · ε−2). Note

7We can amplify the success probability to 1− δ for a given confidence parameter δ−1 by the standard repetition
technique [HKLW88] with multiplicative factor log δ−1 on the time and sample complexity.
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that Theorem 4.3.4 also yields an efficient agnostic learner for a general loss function l as long as l
is efficiently computable, and minimizing the expected loss with respect to l is efficiently solvable
by a cheating learner. For instance, average-case universal agnostic learning is feasible for every
polynomial-time computable loss function l under the non-existence of OWF when the total number
of labels is polynomially bounded (see Section 4.9.3).

4.3.4 Why Do the Frameworks Work?

We present an overview of the proofs of Theorems 4.3.3 and 4.3.4. For every distributions D and
E , let KL(D||E) represent the KL divergence between D and E .

The following is the key lemma to show Theorem 4.3.3.

Lemma 4.3.5. There exists a polynomial τ such that for every distribution D over x1, y1, . . . , xm, ym,
if D has a tD-time sampler described by d bits, then for every t, q ∈ N with t ≥ τ(d, tD), and every
q-query (possibility not efficiently computable) oracle algorithm I,

E
i∼[m],x1,y1,...,xi−1,yi−1,xi

[
KL
(
I
Next|yi|(D,x

1···yi−1xi)||INext|yi|(Q
t,x1···yi−1xi)

)]
≤ q · O(d)

m
.

Theorem 4.3.3 is obtained as a corollary to Lemma 4.3.5. Particularly, if I is a cheating learner,

then the first distribution I
Next|yi|(D,x

1···yi−1xi)
is the distribution of the outcome of the cheating

learner. While, the second distribution of I
Next|yi|(Q

t,x1···yi−1xi)
is the distribution of the outcome

of the cheating learner, where the oracle is replaced with the extrapolation under Qt. By choosing
parameters for UE properly, UE statistically simulates Qt as in Theorem 4.3.2. Therefore, for every
sufficiently large m with respect to the query complexity q and the description size d of the sampler,
we can show that the cheating learner is statistically simulated by replacing the oracle access with
UE by a standard probabilistic argument.

The proof of Lemma 4.3.5 is based on Solomonoff’s theory of inductive inference [Sol64a; Sol64b;
LV19]. In the special case in which (i) I is the trivial 1-query algorithm that directly outputs a
sample and (ii) xi = ε (the empty string) for all i, by careful calculations in Solomonoff’s inductive
inference, we can show that the expectation in Lemma 4.3.5 is bounded above by

1

m
E

y1,...,ym∼D

[
ln
D(y1, . . . , ym)

Qt(y1, . . . , ym)

]
,

where D(y1, . . . , ym) (resp. Qt(y1, . . . , ym)) represents the probability that (y1, . . . , ym) is drawn
from D (resp. Qt). To bound the expectation above, we use the domination property of Qt, i.e.,
for each y1, . . . , ym,

Qt(y1, . . . , ym) ≥ 2−O(d) · D(y1, . . . , ym).

The domination property holds because the prefix of a random seed to U t in sampling according
to Qt matches the d-bit description of a sampling algorithm for D with probability at least 2−O(d).
Under this event, the conditional distribution of Qt is statistically identical to D.

To show Lemma 4.3.5, we generalize the above argument to the case of (i) q-query algorithms
and (ii) xi 6= ε. For case (i), we use a fundamental fact on KL divergence for independently
and identically selected random variables. In case (ii), we first observe that the expectation in
Lemma 4.3.5 is bounded above by

1

m
E

x1,y1,...,xm,ym∼D

[
ln
D(x1, y1, . . . , xm, ym|x1, . . . , xm)

Qt(x1, y1, . . . , xm, ym|x1, . . . , xm)

]
,
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where D(x1, y1, . . . , xm, ym|x1, . . . , xm) (resp. Qt(x1, y1, . . . , xm, ym|x1, . . . , xm)) represents the con-
ditional probability that (x1, y1, . . . , xm, ym) is drawn from D (resp. Qt) given x1, . . . , xm. Then, we
evaluate the expectation above by observing that the conditional variant of a domination property
(given x1, . . . , xm) holds in expectation over x1, y1, . . . , xm, ym ∼ D.

The proof of Theorem 4.3.4 is inspired by the theory of universal prediction [MF98; Hut05],
which shows that, informally speaking, minimization of an expected loss under Q∞ (i.e., a time-
unbounded universal distribution) yields minimization of an expected loss under computable distri-
butions dominated by Q∞. We apply their theory to the time-bounded universal distribution Qt.
However, this raises an issue that their theory is established in a statistical setting (i.e., a time-
unbounded setting), and it is unclear whether it holds in the time-bounded (complexity theory)
regime; e.g., minimizing an expected loss under Qt can be computationally infeasible. We close this
computational-statistical gap by choosing the goal of learners carefully in the formulation of the
framework in Section 4.3.3, i.e., we consider the worst-case performance of the cheating learner as
the target. In this formulation, we observe that their theory (particularly, the evaluation in [MF98])
holds even in time-bounded settings, which yields Theorem 4.3.4 (see Section 4.9 for the details).

4.3.5 Limitations of Universal Extrapolation

We discuss that several conditions of universal extrapolation are necessary in the sense that relaxing
either of the conditions is impossible or harder than solving notorious open questions.

First, universal extrapolation only works in average-case settings, where secret information
and samples are selected according to some samplable distributions. This condition is due to the
assumption that every efficiently computable function is invertible on average, and even partial
relaxation of the average-case conditions is hard. For instance, universal extrapolation implies
the average-case learnability result discussed in [BFKL93], where the model has two distributions
of examples and targets. Improving either of two distributions to the worst-case setting (i.e.,
all example distributions or all target functions as the original PAC learning model) yields an
equivalence result between OWF and a weaker cryptographic primitive called auxiliary-input one-
way function [ABX08; Nan21a], which is a long-standing open question that dates back to the
work [Ost91]. In fact, [Tre10; Nan21b] showed the necessity of a nonrelativizing proof for such an
equivalence result; however, all of the proof techniques in this work are relativizing. Furthermore,
improving distributional learning in Corollary 4.2.3 to distributional learning P/poly-samplable
distributions (in the worst-case sense) also implies the equivalence between the existence of OWF
and the existence of an auxiliary-input one-way function [KMRRSS94; Xia10].

Second, universal extrapolation only works on average over the choice of prediction stages.
This condition is not restrictive when samples are selected independently and identically because
the prediction is the same at all stages. However, in general cases in which the offline stream
has a correlation, a more desirable goal is prediction at an arbitrary stage after sufficiently long
observations. We remark that this goal is too much to hope for and information-theoretically
impossible for the reason mentioned in [NR06], i.e., there is a case in which the distribution on
samples can be switched to a completely different distribution at some i-th stage for sufficiently
large i. A universal learner has no way to notice the switching at the i-th stage and cannot correctly
predict the next outcome.

Third, our universal learner runs in exponential time in the description length d of samplers for
selecting secret information to generate offline streams due to Theorem 4.3.2 (do not confuse d with
the amount s of secret information). Improving the running time of our learner to polynomial in d
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also yields the equivalence between OWF and an auxiliary-input one-way function because such an
improved learner succeeds in learning in poly(n) time even for samplers described by poly(n)-bits,
and this is sufficient to break any auxiliary-input one-way function by the known reduction from
inverting functions to weak learning [Val84; GGM86; HILL99; ABX08].

Some readers might be skeptical about the novelty of universal learning because the description
of samplable distribution is bounded by some constant d, and if the size n of each sample is
sufficiently large so that n ≥ 2d, then the learner can try all possible distributions in polynomial
time (but exponential time in d). Again, note that d is the description length of the distribution that
selects poly(n)-bit secret information to generate samples, and the learner does not take exponential
time in the amount of the secret information. However, even if we allow exponential time in
d (it enables the brute-force of underlying distributions), constructing universal learners based
on distribution-specific ones is still challenging in learning ACDs and distributional learning for
the following reasons. Applying the distribution-specific learner to all candidates for underlying
distributions yields many hypotheses. Although one of them must be a good hypothesis that
approximates the target distribution well, it is unclear whether we can identify the good hypothesis
efficiently. In general, verification of the goodness of a hypothesis in learning distributions is the
problem called Statistical Distance which asks whether two given distributions are statistically
close. This problem is known to be SZK-complete [GV99] and efficiently solvable on average if
there is no one-way function [OW93] when query access to both distributions is available (where
the oracle is given a random seed and returns the corresponding sample). However, in universal
learning, query access to the distribution that actually generates samples is unavailable, and it
is unclear whether Statistical Distance is solvable in such a case. Furthermore, even in time-
unbounded settings, it is not clear whether verification of the goodness of a hypothesis is possible
in learning ACDs because the internal state can be updated for each access to a sample. Namely, we
cannot even collect samples multiple times for some empirical estimation. By these observations,
there seems to be no way to verify the performance of the hypothesis in universal learning ACDs
or perhaps in distributional learning. Particularly in learning ACDs, even if the learner knows the
secret information (i.e., the initial state), it is still unclear whether the learner can simulate the
distribution of the next outcome because the learner does not know the sampling algorithm. Our
universal learner overcomes this difficulty in the sense that it does not depend on any verification
of candidates for hypotheses. Note that, in the case of agnostic learning (i.e., Theorem 4.2.2), the
verification of hypotheses is possible by the standard empirical estimation [HKLW88], and it is
easy to transform distribution-specific learners into a universal learner. Therefore, we do not claim
the novelty of universality in Theorem 4.2.2 so much, but even a distribution-specific learner for
efficient agnostic learning was not known before this work, as far as we know.

4.4 Related Work

Valiant [Val84] observed that the existence of pseudorandom functions (which is equivalent to the
existence of one-way functions [GGM86; HILL99]) implies the hardness of learning for P/poly. A
line of subsequent work proved the cryptographic hardness of learning for several natural sub-
classes [KV94a; AK95; Kha93; KS09; DV21]. They mainly discussed opposite directions compared
to our work, i.e., from learning to the non-existence of cryptographic primitives.

Several learnability results have been shown under some related algorithmic assumptions. As
mentioned in the introduction, Impagliazzo and Levin [IL90] initiated the study on efficient learning
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under the non-existence of OWF, and subsequent works [BFKL93; NR06; NY19] investigated the
capability of learning in more standard models. Oliveira and Santhanam [OS17] presented the
characterization of the existence of exponentially secure one-way functions based on the exponential
hardness of PAC learning with membership queries on the uniform example distribution in the
non-uniform setting, which is incomparable to our result. Nanashima [Nan21a] considered another
average-case variant of PAC learning, where a target function is selected according to a fixed
samplable distribution but examples are selected according to unknown (possibly not efficiently
samplable) distributions as in the original PAC learning model. He showed that PAC leaning
is feasible in such a model under the stronger assumption that there is no auxiliary-input one-
way function. Although his idea can be applied in the case of infinitely-often one-way functions,
the learner only works in the same setting as [BFKL93], which is improved by this work in the
same sense as discussed in Section 4.2. A line of study [CIKK16; CIKK17; BCKRS22] presented
distribution-specific efficient learners under the stronger assumptions of the existence of natural
proofs. Li and Vitányi [LV89] developed a universal PAC learner on simple distributions that
contain P/poly-computable distributions under the stronger assumption that every NP problem
is easy on average. Hirahara and Nanashima [HN21] also developed a universal agnostic learner
that works on every unknown P/poly-samplable distributions over examples under the stronger
assumption that every NP problem is easy on average with zero error. Nanashima [Nan20] showed
that PAC learning P/poly is feasible under the non-existence of a cryptographic primitive, named
an auxiliary-input local hitting set generator, that has a significantly weaker security condition
than OWF. In another line of research, several cryptographic primitives were constructed based on
the hardness of learning linear functions with a random noise (e.g. [Reg09; DP12]). In this context,
our result can be regarded as a construction of a one-way function whose security is based on much
more general assumptions of the average-case hardness of learning.

Our result is also regarded as a generalization of the well-known Yao’s next-bit generator the-
orem [Yao82] in the following sense. The next-bit generator theorem shows that, under the non-
existence of OWF, every function that expands secret information (selected uniformly at random)
has a next-bit generator that weakly simulates the next-bit of the outcome on average over the
choice of the secret information and a position of the simulated bit. Theorem 4.3.3 for the trivial
one-query cheating learner provides a universal next-block generator theorem, i.e., there exists a
universal next-block generator such that for every function that expands secret information (se-
lected according to some samplable distribution) as blocks, the generator strongly simulates the
distribution of the next block of the outcome on average over the choice of the secret information
and a position of the simulated block. Previously, Vadhan and Zheng [VZ12] gave another related
equivalence result between conditional pseudo-entropy and KL-hardness by using the uniform min-
max theorem [VZ13], but their work seems to have no direct connection to our work.

Klivans, Lee, and Wan [KLW10] introduced another formulation of agnostic learning on average,
where they assume a target function f is selected according to some samplable distribution and ask
a learner to learn all target functions that are close to f with high probability over the choice of
f . Unfortunately, our learning algorithm does not work under this formulation because every case
of adversarial noise must be considered regardless of samplability. Nevertheless, our learner works
as long as the unknown adversary that determines noise is selected according to some uniform
and efficient sampling mechanism. This computational assumption seems quite natural under the
strong form of the Church–Turing thesis.

Several novel techniques for learning natural classes (e.g., decision trees and DNFs) on average
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have developed in PAC learning model [JS05; Sel08; Sel09; JLSW11; AC15] and in the agnostic
learning model with membership queries [KKMS08; GKK08; KK09; KLW10]. These results are
unconditional but work on only some specific distributions, particularly in many cases, the uniform
distribution over examples and target functions in the class.

A recent line of work [LP20; LP21c; LP21b; RS21; ACMTV21; IRS22; LP22] characterized the
existence of OWF by the average-case meta-complexity, i.e., the average-case hardness of computing
minimum description length of a given string. Our result shows that, through the existence of
OWF, the feasibility of various learning problems (as in Corollary 4.2.3) is also characterized by
the average-case meta-complexity. We further discuss the relationships between [IL90] and meta-
complexity in Section 4.6.

Very recently, Hopkins, Kane, Lovett, and Mahajan [HKLM22] established a robust theory of
learning in statistical settings, which includes the equivalence between PAC learning and agnostic
learning (where they considered the worst-case setting with respect to distributions as in the original
models). Their idea rely on unbounded computational resources and seems not to hold when we
consider polynomial-time learners. By contrast, we established the robust theory of learning in
complexity-theoretic regime but only in average-case settings. These results lead us to expect the
robust theory of learning in computational and worst-case settings. Previously, Xiao [Xia10] showed
that distributional learning for P/poly-samplable distributions implies PAC learning under every
unknown P/poly-samplable distributions over samples by using the technique in [ABX08]; however,
the converse remains open.

Organization of the Remainder of This Chapter

The remainder of this chapter is organized as follows. In Section 4.5, we introduce some additional
basic notions for our formal arguments. In Section 4.6, we present the full proof of the proposition
in [IL90] for universal estimation of probability, whose formal proof was not found in previous work.
We also discuss the relationships between [IL90] and meta-complexity in Section 4.6. In Section 4.7,
we present our formulation of universal extrapolation and present the formal proof. In Section 4.8,
we introduce the general framework for translating universal extrapolation into learning algorithms
and present the formal statement and the proof of Theorem 4.3.3. Note that Theorem 4.2.1 is also
shown in Section 4.7 as an application. In Section 4.9, we introduce the framework for translating
universal extrapolation into learning algorithms for minimizing the expected loss and present the
formal statement and the proof of Theorem 4.3.4. Note that Theorem 4.2.2 is also shown in
Section 4.9 as an application.

4.5 Additional Preliminaries

For each t : N × N → N, we say that a family D = {Dn,z}n∈N,z∈{0,1}∗ of distributions (on binary
strings) is t(n, |z|)-time samplable if there exists a deterministic algorithm D such that, for each
(n, z) ∈ N × {0, 1}∗, the distribution of D(1n, z, Ut(n,|z|)) is statistically identical to Dn,z, and
D(1n, z, -) halts in time t(n, |z|). For every t(n)-time samplable distribution D = {Dn}n∈N, we
use the notation d(D) to refer to the description length of the sampler for D (with respect to the
universal Turing machine U), i.e., there exists a t(n)-time algorithm D of description length d(D)
such that each Dn is statistically identical to D(1n, r) for r ∼ {0, 1}t(n). We also use the same
notation d(D) for samplable distributions D = {Dn,z}n∈N,z∈{0,1}∗ indexed by (n, z).
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Fact 4.5.1 (Pinsker’s inequality). For every distributions X and Y,

L1(X ,Y) ≤
√

1

2
KL(X||Y).

Fact 4.5.2. For every distributions X and Y on a discrete domain D and every randomized function
f of domain D, if KL(X||Y) <∞, then KL(f(X )||f(Y)) ≤ KL(X||Y).

Proof. We verify KL(X||Y)−KL(f(X )||f(Y)) ≥ 0 as follows:

KL(X||Y)−KL(f(X )||f(Y)) =
∑
x∈D
X (x) log

X (x)

Y(x)
−
∑
a∈Imf

Pr[f(X ) = a] log
Pr[f(X ) = a]

Pr[f(Y) = a]

=
∑
x∈D
X (x) log

X (x)

Y(x)
−
∑
a∈Imf

∑
x∈D
X (x)1l{f(x) = a} log

Pr[f(X ) = a]

Pr[f(Y) = a]

=
∑
x∈D
X (x) log

X (x)

Y(x)
−
∑
x∈D
X (x)

∑
a∈Imf

1l{f(x) = a} log
Pr[f(X ) = a]

Pr[f(Y) = a]

=
∑
x∈D
X (x)

(
log
X (x)

Y(x)
− log

Pr[f(X ) = f(x)]

Pr[f(Y) = f(x)]

)
= E

x∼X

[
log

PrX [X = x|f(X ) = f(x)]

PrY [Y = x|f(Y) = f(x)]

]
.

For each x ∈ D, let X ′f(x) (resp. Y ′f(x)) be the conditional distribution of X (resp. Y) given the

event that f(X ) = f(x) (resp. f(Y) = f(x)). By regarding that a sampling x ∼ X is performed as
x′ ∼ X and x ∼ X ′f(x′), we have

KL(X||Y)−KL(f(X )||f(Y)) = E
x′∼X

[
E

x∼X ′
f(x′)

[
log

PrX [X = x|f(X ) = f(x)]

PrY [Y = x|f(Y) = f(x)]

]]
= E

x′∼X

[
KL(X ′f(x′)||Y

′
f(x′))

]
≥ 0,

where the inequality follows from the non-negativity of the KL divergence.

4.5.1 Domination Property

We introduce the important domination property of the time-bounded universal distribution Qt.

Lemma 4.5.3 (domination). For every distribution D that has a tD-time sampler of description
length d, there exists t0 ∈ N such that for every x ∈ {0, 1}∗, and for every t ∈ N with t ≥ t0,
it holds that Qt(x) ≥ D(x)/2O(d). Furthermore, t0 = τdom(d, tD) for a universal polynomial τdom

(that depends on U).

Proof. Let M ∈ {0, 1}d be the binary encoding of the sampler for D. If τdom is sufficiently large
(depending only on U), then any t ≥ τdom(d, tD) is sufficiently large so that (i) U t simulates M and
(ii) 〈M,x〉 (where x is a seed for M) is encoded by t bits. Therefore, if the prefix of random seed
r to U t(r) corresponds to 〈M, -〉, then the conditional distribution of Qt is statistically equivalent
to D. The lemma holds because the condition is satisfied with probability at least 2−O(d).
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4.6 Estimating Universal Probability and Kolmogorov Complex-
ity

In this section, we formally prove the following theorem, which was introduced as the intermediate
step in [IL90] with only a very high-level proof sketch.

Theorem 4.6.1 ([IL90, “Proposition” 1]). The following are equivalent.

1. There exists no infinitely-often one-way function.

2. There exists a randomized polynomial-time algorithm M such that, for every D ∈ PSamp,
there exists a polynomial t0 such that for all large n ∈ N, for every integer t ≥ t0(n), for every
δ−1 ∈ N,

Pr
x∼Dn
M

[
Qt(x) · (1− δ) ≤M(x, 1t, 1δ

−1
) ≤ Qt(x) · (1 + δ)

]
≥ 1− δ.

Furthermore, we show that Theorem 4.6.1 yields a universal algorithm that approximates the
resource-unbounded Kolmogorov complexity of a string chosen from unknown samplable distribu-
tions. This result improves the recent result of [IRS22] that constructed an efficient algorithm MD
that approximates the Kolmogorov complexity of x drawn from any fixed samplable distribution.

Theorem 4.6.2. The following are equivalent.

1. There exists no infinitely-often one-way function.

2. There exists a randomized polynomial-time algorithm M such that, for every D ∈ PSamp,
there exists a polynomial t0 such that for all large n ∈ N, for every integer t ≥ t0(n), for every
δ−1 ∈ N,

Pr
x∼Dn
M

[
K(x)− log(1/δ)−O(log t) ≤M(x, 1t, 1δ

−1
) ≤ K(x)

]
≥ 1− δ.

The proof of Theorem 4.6.1 relies on another result of [IL89; IL90], which enables us to esti-
mate the probability D(x) for a string x drawn from a known distribution D. We prove this in
Section 4.6.1. In Section 4.6.2, we apply this to the time-bounded universal distribution, which
yields a proof of Theorem 4.6.1. Finally, we complete a proof of Theorem 4.6.2 in Section 4.6.3.

The proof of Theorem 4.6.1 (1 ⇒ 2) also yields the same theorem for Qt,∗(x) instead of Qt(x)
by replacing the universal Turing machine U t with the truncated universal Turing machine that
outputs the prefix of U t. Remember that Qt,∗(x) is the probability that the prefix of a sample
y ∼ Qt matches x. We will use the universal approximation for Qt,∗ in one of the proofs of the
universal extrapolation theorem in Section 4.7.

Theorem 4.6.3 ([IL90, “Proposition” 1] for Qt,∗). If there is no infinitely-often one-way function,
then there exist a randomized algorithm M and a polynomial τM such that for every tD(n)-samplable
distribution D = {Dn}n∈N, there exists n0 ∈ N such that for every n, t, δ−1 ∈ N with n ≥ n0 and
t ≥ τM (tD(n)),

Pr
x∼Dn,M

[
(1− δ)Qt,∗(x) ≤M(x; 1t, 1δ

−1
) ≤ (1 + δ)Qt,∗(x)

]
≥ 1− δ,

where n0 = n′(d(D)) for a universal function n′ : N→ N.
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For convenience, we introduce a notation qt as follows.

Definition 4.6.4 (implicit in [IL90]). For every t ∈ N and every string x ∈ {0, 1}∗, we define

qt(x) := − log Qt(x) = − log Pr
d∼{0,1}t

[
U t(d) = x

]
.

(If Qt(x) = 0, then we regard qt(x) as ∞.)

The value qt(x) can be regarded as randomized time-bounded Kolmogorov complexity; in fact,
we can observe the equivalence between qt and the time-bounded probabilistic Kolmogorov com-
plexity pKt, recently studied in [GKLO22], up to an additive logarithmic factor and a polynomial
overhead of the time-bound (see Section 4.6.4). In the resource-unbounded case, it is known that
limt→∞ qt(x) is equal to the Kolmogorov complexity of x up to an additive constant [LV19].

We also observe the upper bound on qt, which follows from the domination property.

Proposition 4.6.5 (Implicit in [IL90]). For every D ∈ PSamp, there exists a polynomial t0 such
that for every polynomial t ≥ t0 and for every n ∈ N and every x ∈ supp(Dn),

qt(n)(x) ≤ − logDn(x) + log t(n).

Proof. Let S be a randomized polynomial-time algorithm that, on input 1n, outputs a string
distributed according to Dn. Since S(1n; -) is described by O(log n) bits, by Lemma 4.5.3, there exist
polynomials t0(n) and p(n) such that, for every n ∈ N, every t ≥ t0(n), and every x ∈ supp(Dn),

2−qt(x) = Qt(x) ≥ 1

p(n)
· Dn(x).

4.6.1 Estimating the Probability with respect to Known Distributions

We first apply a standard hardness amplification technique to obtain an inverter that takes an
additional parameter δ−1 ∈ N and successfully inverts a one-way function with probability 1− δ.

Proposition 4.6.6. If there exists no infinitely-often one-way function, then for every polynomial-
time-computable family f =

{
fn : {0, 1}s(n) → {0, 1}t(n)

}
n∈N, there exists a randomized polynomial-

time algorithm A such that for every n ∈ N and every δ−1 ∈ N,

Pr
x∼{0,1}s(n),A

[A(fn(x); 1n, 1δ
−1

) 6∈ f−1
n (fn(x))] ≤ δ.

Proof Sketch. We define a new family f ′ =
{
f〈n,k〉

}
〈n,k〉∈N so that

f ′〈n,k〉(x1, . . . , xk) = (f(x1), . . . , f(xk))

for every x1, . . . , xk ∈ {0, 1}s(n), where 〈-, -〉 : N × N → N is a bijection. Yao’s amplification
theorem [Yao82; Gol01] shows that inverting fn with probability 1 − δ reduces to the task of
inverting f〈n,k〉 for some k = poly(n, δ−1).

We now show that there exists an algorithm that approximates Dn(x) for a string x drawn from
Dn.
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Lemma 4.6.7 ([IL89; IL90; Imp]). Assume that there exists no infinitely-often one-way function.
Then, for every D ∈ PSamp, there exists a randomized polynomial-time algorithm A such that for
all large n ∈ N and all large δ−1 ∈ N,

Pr
x∼Dn
A

[
(1− δ) · Dn(x) ≤ A(x, 1n, 1δ

−1
) ≤ (1 + δ) · Dn(x)

]
≥ 1− δ.

Although a proof of this result appears to be known to researchers in the 1990s (e.g., [OW93]),
we are not aware of any published proof. In fact, recent papers [Nan21b; IRS21] provide a weaker
algorithm that approximates Dn(x) within some constant factor (instead of a (1 + δ)-factor for
an arbitrary small δ > 0), which is further used in [LP21a]. Although such a weak algorithm is
sufficient for most applications in the previous studies, it is insufficient for our purpose of showing
the universal extrapolation theorem. To the best of our knowledge, the following is the first written
proof of Lemma 4.6.7. The proof closely follows the proof of the construction of a distributional
inverter presented in the PhD thesis of Impagliazzo [Imp].

Proof of Lemma 4.6.7. Let f be the sampler of D. That is, f = {fn : {0, 1}n → {0, 1}n}n∈N and
the distribution of fn(x) over x ∼ {0, 1}n is identical to Dn. (Without loss of generality, we assume
that the input length of fn and the output length are identical.)

Let h` : {0, 1}n → {0, 1}` be a pairwise independent hash. Consider the family g =
{
g〈n,`〉

}
n,`∈N

of functions defined as follows. g〈n,`〉(x, h`) := (fn(x), h`(x), h`). Here, we identify h` with the
random bits used to generate h`. For simplicity, in what follows, we omit the subscripts of g
because n and ` are clear from the context.

Since g is computable in polynomial time, the assumption implies that there exists a randomized
polynomial-time algorithm I such that

Pr
x,h`,I

[
I(g(x, h`); 1〈n,`〉, 1ε

−1
) ∈ g−1(g(x, h`))

]
≥ 1− ε. (1)

Here, the probability is taken over all x, h` and the internal randomness of I. For notational
simplicity, we omit I from the subscript of probabilities in what follows. We also often omit the
auxiliary input (1〈n,`〉, 1ε

−1
) from the input to I.

Using this inverter I, we present the definition of the algorithm A: The algorithm A takes
(y, 1n, 1δ

−1
) as input and sets ε := 1/poly(n/δ) for some polynomial poly to be chosen later. Then,

for each ` = n+ log(1/δ), . . . , 0 in decreasing order, A estimates

v` := Pr
r∼{0,1}`

h`

[
I(y, r, h; 1〈n,`〉, 1ε

−1
) ∈ g−1(y, r, h)

]
by randomly sampling r and h several times. Let ṽ` be the estimate of v` computed by A. If
ṽ` ≤ δ, the algorithm A continues to the next loop with ` decreased by 1. If ṽ` > δ, the algorithm
A outputs ṽ` · 2`−n and halts.

Below, we prove that the output of A approximates Dn(y) = 2−n ·
∣∣f−1
n (y)

∣∣ with probability at
least 1− δ.

By Hoeffding’s inequality, the algorithm A can compute ṽ` such that |ṽ` − v`| ≤ ε in time
poly(n/ε) with probability at least 1 − 2−n over the internal randomness of A. In what follows,
we may assume that ṽ` satisfies |ṽ` − v`| ≤ ε. We may also assume that δ ≥ 2−n, as otherwise a
brute-force search can be used to compute

∣∣f−1
n (y)

∣∣ in time 2O(n).
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Fix an input y ∈ image(fn). Let X ⊆ {0, 1}n denote f−1
n (y). Let ` ∈ N be the last integer in

the algorithm A on input y.

Claim 4.6.8. Assume that A halts with `. Then,

ṽ` − ε ≤ |X| · 2−`.

In particular,
δ − ε ≤ |X| · 2−`.

Proof. Since |ṽ` − v`| ≤ ε, it suffices to show v` ≤ |X| · 2−`. Observe that I succeeds to invert g on
(y, r, h`) only if (y, r, h`) is in the image of g, in which case r = h`(x) for some x ∈ f−1(y) = X.
Since r ∼ {0, 1}`, by a union bound, the probability v` that I succeeds to invert g on (y, r, h`) is at
most |X| · 2−`. The “in particular” part follows from the fact that ṽ` > δ when A halts. �

Claim 4.6.9. With probability at least 1−
√
ε · 2n over a choice of y := fn(x) and x ∼ {0, 1}n, it

holds that for every `,

|X| · 2−` ·
(

1− |X| · 2−`
)
·
(
1−
√
ε
)
≤ ṽ` + ε.

Proof. For notational simplicity, we omit the subscript ` of h`. Fix y ∈ image(fn). For a hash
function h, let Sh denote the set of all the strings x ∈ X such that h(x) 6= h(x′) for every x′ ∈
X \ {x}. Let h(Sh) denote the image of Sh under h. For every x ∈ X, by a union bound, we have
Prh[x 6∈ Sh] ≤ |X| · 2−`. In particular, we obtain

E
h

[|Sh|] ≥ |X| · (1− |X| · 2−`). (2)

Let h(Sh) denote the image of Sh under h. Under the event that r ∈ h(Sh), the random variable
(r, h) is identical to the distribution of (h(x), h) over x ∼ Sh. Thus, we obtain

v` = Pr
r,h

[
I(y, r, h; 1〈n,`〉, 1ε

−1
) ∈ g−1(y, r, h)

]
≥ Pr[r ∈ h(Sh)] · Pr

h
x∼Sh

[
I(f(x), h(x), h) ∈ g−1(f(x), h(x), h)

]
For the first factor, we have

Pr[r ∈ h(Sh)] = 2−` · E
h

[|h(Sh)|] ≥ 2−` · |X| · (1− |X| · 2−`),

where the last inequality follows from Eq. (2). The second factor can be bounded from below by

Pr
h

x∼X

[
I(f(x), h(x), h) ∈ g−1(f(x), h(x), h)

]
= Pr

h
x∼{0,1}n

[
I(f(x), h(x), h) ∈ g−1(f(x), h(x), h)

∣∣ y = f(x)
]

because Sh ⊆ X.
Finally, we consider the random variable y distributed according to fn(x) over x ∼ {0, 1}n. By

Markov’s inequality and Eq. (1), with probability at least 1−
√
ε over y ∼ fn(Un), it holds that

Pr
h

x∼{0,1}n

[
I(f(x), h(x), h) ∈ g−1(f(x), h(x), h)

∣∣ y = f(x)
]
≥ 1−

√
ε.
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By taking a union bound over all ` ≤ n+ log(1/δ) ≤ 2n, with probability at least 1−
√
ε · 2n over

y ∼ fn(Un), the same event happens, in which case we have

v ≥ 2−` · |X| · (1− |X| · 2−`) · (1−
√
ε).

The claim follows by v` ≤ ṽ` + ε. �

Let ` be the last integer in the algorithm A on input y. Since A did not halt in all the preceding
loops, we have ṽ`′ ≤ δ for every `′ > `. By Claim 4.6.9, we obtain

|X| · 2−`′ ·
(

1− |X| · 2−`′
)
·
(
1−
√
ε
)
≤ ṽ`′ + ε ≤ δ + ε.

Let γ := |X| · 2−`. Then, we have

2−kγ · (1− 2−kγ) · (1−
√
ε) ≤ δ + ε

for every integer k ≥ 1. In particular, we obtain γ ≤ 4δ for sufficiently small δ and ε. (Otherwise,
one can choose k so that 2−kγ ∈ [2δ, 4δ], which is a contradiction.) We also have δ − ε < γ from
Claim 4.6.8. We choose a small ε so that ε� δ2. Then,

√
ε� δ and ε� γδ.

By Claim 4.6.9 and γ ≤ 4δ, we obtain

γ · (1−O(δ)) ≤ γ · (1− 4δ) · (1−
√
ε)− ε ≤ ṽ`.

By Claim 4.6.8, we have

ṽ` ≤ γ + ε ≤ γ · (1 + δ).

Recall that the output of A is ṽ` · 2`−n. We conclude that

|X| · 2−n · (1−O(δ)) ≤ ṽ` · 2`−n ≤ |X| · 2−n · (1 + δ).

4.6.2 Universal Approximation of Qt and Qt,∗

We now apply Lemma 4.6.7 to the time-bounded universal distribution and obtain the “first writ-
ten” proof of the theorem of Impagliazzo and Levin [IL90].

Proof of Theorem 4.6.1. We only prove Item 1 ⇒ Item 2. Consider the time-bounded universal
distribution M = {Mt}t∈N defined as follows: Mt is the distribution of U t(d) over a random
choice of d ∼ {0, 1}t. ObserveM∈ PSamp. Applying Lemma 4.6.7 toM, we obtain a randomized
polynomial-time algorithm A such that for all t ∈ N and all δ−1 ∈ N,

Pr
x∼Mt
A

[
(1− δ) · Mt(x) ≤ A(x, 1t, 1δ

−1
) ≤ (1 + δ) · Mt(x)

]
≥ 1− δ.

Observe that Mt(x) = Qt(x). Thus, it remains to show that for every D ∈ PSamp, the algorithm
A succeeds on D. To show this, we use the argument of domination. Fix D ∈ PSamp. By
Proposition 4.6.5, there exists a polynomial t0 such that Dn(x) ≤ Mt(x) · t for every n ∈ N,
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every x ∈ supp(Dn), and every t ≥ t0(n). Let E(x,A) denote the event that A(x, 1t, 1δ
−1

) 6∈
[(1± δ) · Mt(x)]. Then, for any n ∈ N and any t ≥ t0(n), we have

Pr
X∼Dn,A

[E(X,A)] =
∑

x∈supp(Dn)

Pr
A

[E(x,A)] · Dn(x)

≤
∑

x∈supp(Mt)

Pr
A

[E(x,A)] · Mt(x) · t

= Pr
X∼Mt

[E(X,A)] · t,

≤ δ · t.

We now define an algorithm M so that M(x, 1t, 1δ
−1

) := A(x, 1t, 1(tδ)−1
). Then, we obtain

Pr
x∼Dn
M

[
M(x, 1t, 1t·δ

−1
) 6∈

[
Qt(x) · (1± δ)

]]
≤ (t · δ−1)−1 · t ≤ δ.

We can also show Theorem 4.6.3 by replacing M = {Mt}t∈N in the proof above with M =
{M〈t,i〉}t,i∈N, where each M〈t,i〉 is the distribution of U t(d)[i] over d ∼ {0, 1}t, and defining M as

M(x; 1t, 1δ
−1

) := A(x, 1〈t,|x|〉, 1(tδ)−1
).

4.6.3 Universal Approximation of Kolmogorov Complexity

We now use Theorem 4.6.1 to estimate the resource-unbounded Kolmogorov complexity of a string
drawn from any unknown distribution. To this end, we use the fact that no efficient algorithm can
produce strings with high computational depth, i.e., qt(x) ≈ K(x) for most strings x produced by
efficient algorithms [AFMV06; AF09; Hir21b].

Lemma 4.6.10. For any D ∈ PSamp, there exists a polynomial t0 such that for every n ∈ N and
every polynomial t ≥ t0,

Pr
x∼Dn

[
qt(n)(x)−K(x) > k

]
≤ 2−k+O(log t(n)).

Proof. By Proposition 4.6.5, there exists a polynomial t0 such that for every polynomial t ≥ t0,
every n ∈ N, and every x ∈ supp(Dn),

2qt(n)(x)−log t(n) ≤ 1

Dn(x)
.

In addition, we can assume that Dn is sampled in time t(n), and |x| ≤ t(n) for every x ∈ supp(Dn).
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For every polynomial t ≥ t0 and every n ∈ N,

E
x∼Dn

[
2−K(x)+qt(n)(x)−log t(n)

]
≤ E

x∼Dn

[
2−K(x)

Dn(x)

]
=

∑
x∈supp(Dn)

Dn(x)
2−K(x)

Dn(x)

=
∑

x∈supp(Dn)

2−K(x)

≤
2t(n)∑
i=1

∑
x∈{0,1}∗:

|x|≤t(n),K(x)=i

2−i

≤
2t(n)∑
i=1

2i · 2−i = 2t(n),

This implies the lemma as follows:

Pr
x∼Dn

[qt(n)(x)−K(x) > k] = Pr
x∼Dn

[2qt(n)(x)−K(x)−log t(n) > 2k−log t(n)]

≤
Ex∼Dn

[
2−K(x)+qt(n)(x)−log t(n)

]
2k−log t(n)

≤ 2−k+O(log t(n)),

where the first inequality follows from Markov’s inequality.

We also note that K(x) is a lower bound for qt(x).

Fact 4.6.11 (e.g., in [LV19, Chapter 4]). For every x ∈ {0, 1}∗ and every t ∈ N,

K(x) ≤ qt(x) +O(log t).

With the ingredients developed so far, we now prove the main result of this section.

Proof of Theorem 4.6.2. We only prove Item 1 ⇒ Item 2, as the converse can be easily proved
using [HILL99] (see [IRS22]). Using Theorem 4.6.1, let M be the algorithm of Item 2. We define an
algorithm M ′ so that M ′(x, 1t, 1δ

−1
) := − logM(x, 1t, 1δ

−1
). By the property of M , with probability

at least 1− δ over x ∼ Dn and the internal randomness of M , it holds that

qt(x)− 1 ≤ − logM(x, 1t, 1δ
−1

) ≤ qt(x) + 1.

By Lemma 4.6.10 and Fact 4.6.11, with probability at least 1− δ over x ∼ Dn, it holds that

K(x) ≤ qt(x) +O(log t) ≤ K(x) +O(log t) + log(1/δ).

By a union bound, with probability at least 1− 2δ over x ∼ Dn, it holds that

K(x)−O(log t) ≤M ′(x, 1t, 1δ−1
) ≤ K(x) +O(log t) + log(1/δ).

The claim follows by subtractingO(log t)+log(1/δ) from the output ofM ′ and choosing a sufficiently
large polynomial t0.
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4.6.4 Universal Distribution and Probabilistic Kolmogorov Complexity

In this section, we show that qt (in Definition 4.6.4) is equivalent to the time-bounded probabilistic
Kolmogorov complexity pKt up to an additive logarithmic factor and a polynomial overhead of the
time-bound. Note that the latter notion is recently studied by Goldberg, Kabanets, Lu, and Oliveira
[GKLO22] in the context of meta-complexity. Further background on probabilistic Kolmogorov
complexity can also be found in [LO22].

For future work, we consider a general case in which an auxiliary advice string is given. First,
we extend the definition of qt to such a case.

Definition 4.6.12 (implicit in [IL90]). For every t ∈ N and every z ∈ {0, 1}∗, we define the t-
time-bounded universal distribution Qt

z given z as the distribution of U t(r; z) for r ∼ {0, 1}t, where
the universal Truing machine U is given query access to each bit of z.

For every t ∈ N and every x, z ∈ {0, 1}∗, we define qt(x|z) as

qt(x|z) = − log Qt
z(x).

(If Qt
z(x) = 0, then we regard qt(x|z) as ∞.)

Note that qt(x|ε) is equal to qt(x) in Definition 4.6.4.
The time-bounded probabilistic Kolmogorov complexity pKt is defined as follows.

Definition 4.6.13 (Probabilistic Kolmogorov complexity [GKLO22]). For every t ∈ N and every
x, z ∈ {0, 1}∗, we define the t-time-bounded Kolmogorov complexity of x given z as

pKt(x|z) = min

{
k ∈ N : Pr

r∼{0,1}t

[
∃π ∈ {0, 1}k s.t. U t(π, r; z) = x

]
≥ 2/3

}
,

where the universal Truing machine U is given query access to each bit of z. (If there is no such
p ∈ {0, 1}∗, then we regard pKt(x|z) as ∞ for convenience.)

Below, we only consider the case in which qt(x|z) <∞ and pKt(x|z) <∞.
The equivalence between qt and pKt is stated as follows. Note that the second statement follows

from the optimal coding theorem for pKt proved by Lu, Oliveira, and Zimand [LOZ22].

Proposition 4.6.14. For every t ∈ N and every x, z ∈ {0, 1}∗,

qO(t)(x|z) ≤ pKt(x|z) +O(log t).

Theorem 4.6.15 ([LOZ22]). For every t ∈ N and every x, z ∈ {0, 1}∗,

pKp(t)(x|z) ≤ qt(x|z) + log p(t),

where p is a universal polynomial that depends on only U .

Proof of Proposition 4.6.14. By the definition of pKt(x|z), there exist at least (2/3) · 2t random
seeds r ∈ {0, 1}t that have a program πr ∈ {0, 1}pKt(x|z) such that U t(πr, r; z) = x. Without
loss of generality, we can assume that pKt(x|z) ≤ t. By selecting large enough t′ = O(t), the
probability that the prefix of a random seed r′ ∼ {0, 1}t′ corresponds to the program 〈πr, r〉 is at
least 2−pKt(x|z)−O(log t)−t (by the standard encoding). Therefore, we obtain that Qt′

z (x) ≥ (2/3) ·2t ·
2−pKt(x|z)−O(log t)−t = 2−pKt(x|z)−O(log t) and qt

′
(x|z) = − log Qt′

z (x) ≤ pKt(x|z) +O(log t).

Theorem 4.6.15 holds by observing that the proof of the optimal coding theorem for pKt

in [LOZ22, Theorem 5] holds even with additional access to z.
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4.7 Universal Extrapolation

In this section, we formulate universal extrapolation and present the formal proof.

Theorem 4.7.1 (Universal Extrapolation). If there exists no infinitely-often one-way function,
then there exist a randomized polynomial-time algorithm UE and a polynomial τUE such that for
every tD(n)-time samplable distribution D = {Dn}n∈N over binary strings, there exists n0 ∈ N such
that for all n, i, k, t, ε−1, δ−1 ∈ N with n ≥ n0 and t ≥ τUE(n, tD(n)),

Pr
x∼Dn

[
L1
(
UE(x[i]; 1〈n,k,t,ε

−1,δ−1〉),Nextk(Q
t, x[i])

)
≤ ε
]
≥ 1− δ,

where n0 = nUE(d(D)) for some universal function nUE : N→ N with nUE(d) = 2O(d).

We present two proofs of Theorem 4.7.1 by different constructions of UE. The first one is based
on a distributional inverter [IL89]. The second one is based on the approximation of the universal
a priori probability in Section 4.6, which seems to be the original intention [IL90].

4.7.1 Proof by Distributional Inverter

We present the proof of the universal extrapolation theorem based on distributional inverters. In the
proof, we use the following theorem, which is well-known as the equivalence between the existence
of one-way functions and the existence of distributional one-way functions.

Theorem 4.7.2 ([IL89; Imp]). The following are equivalent:

1. There exists no infinitely-often one-way function;

2. For every polynomial-time-computable family f = {fn : {0, 1}s(n) → {0, 1}t(n)}n∈N, there ex-
ists a randomized polynomial-time algorithm A such that for every n, ε−1, δ−1 ∈ N,

Pr
y∼fn(Us(n))

[
L1
(
A(y; 1n, 1ε

−1
, 1δ
−1

),UnifInvfn(y)
)
≤ ε
]
≥ 1− δ,

where UnifInvf (y) is a random variable selected according to the uniform distribution over
f−1(y) for each y ∈ Imf .

Theorem 4.7.2 and the domination property (Lemma 4.5.3) imply distributional inverting ac-
cording to the universal distribution for a given instance drawn from any unknown samplable
distribution.

Lemma 4.7.3. If there exists no infinitely-often one-way function, then there exist a randomized
polynomial-time algorithm A′ and a polynomial τ such that for every tD(n)-time samplable distri-
bution D = {Dn}n∈N over binary strings, there exists n0 ∈ N such that for all n, i, t, ε−1, δ−1 ∈ N
with n ≥ n0 and t ≥ τ(n, tD(n)),

Pr
x∼Dn

[
L1
(
A′(x[i]; 1〈n,t,ε

−1,δ−1〉),UnifInvUt
[i]

(x[i])
)
≤ ε
]
≥ 1− δ,

where U t[i] denotes the universal Turing machine whose output is truncated to the first i bits, i.e.,

U t[i](s) = U t(s)[i] for each s ∈ {0, 1}t, and n0 = n′(d(D)) for some universal function n′ : N → N
with n′(d) = 2O(d).
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Proof. Let A be the randomized algorithm obtained from Theorem 4.7.2 (1⇒2) for a polynomial-
time-computable family f defined as, for every i, t ∈ N and s ∈ {0, 1}t, f〈i,t〉(s) = U t[i](s).

For every input, A′ is defined as

A′(x; 1〈n,t,ε
−1,δ−1〉) = A(x; 1〈i,t〉, 1ε

−1
, 1n

c+1δ−1
),

where i = |x|, and c is a universal constant specified later.
Let D′ = {D′n,i}n,i∈N be a distribution family, where each D′n,i is a distribution of x[i] for x ∼ Dn.

Then, D′ is O(tD(n))-time samplable, and d(D′) = O(d(D)).
By Lemma 4.5.3, there exists a polynomial τdom such that for every n, i ∈ N with i ≤ tD(n),

every t ≥ τdom(d(D′), log n, tD(n)), and every x ∈ {0, 1}∗, it holds that Qt(x) ≥ D′n,i(x)/(2c·d(D) ·nc)
by choosing sufficiently large c ≥ 1. We can also assume that d(D′) = O(d(D)) ≤ c · d(D).

We define n′ : N → N as n′(d) = 2c·d. We also define τ as τ(n, t) = τdom(log n, log n, t). For
every n ≥ n′(d(D)), i ≤ tD(n), and t ≥ τ(n, tD(n)), we have log n ≥ c · d(D) ≥ d(D′) and

t ≥ τ(n, t) = τdom(log n, log n, t) ≥ τdom(d(D′), log n, tD(n)).

Thus, for every x ∈ {0, 1}∗ and every i ≤ tD(n), the following holds:

Pr
s

[f〈i,t〉(s) = x[i]] = Pr
s

[U t[i](s) = x[i]]

≥ Qt(x[i])

≥
D′n,i(x[i])

2c·d(D) · nc

≥
Prx′∼Dn [x′[i] = x[i]]

nc+1
.

Suppose that

Pr
x∼Dn

[
L1
(
A′(x[i]; 1〈n,t,ε

−1,δ−1〉),UnifInvUt
[i]

(x[i])
)
> ε
]
> δ.

Then,

Pr
s

[
L1
(
A(f〈i,t〉(s); 1〈i,t〉, 1ε

−1
, 1n

c+1δ−1
),UnifInvUt

[i]
(f〈i,t〉(s))

)
> ε
]

≥ 1

nc+1
Pr

x∼Dn

[
L1
(
A(x[i]; 1〈i,t〉, 1ε

−1
, 1n

c+1δ−1
),UnifInvUt

[i]
(x[i])

)
> ε
]

=
1

nc+1
Pr

x∼Dn

[
L1
(
A′(x[i]; 1〈n,t,ε

−1,δ−1〉),UnifInvUt
[i]

(x[i])
)
> ε
]

>
δ

nc+1
.

However, this contradicts the choice of the confidence parameter nc+1δ−1 for A.
Hence, we conclude that

Pr
x∼Dn

[
L1
(
A′(x[i]; 1〈n,t,ε

−1,δ−1〉),UnifInvUt
[i]

(x[i])
)
≤ ε
]
≥ 1− δ.
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Now, we derive Theorem 4.7.1 from Lemma 4.7.3.

Proof of Theorem 4.7.1. Let n′ and τ be the same functions as Lemma 4.7.3. Let A′ be the ran-
domized algorithm in Lemma 4.7.3. Then, the algorithm UE is constructed as

UE(x; 1〈n,k,t,ε
−1,δ−1〉) = U t(A′(x; 1〈n,t,ε

−1,δ−1〉))[i+1:i+k],

where i = |x|. Furthermore, let nUE(d) ≡ n′(d) and τUE(n, t) ≡ τ(n, t).
The correctness is verified as follows: for every x ∈ {0, 1}∗ and every i ≤ |x|,

L1
(
UE(x[i]; 1〈n,k,t,ε

−1,δ−1〉),Nextk(Q
t, x[i])

)
= L1

(
U t(A′(x[i]; 1〈n,t,ε

−1,δ−1〉))[i+1:i+k],Nextk(Q
t, x[i])

)
= L1

(
U t(A′(x[i]; 1〈n,t,ε

−1,δ−1〉))[i+1:i+k], U
t(UnifInvUt

[i]
(x[i]))[i+1:i+k]

)
≤ L1

(
A′(x[i]; 1〈n,t,ε

−1,δ−1〉),UnifInvUt
[i]

(x[i])
)
.

Therefore, for all n, i, t, ε−1, δ−1 ∈ N with n ≥ n0 and t ≥ τUE(n, tD(n)) = τ(n, tD(n)),

Pr
x∼Dn

[
L1
(
UE(x[i]; 1〈n,k,t,ε

−1,δ−1〉),Nextk(Q
t, x[i])

)
≤ ε
]

≥ Pr
x∼Dn

[
L1
(
A′(x[i]; 1〈n,t,ε

−1,δ−1〉),UnifInvUt
[i]

(x[i])
)
≤ ε
]
≥ 1− δ.

4.7.2 Proof by Estimating Universal a Priori Probability

We present another proof of Theorem 4.7.1, where we construct another extrapolation algorithm
that predicts the next k bits one by one according to the approximated likelihood of the next 1 bit.

Proof of Theorem 4.7.1. Since there is no infinitely-often one-way function, there exists the algo-
rithm M in Theorem 4.6.3. We construct the algorithm UE based on M as follows: On input
x, 1〈n,k,t,ε

−1,δ−1〉, the algorithm UE samples yj ∈ {0, 1, ε} inductively in j ∈ [k] according to the
following procedure: if yj−1 = ε and j ≥ 2, then yj = ε; otherwise,

yj =


0 with probability min{p0/pε, 1}
1 with probability min{p1/pε, 1}
ε with probability max{(pε − p0 − p1)/pε, 0}

where

p0 = M(x ◦ y1 ◦ · · · ◦ yj−1 ◦ 0; 1t, 1δ
′−1

)

p1 = M(x ◦ y1 ◦ · · · ◦ yj−1 ◦ 1; 1t, 1δ
′−1

)

pε = M(x ◦ y1 ◦ · · · ◦ yj−1; 1t, 1δ
′−1

)

for δ′ = min{ε/(4k + ε), εδ/6knc+1}, where c is a sufficiently large constant specified later. Then,
UE outputs y1 ◦ · · · ◦ yk. If pε = 0 at some stage, then UE outputs “error” and halts.
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We verify the correctness of UE according to the following three steps. First, we assume the
ideal case in which M can output the exact value of Qt,∗(x) for any given x. Second, we take the
multiplicative approximation error (1 ± δ′) into account. Finally, we take the confidence error δ′

into account. Below, we omit the parameters to UE and M for readability.
Suppose that M can output the exact value of Qt,∗(x) for a given x with probability 1 over the

choice of x and randomness for M . Then, by induction in j, we can easily verify that if yj−1 6= ε,
then for each b ∈ {0, 1, ε},

Pr[yj = b|y1 · · · yj−1] = Pr[Next1(Qt, xy1 · · · yj−1) = b].

Thus, for every y∗ ∈ {0, 1}k,

Pr[UE(x) outputs y∗] =
k∏
j=1

Pr[yj = y∗j |y[j−1] = y∗[j−1]]

=

k∏
j=1

Pr[Next1(Qt, xy∗1 · · · y∗j−1) = y∗j ]

= Pr[Nextk(Q
t, x) = y∗],

and for every y∗ ∈ {0, 1}k′ with k′ < k,

Pr[UE(x) outputs y∗] =

k′∏
j=1

Pr[yj = y∗j |y[j−1] = y∗[j−1]] · Pr[yk′+1 = ε|y[k′] = y∗[k′]]

=

k′∏
j=1

Pr[Next1(Qt, xy∗1 · · · y∗j−1) = y∗j ] · Pr[Next1(Qt, xy∗1 · · · y∗k′) = ε]

= Pr[Nextk(Q
t, x) = y∗].

Therefore, the distribution of UE(x) is statistically equivalent to Nextk(Q
t, x).

Next, we take the approximation error into account, i.e., we assume that M(x) outputs a value
of p ∈ [Qt,∗(x)(1± δ′)] for any given x.

Fix j ∈ [k] and x ∈ {0, 1}∗ arbitrarily. Notice that pb ∈ [Qt,∗(xy1 · · · yj−1b)(1 ± δ′)] for each
b ∈ {0, 1, ε}. Let Dj denote the distribution of yj given y1 · · · yj−1. Then, the following claim holds:

Claim 4.7.4.
L1(Dj ,Next1(Qt, xy1 · · · yj−1)) ≤ ε

2k

We defer the proof of Claim 4.7.4 to the end of the proof because it has no technical novelty.
By Claim 4.7.4, we have

L1(D1 · · · Dj ,Nextj(Qt, x))

≤ L1(D1 · · · Dj ,D1 · · · Dj−1Next1(Qt, x ◦ D1 · · · Dj−1))

+ L1(D1 · · · Dj−1Next1(Qt, x ◦ D1 · · · Dj−1),Nextj(Q
t, x))

≤ ε

2k
+ L1(D1 · · · Dj−1Next1(Qt, x ◦ D1 · · · Dj−1),Nextj−1(Qt, x)Next1(Qt, x ◦ Nextj−1(Qt, x)))

≤ ε

2k
+ L1(D1 · · · Dj−1,Nextj−1(Qt, x)).
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By induction in j ∈ [k], the total variation distance between Nextj(Q
t, x) and the distribution

D1 · · · Dj of y1 · · · yj is at most j · ε
2k . By letting j = k, the total variation distance between

Nextk(Q
t, x) and UE(x) is at most ε/2.

Finally, we take the confidence error into account. By the same argument as above, we can
assume again that the accuracy error is ε = 0 at first.

Let D′ = {D′n,i}n,i∈N be a distribution family, where each D′n,i is a distribution of x[i] for x ∼ Dn.
Then, D′ is O(tD(n))-time samplable, and d(D′) = O(d(D)).

By Lemma 4.5.3, there exists a polynomial τdom such that for every n, i ∈ N with i ≤ tD(n),
every t ≥ τdom(d(D′), log n, tD(n)), and every x ∈ {0, 1}∗, it holds that Qt(x) ≥ D′n,i(x)/(2c·d(D) ·nc)
by choosing sufficiently large c ≥ 1. We can also assume that d(D′) = O(d(D)) ≤ c · d(D).

We define n′ : N→ N as n′(d) = 2c·d. We also define τ as

τ(n, t) = τdom(log n, log n, t).

For every n ≥ n′(d(D)), i ≤ tD(n), and t ≥ τ(n, tD(n)), we have log n ≥ c · d(D) ≥ d(D′) and

t ≥ τ(n, tD(n)) = τdom(log n, log n, tD(n)) ≥ τdom(d(D′), log n, tD(n)).

Thus, for every x ∈ {0, 1}i, the following holds:

Qt(x) ≥
D′n,i(x)

2c·d(D) · nc
≥
D′n,i(x)

nc+1
.

Furthermore, for every x ∈ {0, 1}i, every j ∈ [k], and every y1, . . . , yj−1 ∈ {0, 1},

Qt
[i+j−1](xy1 · · · yj−1) = Qt,∗(x) · Pr[Nextj−1(Qt, x) = y1 · · · yj−1]

≥ Qt(x) · Pr[Nextj−1(Qt, x) = y1 · · · yj−1]

≥
D′n,i(x)

nc+1
· Pr[Nextj−1(Qt, x) = y1 · · · yj−1].

Remember that at the j-th stage, the algorithm M is given xy1 · · · yj , where x ∼ D′n,i and
y1 · · · yj−1 ∼ Nextj−1(Qt, x).

For every b ∈ {0, 1, ε}, the distribution of x′ ◦ b, where x′ ∼ Qt
[i+j−1] is polynomial-time sam-

plable. By Theorem 4.6.3, there exist n0 ∈ N and a polynomial τ0 such that for every n ≥ n0,
t ≥ τ0(n), every b ∈ {0, 1, ε},

Pr
xy1···yj−1∼Qt

[i+j−1]

[
M(xy1 · · · yj−1b) fails to output Qt,∗(xy1 · · · yj−1b)

]
< δ′ ≤ εδ

6knc+1
.

Thus, for every n ≥ max{n0, n
′(d(D))} and t ≥ max{τ0(n), τ(n, tD(n))},

Pr
x∼D′n,i,y1···yj−1∼Nextj−1(Qt,x)

[
M(xy1 · · · yj−1b) fails to output Qt,∗(xy1 · · · yj−1b)

]
≤ nc+1 · Pr

xy1···yj−1∼Qt

[
M(xy1 · · · yj−1b) fails to output Qt,∗(xy1 · · · yj−1b)

]
≤ nc+1 · εδ

6knc+1
=
εδ

6k
.

Since UE executes M at most 3k times, by the union bound, it holds that

Pr
x∼Dn,M

[
M fails at some stage in executing UE(x[i])

]
≤ εδ

2
.
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By Markov’s inequality,

Pr
x∼Dn

[
Pr
M

[
M fails at some stage in executing UE(x[i])

]
≤ ε/2

]
≥ 1− δ.

Now we consider the approximation error again. For every choice of x that satisfies the event
above, (i) if M does not fail, then the total variation distance between UE(x[i]) and Nextk(Q

t, x) is
at most ε/2; and (ii) the probability that M fails at some stage is at most ε/2. Thus, we conclude
that the total variation distance between UE(x[i]) and Nextk(Q

t, x) is at most ε/2+ ε/2 = ε for such
x, i.e.,

Pr
x∼Dn

[
L1(UE(x[i]),Nextk(Q

t, x[i]) ≤ ε
]
≥ 1− δ.

Thus, the remaining is the proof of Claim 4.7.4.

Proof of Claim 4.7.4. For each b ∈ {0, 1, ε}, let p∗b ∈ [0, 1] be p∗b = Qt,∗(xy1 · · · yj−1b). Remember
that pb ∈ [p∗b(1± δ′)]. Therefore,

L1(Di,Next1(Qt, xy1 · · · yj−1)) ≤ 1

2

∑
b∈{0,1}

∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣+
1

2

∣∣∣∣pε − p0 − p1

pε
− p∗ε − p∗0 − p∗1

p∗ε

∣∣∣∣
=

1

2

∑
b∈{0,1}

∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣+
1

2

∣∣∣∣p∗0 + p∗1
p∗ε

− p0 + p1

pε

∣∣∣∣
≤

∑
b∈{0,1}

∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣
For each b ∈ {0, 1}, if pb

pε
− p∗b

p∗ε
≥ 0, then∣∣∣∣pbpε − p∗b

p∗ε

∣∣∣∣ =
pb
pε
−
p∗b
p∗ε
≤

(1 + δ′)p∗b
(1− δ′)p∗ε

−
p∗b
p∗ε

=
p∗b
p∗ε
· 2δ′

1− δ′
;

otherwise, ∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣ =
p∗b
p∗ε
− pb
pε
≤
p∗b
p∗ε
−
p∗b(1− δ′)
p∗ε(1 + δ′)

=
p∗b
p∗ε
· 2δ′

1 + δ′
≤
p∗b
p∗ε
· 2δ′

1− δ′
.

In any case, ∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣ ≤ p∗b
p∗ε
· 2δ′

1− δ′
.

Therefore,

L1(Di,Next1(Qt, xy1 · · · yj−1)) ≤
∑

b∈{0,1}

∣∣∣∣pbpε − p∗b
p∗ε

∣∣∣∣
≤

∑
b∈{0,1}

p∗b
p∗ε
· 2δ′

1− δ′

=
2δ′

1− δ′
· p
∗
0 + p∗1
p∗ε

≤ 2δ′

1− δ′

≤ ε

2k
,
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where the last inequality is obtained by rearranging that δ′ ≤ ε/(4k + ε).

4.8 Simulating Cheating Learners by Universal Extrapolation

In this section, we consider the online learning framework introduced in Section 4.3.3. Remember
that, in the framework, a learner first observes advice information xi ∈ {0, 1}∗ and then obtains
yi ∈ {0, 1}∗ (we call yi the i-th label) at stage i ∈ N, where each data may have correlation with
the previous streams. The task of the learner at stage i is, for a given advice string xi, to predict
the next outcome yi.

We introduce several notions to discuss the learning framework above more formally. In Sec-
tion 4.8, we use a ∈ N ∪ {0} and b ∈ N to represent the size of each observation (xi, yi) as |xi| = a
and |yi| = b, and we use m ∈ N to represent the total number of stages. Note that our results hold
in more general cases in which |xi| and |yi| vary by the same proof.

For every offline stream x ∈ {0, 1}∗, a stream x1, y1, . . . , xm, ym of data for online learning is
determined as follows: for each i ∈ N,

xi = x[(a+b)(i−1)+1:(a+b)(i−1)+a] and yi = y[(a+b)(i−1)+a+1:(a+b)i].

Notice that x = x1y1 ◦ · · · ◦ xmym, and xi and yi can be empty when |x| < m(a + b). For each
i ∈ [m], we let x<i := x1y1 ◦ · · · ◦ xi−1yi−1 = x[(a+b)(i−1)]. Furthermore, for every distribution D on

(offline) binary strings, we let D<i represent a distribution of x<i for x ∼ D and let Di,x<i represent
the conditional distribution of x′i for x′ ∼ D given x′<i = x<i.

When the offline string x is selected according to some distribution Dn,z indexed by n ∈ N and
z ∈ {0, 1}∗, then the conditional distribution of the i-th label given (x<i, xi) is Nextb(Dn,z, x<ixi).
When Dn,z and x<i are clear in context, we use the notation Labelz,x

i

i to refer to Nextb(Dn,z, x<ixi).
Remember that a cheating learner is a learner that can freely observe the labels in the future by

the additional oracle access to Labelz,x
i

i . The key insight for translating UE into learning algorithms

in the framework above is that we can replace the oracle access to Labelz,x
i

i with UE in the average-
case setting. This is stated as the following meta-theorem.

Theorem 4.8.1. Suppose that UE in Theorem 4.7.1 exists. Then, for every oracle machine (i.e.,
a cheating learner) L?

cheat of polynomial-time computable query complexity q(·), there exist a ran-
domized algorithm L and a polynomial m0 satisfying the following: for every tG(s)-time samplable
family G = {Gs}s∈N and every tD(n, |z|)-time samplable family D = {Dn,z}n∈N,z∈{0,1}∗, where each
Gs is over s-bit strings, and each Dn,z is over binary strings, there exists n0 ∈ N such that for every
a ∈ N∪ {0}, every n, s, b, t, δ−1, λ−1 ∈ N with n ≥ n0 and t ≥ max{tG(s), tD(n, s)}, every auxiliary
input w ∈ {0, 1}∗, and every m ≥ m0(log n, s, q(w), δ−1, λ−1),

Pr
z,i,x<i,xi

[
L1

(
L(x<i, xi, w; 1〈n,s,b,t,δ

−1,λ−1〉), L
Labelz,x

i

i
cheat (w)

)
≤ λ

]
≥ 1− δ,

where z ∼ Gs, i ∼ [m], x<i ∼ D<in,z, and xi ∼ Di,x
<i

n,z .
Furthermore, m0(log n, r, q, δ−1, λ−1) = O((log n + s) · q · δ−1λ−2), n0 = n′(d(G), d(D)) for a

universal function n′ : N × N → N, and L halts in polynomial time in the input length and the
running time of Lcheat.
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The proof of Theorem 4.8.1 is presented in Section 4.8.1. Note that Theorem 4.8.1 is sufficient for
simulating any polynomial-time cheating learners with polynomial-time overhead. As applications,
we show universal distributional learning and universal learning ACDs (i.e., Theorem 4.2.1) in
Section 4.8.2, universal top-k prediction in Section 4.8.3, and universal likelihood estimation in
Section 4.8.4.

4.8.1 A Proof of Meta-Theorem

First, we show the following key lemma, as outlined in Section 4.3.4.

Lemma 4.8.2. For every distribution D over binary strings such that D has a tD-time sampler
described by d bits, and for every a ∈ N ∪ {0}, every t, q, b,m ∈ N with t ≥ τdom(d, tD), and every
q-query (possibility not efficiently computable) randomized oracle machine I,

E
i∼[m],x<i∼D<i,xi∼Di,x<i

[
KL
(
INextb(D,x

<ixi)||INextb(Qt,x<ixi)
)]
≤ q · O(d)

m
,

where the hidden constant in O(d) depends on only the universal Turing machine.

Proof. Fix a ∈ N ∪ {0} and b,m, q ∈ N arbitrarily. For each x ∈ supp(D), we use the notations
x1, y1, . . . , xm, ym and x<i as defined at the beginning of Section 4.8.

For every q-query randomized oracle machine I and every distribution O, the distribution of
IO is considered as I(a1, . . . , aq) for a1, . . . , aq ∼ O, where we regard I as a randomized function.
Thus, for every distributions O and O′ with KL(O;O′) <∞, we have

KL(IO||IO′) ≤ KL(I(O1, . . . ,Oq)||I(O′1, . . . ,O′q)) ≤ KL(O1, . . . ,Oq||O′1, . . . ,O′q) = q ·KL(O||O),

where each Oi (resp. O′i) is an independent random variable drawn from O (resp. O′), and the
second inequality follows from Fact 4.5.2.

If t ≥ τdom(d, tD), then Qt(x) ≥ D(x)/2O(d) for every x ∈ {0, 1}∗ by Lemma 4.5.3; thus, for
every x ∈ {0, 1}∗, KL(Nextb(D, x)||Nextb(Qt, x)) <∞.

Therefore,

E
i∼[m],x<i∼D<i,xi∼Di,x<i

[
KL
(
INextb(D,x

<ixi)||INextb(Qt,x<ixi)
)]

=
q

m

m∑
i=1

∑
x<i∈supp(D<i)

∑
xi∈supp(D<i,xi )

D∗(x<ixi) ·KL(Nextb(D, x<ixi)||Nextb(Qt, x<ixi)). (4.3)

For readability, we letD(y|x<ixi) (resp. Qt(y|x<ixi)) denote Nextb(D, x<ixi)(y) (resp. Nextb(Q
t, x<ixi)(y))
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for each i ∈ [m] and y ∈ {0, 1}≤b. Then, we have that, for every i ∈ [m],∑
x<i,xi

D∗(x<ixi) ·KL(Nextb(D, x<ixi)||Nextb(Qt, x<ixi))

=
∑
x<i,xi

∑
yi∈supp(Nextb(D,x<ixi))

D∗(x<ixi) · D(yi|x<ixi) log
D(yi|x<ixi)
Qt(yi|x<ixi)

=
∑
x<i,xi

∑
yi∈supp(Nextb(D,x<ixi))

D∗(x<ixiyi) log
D(yi|x<ixi)
Qt(yi|x<ixi)

=
∑

x<i+1∈supp(D<i+1)

D∗(x<i+1) log
D(yi|x<ixi)
Qt(yi|x<ixi)

=
∑

x∈supp(D)

D(x) log
D(yi|x<ixi)
Qt(yi|x<ixi)

.

Therefore, by inequality (4.3),

E
i,x<i,xi

[
KL
(
INextb(D,x

<ixi)||INextb(Qt,x<ixi)
)]

=
q

m

m∑
i=1

∑
x∈supp(D)

D(x) log
D(yi|x<ixi)
Qt(yi|x<ixi)

=
q

m

∑
x∈supp(D)

D(x)
m∑
i=1

log
D(yi|x<ixi)
Qt(yi|x<ixi)

=
q

m

∑
x∈supp(D)

D(x) log

∏m
i=1D(yi|x<ixi)∏m
i=1 Qt(yi|x<ixi)

=
q

m

∑
x∈supp(D)

D(x) log
D(x)

Qt(x)
· Qt,∗(x1, -, . . . , xm, -)

D∗(x1, -, . . . , xm, -)
,

where Qt,∗(x1, -, . . . , xm, -) (resp. D∗(x1, -, . . . , xm, -)) represents the probability that a sampling
according to Qt (resp. D) is consistent with x1, . . . , xm.

By the assumption that t ≥ τdom(d, tD), Lemma 4.5.3 implies that Qt(x) ≥ D(x)/2O(d), i.e.,

log
D(x)

Qt(x)
≤ O(d),

where we implicitly use the fact that Qt(x) ≥ D(x)/2O(d) > 0 for each x ∈ supp(D).
Let S be a set defined as S = {(x1, . . . , xm) : x ∈ supp(D)}. Then, the lemma is derived as

follows:

E
i,x<i,xi

[
KL
(
INextb(D,x

<ixi)||INextb(Qt,x<ixi)
)]

=
q

m

∑
x∈supp(D)

D(x) log
D(x)

Qt(x)
· Qt,∗(x1, -, . . . , xm, -)

D∗(x1, -, . . . , xm, -)

≤ q

m

∑
x∈supp(D)

D(x)

(
O(d) + log

Qt,∗(x1, -, . . . , xm, -)

D∗(x1, -, . . . , xm, -)

)

= q · O(d)

m
+

∑
x∈supp(D)

D(x) log
Qt,∗(x1, -, . . . , xm, -)

D∗(x1, -, . . . , xm, -)
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= q · O(d)

m
+

∑
(x1,...,xm)∈S

D∗(x1, -, . . . , xm, -) log
Qt,∗(x1, -, . . . , xm, -)

D∗(x1, -, . . . , xm, -)

≤ q · O(d)

m
+ log

∑
(x1,...,xm)∈S

D∗(x1, -, . . . , xm, -)
Qt,∗(x1, -, . . . , xm, -)

D∗(x1, -, . . . , xm, -)

= q · O(d)

m
+ log

∑
(x1,...,xm)∈S

Qt,∗(x1, -, . . . , xm, -)

≤ q · O(d)

m
+ log 1

= q · O(d)

m
,

where the second inequality follows from the Jensen’s inequality.

Theorem 4.8.1 follows from Theorem 4.7.1 and Lemma 4.8.2.

Proof of Theorem 4.8.1. Let UE be the universal extrapolation algorithm in Theorem 4.7.1. Let
nUE and τUE be the functions in Theorem 4.7.1. Let L?

cheat be an arbitrary oracle machine (a
cheating learner) of polynomial-time computable query complexity q := q(w).

For every tG(s)-time samplable distribution family G and every tD(n, |z|)-time samplable dis-
tribution family D, we define another distribution family D′ = {D′n′}n′∈N as D′n′ ≡ Dn,Gs for every
n′ = 〈n, s〉. It holds that d(D′) = O(d(G) + d(D)). Let n1 : N × N → N be a function such that
n1(d(G), d(D)) = nUE(d(D′)) = 2O(d(G)+d(D)). Furthermore, we select a sufficiently large polynomial
τ0(t, t′) so that for every n, s ∈ N, the distribution D〈n,s〉 is samplable in time τ0(tG(s), tD(n, s)).

We construct the learner L that executes Lcheat, where the query access is simulated by UE.
The formal construction is as follows: On input x<i, xi, w, 1〈n,s,b,t,δ

−1,λ−1〉, the learner L executes

the cheating learner L?
cheat(w), where L answers each query access to Labelz,x

i

i by

ans← UE(x<ixi; 1〈〈n,s〉,b,t
′,λ′−1,2δ−1〉)

for t′ = max{τUE(〈n, s〉, τ0(t, t)), τ1(n, s, t)} and λ′ = λ/(2q(w)) (with fresh randomness for each
access), where τ1 is a polynomial specified later. It is easy to verify that L halts in polynomial time
in the input length and the running time of Lcheat(w). Below, we show the correctness of L. For
readability, we omit parameters for L and UE.

Let D be the sampler for D described by d(D) bits. We choose a sufficiently large constant
c ≥ 1 so that (i) for every d, d′ ∈ N, n1(d, d′) ≤ 2c(d+d′), and (ii) for every n, s ∈ N and z ∈ {0, 1}s,
the sampler D(1n, z; -) is described by c(d(D) + log n+ s) bits. Let n′(d, d′) := 2c(d+d′) ≥ n1(d, d′)
and n0 := n′(d(G), d(D)).

By Lemma 4.8.2, there exists a polynomial τ1 such that for every a ∈ N∪{0}, every n, s, t,m, b ∈
N, every z ∈ {0, 1}s with n ≥ n0, t ≥ τ1(n, s, tD(n, s)), and every w ∈ {0, 1}∗,

E
i∼[m],x<i∼D<in,z ,xi∼Di,x

<i
n,z

[
KL(L

Labelz,x
i

i
cheat (w)||LNextb(Q

t,x<ixi)
cheat (w))

]
≤ q ·O(d(D) + log n+ s)

m

≤ q · c′(s+ log n)

m
,

for some universal constant c′ > 0, where we use the fact that log n ≥ log n0 ≥ d(D).
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Let m0 := q·4c′(s+logn)
λ2δ

= O( q·(s+logn)
λ2δ

). Then, for every m ≥ m0, z ∈ {0, 1}s, and w ∈ {0, 1}∗,
we have

E
i,x<i,xi

[
KL(L

Labelz,x
i

i
cheat (w)||LNextb(Q

t,x<ixi)
cheat (w))

]
≤ q · c′(s+ log n)

m
≤ λ2δ

4
.

By the non-negativity of KL divergence and Markov’s inequality,

Pr
i,x<i,xi

[
KL(L

Labelz,x
i

i
cheat (w)||LNextb(Q

t,x<ixi)
cheat (w)) >

λ2

2

]
<
δ

2
.

By Pinsker’s inequality (Fact 4.5.1),

Pr
i,x<i,xi

[
L1(L

Labelz,x
i

i
cheat (w), L

Nextb(Q
t,x<ixi)

cheat (w)) ≤ λ

2

]
≥ Pr

i,x<i,xi

[
KL(L

Labelz,x
i

i
cheat (w)||LNextb(Q

t,x<ixi)
cheat (w)) ≤ λ2

2

]
≥ 1− δ

2
. (4.4)

We remark that the above holds for any a ∈ N∪{0}, any n, s, b, t,m, δ−1, λ−1 ∈ N, any z ∈ {0, 1}s,
and any w ∈ {0, 1}∗ satisfying that n ≥ n0, t ≥ τ1(n, s, tD(n, s)), and m ≥ m0.

For all a ∈ N ∪ {0}, n, s,m, t, b, δ−1, λ−1 ∈ N, i ∈ [m], and w ∈ {0, 1}∗ with n ≥ n0, m ≥ m0,
and t ≥ max{tG(s), tD(n, s)}, we have that t′ ≥ τUE(〈n, s〉, τ0(t, t)) ≥ τUE(〈n, s〉, τ0(tG(s), tD(n, s))),
and by Theorem 4.7.1,

Pr
z∼Gs,x<i∼D<in,z ,xi∼Di,x

<i
n,z

[
L1
(
UE(x<ixi; 1〈〈n,s〉,b,t

′,λ′−1,2δ−1〉),Nextb(Q
t′ , x<ixi)

)
≤ λ

2q

]
≥ 1 − δ

2
.

(4.5)

Remember that (i) L simulates the oracle access by UE(x<ixi); and (ii) Lcheat makes the oracle
access at most q times. Thus, for every i, x<i, xi satisfying the event in inequality (4.5),

L1(L(x<i, xi, w), L
Nextb(Q

t′ ,x<ixi)
cheat (w)) = L1(L

UE(x<ixi)
cheat (w), L

Nextb(Q
t′ ,x<ixi)

cheat (w)) ≤ q · λ
2q

=
λ

2
.

Since t′ ≥ τ1(n, s, t) ≥ τ1(n, s, tD(n, s)), by inequalities (4.4) and (4.5) and the union bound,

(i) L1(L
Labelz,x

i

i
cheat (w), L

Nextb(Q
t′ ,x<ixi)

cheat (w)) ≤ λ
2 and (ii) L1(L(x<i, xi, w), L

Nextb(Q
t′ ,x<ixi)

cheat (w)) ≤ λ
2 hold

with probability at least 1 − δ over the choice of z ∼ Gs, i ∼ [m], x<i ∼ D<in,z and xi ∼ Di,x
<i

n,z . In
this case, we have

L1

(
L(x<i, xi, w), L

Labelz,x
i

i
cheat (w)

)
≤ L1

(
L(x<i, xi, w), L

Nextb(Q
t′ ,x<ixi)

cheat (w)

)
+ L1

(
L
Nextb(Q

t′ ,x<ixi)
cheat (w), L

Labelz,x
i

i
cheat (w)

)
≤ λ

2
+
λ

2
= λ.

Thus, we conclude that

Pr
z,i,x<i,xi

[
L1

(
L(x<i, xi, w), L

Labelz,x
i

i
cheat (w)

)
≤ λ

]
≥ 1− δ.
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4.8.2 Universal Distributional Learning and Universal Learning ACDs

In this section, we consider the problems of learning unknown distributions from samples, which
was first studied by Kearns, Mansour, Ron, Rubinfeld, Schapire, and Sellie [KMRRSS94] (see
also [Xia10]).

First, we formally introduce the learning models, i.e., a natural average-case variant of distri-
butional learning and the problem of learning ACDs introduced by Naor and Rothblum [NR06].

Distributional Learning. We define a sampler of sample size n as a multi-output algorithm
that is given a random seed as input and outputs an n-bit string. For convenience, we identify a
sampler S : {0, 1}` → {0, 1}n with a distribution of S(r) for r ∼ {0, 1}`. For each sampler S, we
define an example oracle EXS as the oracle that returns x ∼ S for each access. For simplicity, we
define the time complexity of sampler as a function in the sample size n instead of the seed length
`. For any t, s ∈ N, we say that a sampler S of sample size n is t/s-time computable if there exists
a program ΠS ∈ {0, 1}≤s such that U t(ΠS , r) = S(r[`]) for each seed r ∼ {0, 1}t.

Informally, a distributional learner for t/s-time samplable distributions is given oracle access
to EXS for an unknown t/s-time computable sampler S and tries to construct a sampler that
statistically simulates S. To consider the average-case setting, we define a distribution on samplers
as a family G = {Gn}n∈N of distributions, where each Gn is a distribution on descriptions of samplers
of sample size n. For every distribution G on t(n)/s(n)-time computable samplers and every n ∈ N,
we use the notation Gn to refer to the n-th distribution in G, i.e., the distribution on (at most
s(n)-bit) descriptions of a t(n)/s(n)-time sampler of sample size n.

We define the average-case variant of distributional learning [KMRRSS94] as follows.

Definition 4.8.3 (Distributional learning on average). Let C be a class of distributions on the class
S of samplers. We say that S is distributionally learnable in polynomial time on average under C
if there exists a polynomial-time randomized oracle machine (i.e., learner) L such that for every
distribution G ∈ C (note that G is a distribution on samplers), for every sufficiently large n ∈ N,
and every ε−1, δ−1 ∈ N, the algorithm L satisfies that

Pr
Sn∼Gn,EXSn ,L

[
LEXSn (1n, 1ε

−1
, 1δ
−1

) outputs a circuit h s.t. L1(Sn, h(r)) ≤ ε
]
≥ 1− δ,

where r is a uniformly random seed for h. We also define the sample complexity m(n, ε, δ) as the
upper bound of the number of oracle access L(1n, 1ε

−1
, 1δ
−1

) requires.

Note that the learner L knows neither a target sampler Sn nor underlying distribution D except
the prior knowledge of the classes C and S (i.e., a modeling of environment).

Learning Adaptively Changing Distributions. Next, we introduce learning ACDs first
studied in [NR06].

An ACD (adaptively changing distribution) is a pair (G,D) of randomized Turing machines
satisfying the following syntax: For every sample size n ∈ N,

1. G(1n) randomly selects an initial state s0 ∈ {0, 1}∗.

2. For any σ ∈ {0, 1}∗ that represents a current state, the algorithm D(1n, σ) randomly generates
a sample x ∈ {0, 1}n and a next state s′ ∈ {0, 1}∗ (Note that x and s′ can be correlated).

Then, any ACD (G,D) determines an example oracle EXn,s0,D for each sample size n ∈ N and for
each initial state s0 generated by G(1n) as follows:
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1. EXn,s0,D has a hidden internal state σ, which is initialized by s0.

2. For each query access (without input), EXn,s0,D generates (x, s′)← A(1n, σ) and returns x as
a sample. Then, EXn,s0,D updates the internal state σ as σ := s′.

For every functions s(n) and t(n), we say that an ACD (G,D) is t(n)-time samplable and has
an s(n)-bit initial state if for every n ∈ N, (i) G(1n) selects an initial state from {0, 1}≤s(n) in t(n)
time; and (ii) for every possible state σ, D(1n, σ) halts in t(n) time (i.e., σ ∈ {0, 1}≤t(n)).

Informally, in learning ACD (G,D), a learner has query access to EXn,s0,D for a given parameter
1n, where s0 is a hidden initial state selected by G(1n). The goal of learner is to choose some stage
i ∈ N and, after observing the first i samples x1, . . . , xi from EXn,s0,D , to statistically simulates
the conditional distribution of the next sample xi+1 given the initial state s0 and x1, . . . , xi. For
convenience, we use the notation Ds0

i (x1, . . . , xi) to refer to the conditional distribution the learner
tries to simulate at stage i.

Now, we present the formal definition of the learning model. Naor and Rothblum [NR06]
considered the case in which a learner knows (G,D); while, we consider the more general case in
which a learner does not know (G,D). When (G,D) is known, then the task of learning ACDs
can be regarded as learning initial state s0. However, when (G,D) is unknown, the task seems to
become much more complicated, as seen in Sections 4.2 and 4.3.5. Particularly, by the argument
in Section 4.3.5, even if the learner knows the initial state s0, it does not mean that the learner can
immediately simulates Ds0

i (x1, . . . , xi).

Definition 4.8.4 (Universal learning ACDs). Let s(n) and t(n) be polynomials. We say that t(n)-
time samplable ACDs of s(n)-bit initial state are universally learnable in polynomial time if there
exists a randomized polynomial-time algorithm L such that for every t(n)-time samplable ACD
(G,D) of s(n)-bit initial state, for every sufficiently large n ∈ N, and every ε−1, δ−1 ∈ N, the
algorithm L satisfies the following with probability at least 1 − δ over the choice of s0 ∼ G(1n),
samples from EXn,s0,D, and randomness for L:

1. LEXn,s0,D(1n, 1ε
−1
, 1δ
−1

) obtains samples x1, x2, . . . , from EXn,s0,D.

2. After obtaining i samples x1, . . . , xi (where i is chosen by L), LEXn,s0,D(1n, 1ε
−1
, 1δ
−1

) outputs
some circuit h as a hypothesis without additional access to EXn,s0,D.

3. The hypothesis h satisfies that L1(D
s0
i (x1, . . . , xi), h(r)) ≤ ε, where r is a uniformly random

seed for h.

We define the sample complexity m(n, ε, δ) as the upper bound of the number of oracle access by
L(1n, 1ε

−1
, 1δ
−1

).

Note that average-case distributional learning in Definition 4.8.3 is a special case of universal
learning ACDs in Definition 4.8.4, where an initial state s0 is a target sampler, a generator G of
ACD is a sampling algorithm for selecting the target sampler, and a sampling algorithm D of ACD
does not change the internal state (i.e., always outputs σ = s0 for a given current state σ = s0).

Now, we show the following learnability result as an application of Theorem 4.8.1.

Theorem 4.8.5. The following are equivalent:

1. There is no infinitely-often one-way function.
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2. (Universal Average-Case Distributional Learning) For every polynomials s(n), t(n) and t′(n),
t(n)/s(n)-time samplable distributions (i.e., t(n)/s(n)-time computable samplers) are distri-
butionally learnable in polynomial time on average under (unknown) t′(n)-time samplable
distributions with sample complexity O((s(n) + log n) · ε−2δ−1).

3. (Universal Learning ACDs) For every polynomials s(n) and t(n), t(n)-time samplable ACDs
of s(n)-bit initial state are universally learnable in polynomial time with sample complexity
O((s(n) + log n) · ε−2δ−1).

We remark that the dependences of the confidence error δ−1 in sample complexity in item 3 of
Theorem 4.8.5 is improved from δ−2 in [NR06].

Proof. (item 3 ⇒ item 2) holds since distributional learning is a special case of learning ACDs. In
fact, the following proof of (item 1 ⇒ item 3) works even for (item 1 ⇒ item 2).

(item 2 ⇒ item 1) is due to the observation in [KMRRSS94, Theorem 17]. Particularly, an
efficient distributional learner can distinguish any infinitely-often pseudorandom function f = {fn :
{0, 1}s × {0, 1}n → {0, 1}n} from truly random function φn by distributionally learning the dis-
tribution of x ◦ fn(r, x) for x ∼ {0, 1}n. This is because the distribution of x ◦ φn(x) cannot be
statistically approximated by polynomial-size circuits with high probability. Note that this matches
our average-case framework because the secret seed r for f is selected uniformly at random.

We derive (item 1⇒ item 3) from Theorems 4.7.1 and 4.8.1. By the non-existence of infinitely-
often one-way functions and Theorem 4.7.1, there exists the universal extrapolation algorithm UE.
Therefore, we can apply Theorem 4.8.1.

We consider the trivial 1-query cheating learner L?
cheat that directly outputs a sample x obtained

from the oracle. We apply Theorem 4.8.1 for L?
cheat and obtains a learner L that simulates L?

cheat

as in Theorem 4.8.1. Note that L halts in polynomial time in the length of its input.
We construct a learner L′ that learns t(n)-time samplable ACDs of s(n)-bit initial state as

follows: On input 1n, 1ε
−1

, and 1δ
−1

, the learner L′ selects i ∼ [m0], where m0 := m0(n, ε−1, δ−1) =
O((s(n) + log n)δε−2) is a sample complexity as in Theorem 4.8.1. Then, L′ obtains i samples
x1, . . . , xi from the example oracle EXn,s0,D and outputs a hypothesis h that takes a random seed
r for executing L as input and outputs

L(x1 ◦ · · · ◦ xi, ε, ε; 1〈n,s(n),n,τ,δ−1,ε−1〉; r),

where τ = O(m0t(n)) is specified later. It is easy to verify that L′ halts in polynomial time in
n, ε−1, and δ−1, and the query complexity is m0 = O((s(n) + log n)ε−2δ).

We verify that L′ learns every t(n)-time samplable ACDs (G,D) of s(n)-bit initial state. Notice
that G determines a distribution family G = {Gs(n)}n∈N, where each Gs(n) is a distribution of
G(1n). Furthermore, D determines a distribution family D = {Dn,s0}n∈N,s0∈{0,1}≤s(n) , where Dn,s0
is a distribution of an infinitely long string x1x2x3 · · · , where each xi is a i-th sample generated by
D(1n, -) with initial state s0. Then, for every n, ε−1, δ−1 ∈ N, the distribution Gs(n) is samplable
in t(n) time, and for every initial state s0 ∈ {0, 1}≤s, the m0n-bit prefix of Dn,s0 is samplable in
τ = O(m0 ·t(n)) time. Without loss of generality, we can assume τ ≥ t(n). Then, by Theorem 4.8.1,
for every large enough n ∈ N and every ε−1, δ−1 (note that we choose a = 0 and b = n),

Pr
s0,i,x1,...,xi

[
L1(L(x1 ◦ · · · ◦ xi, ε, ε; 1〈n,s(n),n,τ,δ−1,ε−1〉), Labels0,εi ) ≤ ε

]
= Pr

s0,L′,x1,...,xi

[
L1(h(r), Ds0

i (x1, . . . , xi)) ≤ ε
]
≥ 1− δ,
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where s0 ← G(1n), i ∼ [m0], and x1, . . . , xi are samples generated by D(1n, -) with initial state s0.
Therefore, L′ satisfies the requirements in Definition 4.8.4.

4.8.3 Universal Top-k Prediction

In this section, we consider a natural task of predicting the next outcome by producing the top
k most likely candidates with estimated likelihood for a given k ∈ N; e.g., {(sunny, 0.8), (cloudy,
0.15), (rainy, 0.02)} in the weather forecast when k = 3. We show that this learning task is feasible
on average under the non-existence of OWF.

Corollary 4.8.6 (Universal top-k prediction). If there is no infinitely-often one-way function,
then there exist a polynomial-time probabilistic algorithm L and a polynomial mL such that for
every tG(s)-time samplable family G = {Gs}s∈N and every tD(n, |z|)-time samplable family D =
{Dn,z}n∈N,z∈{0,1}∗, where each Gs is over s-bit strings, and each Dn,z is over binary strings, for every
large enough n ∈ N and for every n, s, a, b, k,m, t, ε−1, δ−1, λ−1 ∈ N with t ≥ max{tG(s), tD(n, s)},
k ≤ 2b, and m ≥ mL(log n, s, b, ε−1, δ−1, λ−1), the following hold with probability at least 1 − δ
over the choice of z ∼ Gs, i ∼ [m], x<i ∼ D<in,z: With probability at least 1 − ε over the choice of

xi ∼ Di,x
<i

n,z and the randomness for L, the learner L satisfies the following:

• L(x<i, xi, 1k; 1〈n,s,b,t,ε
−1,δ−1,λ−1〉) outputs (y1, p1), . . . , (yk, pk) ∈ {0, 1}b × [0, 1].

• Let P = {p∗1, . . . , p∗2b} be an ordered multi-set defined as P = {Labelz,x
i

i (y) : y ∈ {0, 1}b} and

p∗j ≥ p∗j+1 for every j ∈ [2b− 1] (i.e., P is a ranking of probabilities of the next labels). Then,
for each j ∈ [k], ∣∣pj − p∗j ∣∣ ≤ λ and

∣∣∣pj − Labelz,x
i

i (yj)
∣∣∣ ≤ λ.

Furthermore, mL(log n, s, b, ε−1, δ−1, λ−1) = O(log n+ r)bλ−2ε−3(log ε−1)δ−1).

Proof. We construct a cheating learner L?
cheat such that for every b, k, λ−1, ε−1 ∈ N with k ≤ 2b

and every distribution Label over {0, 1}b, the learner LLabel
cheat satisfies the following with probability

at least 1− ε/2 over the choice of samples according to Label:

• LLabel
cheat(1

k, 1〈b,λ
−1,ε−1〉) outputs (y1, p1), . . . , (yk, pk) ∈ {0, 1}b × [0, 1];

• Let P = {p∗1, . . . , p∗2b} be an ordered multi-set defined as P = {Label(y) : y ∈ {0, 1}b} and

p∗j ≥ p∗j+1 for every j ∈ [2b − 1]. Then, for each j ∈ [k],∣∣pj − p∗j ∣∣ ≤ λ and |pj − Label(yj)| ≤ λ.

Furthermore, the query complexity of Lcheat is at most q = O(λ−2b log ε−1)
If the above holds, then by Theorem 4.8.1, we obtain an algorithm L′ that simulates Lcheat with

UE. The learner L is defined as

L(x<i, xi, 1k; 1〈n,s,b,t,ε
−1,δ−1,λ−1〉) = L′(x<i, xi, 1k, 1〈b,λ

−1,ε−1〉; 1〈n,s,b,t,4ε
−1δ−1,4ε−1〉),

and the sample complexity function is

mL(log n, s, b, ε−1, δ−1, λ−1) = O((log n+ r)qε−1δ−1ε−2) = O((log n+ r)bλ−2ε−3(log ε−1)δ−1).
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The correctness of L is verified as follows. By Theorem 4.8.1, for every large enough n ∈ N and
r, a, b, k,m, t, ε−1, δ−1, λ−1 ∈ N satisfying the assumptions, with probability at least 1−δε/4 over the

choice of z ∼ Gs, i ∼ [m], x<i ∼ D<in,z, xi ∼ D
i,x<i
n,z , with probability at least 1− ε/2− ε/4 = 1− 3ε/4

over the choice of randomness for L′, the output (y1, p1), . . . , (yk, pk) of L′ (i.e., L) satisfies the same
property as Lcheat. By the simple probabilistic argument (i.e., Markov’s inequality and the Union

bound) with probability at least 1 − δ over the choice of z ∼ Gs, i ∼ [m], x<i ∼ D<in,z, xi ∼ D
i,x<i
n,z ,

and with probability at least 1− 3ε/4− ε/4 = 1− ε over the choice of xi ∼ Di,x
<i

n,z and randomness
for L, the same event occurs.

Therefore, the remaining of the proof is the construction of Lcheat, which follows from the
standard empirical estimation. On input 1k, 1〈b,λ

−1,ε−1〉, the learner Lcheat obtains q := 8λ−2b ln 4ε−1

samples z1, . . . , zq ∈ {0, 1}b from Label and counts my := |{i ∈ [q] : zi = y}| for every y ∈ {0, 1}b.
Let ỹ1, . . . , ỹ2b ∈ {0, 1}b be the ordering of {0, 1}b according to the largeness of my, i.e., mỹj ≥ mỹj+1

for each j ∈ [2b − 1]. Then, Lcheat outputs k pairs (ỹ1,mỹ1/q), . . . , (ỹk,mỹk/q).
We verify the correctness of Lcheat. For each j ∈ [2b], let pj = mỹj/q. Notice that p1 ≥ p2 ≥

· · · ≥ p2b . For each y ∈ {0, 1}b, by Hoeffding’s inequality, it holds that my/q ∈ [Label(y) ± λ/4]

with probability at least 1− 2e−2q(λ/4)2 ≥ 1− e−b · ε/2 ≥ 1− 2−b · ε/2. By the union bound, every
y ∈ {0, 1}b satisfies that my/q ∈ [Label(y)±λ/4] with probability at least 1− ε/2. We assume that
this event occurs. Then, for every j ∈ [k], it trivially holds that |pj−Label(ỹj)| ≤ λ/4 ≤ λ. We also
show that |pj − p∗j | ≤ λ (it indeed holds for any j ∈ [2b]) as follows: Let y∗1, . . . , y

∗
2b

be the ordering

of {0, 1}b such that p∗j = Label(y∗j ) for each j, where we break ties arbitrarily. Let ` ∈ [2b] be an
index such that ỹ` = y∗1. Then, for any j < `, it holds that Label(y∗1)− Label(ỹj) ≤ λ/2; otherwise,

p` ≥ Label(ỹ`)− λ/4 = Label(y∗1)− λ/4 > Label(ỹj) + λ/2− λ/4 ≥ (pj − λ/4) + λ/4 = pj .

This implies that |pj − p∗j | ≤ λ for every j ≤ ` because (i) there are at least ` elements (including
y∗1) whose outcome probability according to Label is at least Label(y∗1) − λ/2; (ii) thus, p∗j ≥
Label(y∗1)− λ/2 for every j ≤ `; and (iii) it holds that, for every j ≤ `,

pj ≥ p` ≥ Label(ỹ`)− λ/4 = Label(y∗1)− λ/4 ≥ Label(y∗j )− λ/4 = p∗j − λ/4 ≥ p∗j − λ

and
pj ≤ Label(ỹj) + λ/4 ≤ Label(y∗1) + λ/4 ≤ p∗j + λ/2 + λ/4 ≤ p∗j + λ.

Next, let `′(> `) be an index such that Label(ỹ`′) = maxj>` Label(ỹj). By the same argument as
above, we can show that |pj − p∗j | ≤ λ for every j ∈ N with ` + 1 ≤ j ≤ `′. We continue this

argument until we run out of all elements and obtain that |pj − p∗j | ≤ λ for every j ∈ [2b].

4.8.4 Universal Likelihood Estimation

In this section, we consider a natural task of estimating the probability that a given label is observed
as the next outcome within an additive error; e.g., the probability of “rainy” in the weather forecast.
We show that this learning task is also feasible on average under the non-existence of OWF.

Corollary 4.8.7 (Universal likelihood estimation). If there is no infinitely-often one-way function,
then there exist a polynomial-time probabilistic algorithm L and a polynomial mL such that for
every tG(s)-time samplable family G = {Gs}s∈N and every tD(n, |z|)-time samplable family D =
{Dn,z}n∈N,z∈{0,1}∗, where each Gs is over s-bit strings, and each Dn,z is over binary strings, for
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all large enough n ∈ N, all s, a, b, k,m, t, ε−1, δ−1, λ−1 ∈ N with t ≥ max{tG(s), tD(n, s)} and
m ≥ mL(log n, s, k, ε−1, δ−1, λ−1), and all y1, . . . , yk ∈ {0, 1}b, the following holds with probability
at least 1− δ over the choice of z ∼ Gs, i ∼ [m], x<i ∼ D<in,z: With probability at least 1− ε over the

choice of xi ∼ Di,x
<i

n,z and randomness for L, the learner L satisfies the following:

L(x<i, xi, y1, . . . , yk; 1〈n,s,t,ε
−1,δ−1,λ−1〉) outputs p1 . . . , pk ∈ [0, 1] satisfying that, for each

j ∈ [k], ∣∣∣pj − Labelz,x
i

i (yi)
∣∣∣ ≤ λ.

Furthermore, mL(log n, s, k, ε−1, δ−1, λ−1) = O((log n+ s)λ−2ε−3(log ε−1)δ−1 log k).

Proof. The outline is the same as the proof of Corollary 4.8.6. First, we construct a cheating learner
L?
cheat such that for every b, k, λ−1 ∈ N, every y1, . . . , yk ∈ {0, 1}b, and every distribution Label over
{0, 1}b, the learner LLabel

cheat satisfies the following with probability at least 1− ε/2 over the choice of
samples drawn from Label:

LLabel
cheat(y1, . . . , yk, 1

〈λ−1,ε−1〉) outputs p1 . . . , pk ∈ [0, 1] satisfying that |pj − Label(yi)| ≤ λ
for each j ∈ [k].

Furthermore, the query complexity of Lcheat is at most q = O(λ−2 log(kε−1)).
Then, by Theorem 4.8.1, we obtain a learner L′ that simulates Lcheat by UE and construct the

learner L is defined as

L(x<i, xi, y1, . . . , yk; 1〈n,s,t,ε
−1,δ−1,λ−1〉) = L′(x<i, xi, y1, . . . , yk, 1

〈λ−1,ε−1〉; 1〈n,s,b,t,4ε
−1δ−1,4ε−1〉),

and the sample complexity function is

mL(log n, s, k, ε−1, δ−1, λ−1) = O((log n+ s)qε−1δ−1ε−2) = O((log n+ s)λ−2ε−3(log ε−1)δ−1 log k).

The correctness of L is verified in the same way as Corollary 4.8.6. Thus, we only present the
construction of Lcheat.

The cheating learner Lcheat is constructed based on the standard empirical estimation. On input
y1, . . . , yk and 〈λ−1, ε−1〉, the learner Lcheat obtains q := 2−1λ−2 ln(4kε−1) samples z1, . . . , zq ∈
{0, 1}b from Label and counts mj := |{i ∈ [q] : zi = yj}| for each j ∈ [k]. Then, Lcheat outputs
pj = mj/q for each j ∈ [k].

The correctness of Lcheat is verified as follows. By Hoeffding’s inequality, it holds that mj/q ∈
[Label(yj) ± λ] with probability at least 1 − 2e−2qλ2 ≥ 1 − ε/(2k). By the union bound, it holds
that pj = mj/q ∈ [Label(yj)± λ] for all j ∈ [k] with probability at least 1− ε/2.

4.9 Minimizing Expected Loss by Universal Extrapolation

In this section, we focus on minimizing the expected loss in the online learning framework in
Section 4.8. We show that if the value of the loss function is bounded above by c > 0, then we can
obtain the lower bound of the required number of stages as a function in c instead of the number
of queries. As an application, we obtain a universal agnostic learner of better sample complexity
than ones obtained directly from Theorem 4.8.1.

As in Section 4.8, we use a ∈ N∪ {0} and b,m ∈ N to refer to the size of advice string, the size
of each label, and the total number of stages (i.e., sample complexity), respectively. The learning
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framework and notations are also the same as in Section 4.8, and the only differences are the
following: (i) a learner is given a past stream x<i and advice information xi and chooses an action
αx<i,xi from a set A of actions; and (ii) the goal of the learner is to minimize the expected loss with
respect to a loss function l : A× {0, 1}b → R≥0, i.e., the learner tries to minimize

E
xi,yi

[l(αx<i,xi , y
i)],

where xi ∼ Di,x
<i

n,z and yi ∼ Labelz,x
i

i .

First, we present the meta-theorem for minimizing the expected loss, which yields better sam-
ple complexity when the cheating learner requires polynomially many queries for minimizing the
expected loss with respect to a loss function bounded above by a small value.

Definition 4.9.1 (Action set and bounded loss function). An action set A = {Aw,b}w∈{0,1}∗,b∈N
is defined as a family of subsets, where Aw,b ⊆ {0, 1}∗. For a function c : {0, 1}∗ × N → R≥0, a
loss function l : {0, 1}∗ × {0, 1}∗ → R≥0 is said to be c-bounded (with respect to A) if for every
w ∈ {0, 1}∗, every b ∈ N, every α ∈ Aw,b, and every y ∈ {0, 1}≤b, it holds that l(α, y) ≤ c(w, b).

Theorem 4.9.2. Let A = {Aw,b}w∈{0,1}∗,b∈N be an action set, and let l : {0, 1}∗ × {0, 1}∗ →
R≥0 be a c-bounded loss function (with respect to A) for a polynomial-time computable function
c : {0, 1}∗ × N→ R≥0.

Suppose that UE in Theorem 4.7.1 exists. Then, for every oracle machine (cheating learner)
L?
cheat that outputs an action in a set Aw,b with polynomial-time computable query complexity

q(w) (where w denotes an input for L?
cheat, and b denotes the length of each label), there exist

a polynomial m0 and a randomized algorithm L that outputs an action in the same set Aw,b sat-
isfying the following: for every tG(s)-time samplable family G = {Gs}s∈N and every tD(n, |z|)-
time samplable family D = {Dn,z}n∈N,z∈{0,1}∗, where each Gs is over s-bit strings, and each
Dn,z is over binary strings, there exists n0 ∈ N such that for every n, s, a, b, t, ε−1, δ−1 ∈ N
with n ≥ n0 and t ≥ max{tG(s), tD(n, s)}, every auxiliary input w ∈ {0, 1}∗, and every m ≥
m0(log n, s, c(w, b), ε−1, δ−1),

Pr
z,i,x<i

[
E

xi,yi,L

[
l(L(x<i, xi, w; 1〈n,r,b,t,ε

−1,δ−1〉), yi)
]
≤ E

xi

[
min

α∈Aw,b
E
yi

[l(α, yi)]

]
+ 2∆Lcheat(w, b) + ε

]
≥ 1−δ,

where z ∼ Gr, i ∼ [m], x<i ∼ D<in,z, xi ∼ D
i,x<i
n,z , yi ∼ Labelz,x

i

i , and

∆Lcheat(w, b) := sup
O:distribution over {0,1}≤b

(
E

O,y∼O
[l(LOcheat(w), y)]− min

α∈Aw,b
E
y∼O

[l(α, y)]

)
.

Furthermore, m0(log n, s, c, ε−1, δ−1) = O((log n + s) · c2 · ε−2δ−2), n0 = n′(d(G), d(D)) for a
universal function n′ : N × N → N, and L halts in polynomial time in the input length and the
running time of Lcheat.

The proof is given in Section 4.9.1. As an application, we show that average-case universal
agnostic learning with optimal sample complexity (for the 0-1 loss) is feasible under the non-
existence of one-way functions in Section 4.9.2. In Section 4.9.3, we consider agnostic learning for
general loss functions in the case in which the number of labels is polynomially bounded.
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4.9.1 A Proof of Meta-Theorem

First, we show the following key lemma.

Lemma 4.9.3. Let b ∈ N. Let A ⊆ {0, 1}∗, and let l : A × {0, 1}≤b → R≥0 be a loss function
satisfying that there exists C > 0 such that l(α, y) ≤ C for every α ∈ A and y ∈ {0, 1}≤b.

For every distribution D on {0, 1}∗ such that D has a tD-time sampler described by d bits, and
for every t, a, b,m ∈ N with t ≥ τdom(d, tD),

E
i,x<i,xi

 ∑
y∈{0,1}≤b

∣∣Nextb(D, x<ixi)(y)− Nextb(Q
t, x<ixi)(y)

∣∣ ·max
α∈A

l(α, y)

 ≤ C ·√O(d)

m
,

and for every oracle machine I? that outputs a string in A,

E
i,x<i,xi

[∣∣∣∣ E
y∼Nextb(Qt,x<ixi)

[l(INextb(D,x
<ixi), y)]− E

y∼Nextb(D,x<ixi)
[l(INextb(D,x

<ixi), y)]

∣∣∣∣] ≤ C ·
√
O(d)

m
,

where i ∼ [m], x<i ∼ D<i, xi ∼ Di,x<i, and the hidden constant in O(d) depends on only the
universal Turing machine.

Proof. The first claim is verified as follows:

E
i,x<i,xi

 ∑
y∈{0,1}≤b

∣∣Nextb(D, x<ixi)(y)− Nextb(Q
t, x<ixi)(y)

∣∣ ·max
α∈A

l(α, y)


≤ C · E

i,x<i,xi

 ∑
y∈{0,1}≤b

∣∣Nextb(D, x<ixi)(y)− Nextb(Q
t, x<ixi)(y)

∣∣
= 2C · E

i,x<i,xi

[
L1
(
Nextb(D, x<ixi),Nextb(Qt, x<ixi)

)]
≤ 2C · E

i,x<i,xi

[√
2−1 ·KL (Nextb(D, x<ixi)||Nextb(Qt, x<ixi))

]
≤
√

2C ·
√

E
i,x<i,xi

[KL (Nextb(D, x<ixi)||Nextb(Qt, x<ixi))]

≤
√

2C ·
√
O(d)

m
= C ·

√
O(d)

m
,

where the first inequality holds by l(α, y) ≤ C for every α ∈ A and y ∈ {0, 1}≤b, the second
inequality follows from Pinsker’s inequality (Fact 4.5.1), the third inequality follows from Jensen’s
inequality, the last inequality follows from Lemma 4.8.2 for a trivial 1-query algorithm I that
outputs a sample obtained from the oracle.
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The second claim is also verified as follows.

E
i,x<i,xi

[∣∣∣∣ E
y∼Nextb(Qt,x<ixi)

[l(INextb(D,x
<ixi), y)]− E

y∼Nextb(D,x<ixi)
[l(INextb(D,x

<ixi), y)]

∣∣∣∣]

= E
i,x<i,xi

∣∣∣∣∣∣
∑

y∈{0,1}≤b
(Nextb(Q

t, x<ixi)(y)− Nextb(D, x<ixi)(y))E[l(INextb(D,x
<ixi), y)]

∣∣∣∣∣∣


≤ E
i,x<i,xi

 ∑
y∈{0,1}≤b

∣∣Nextb(Qt, x<ixi)(y)− Nextb(D, x<ixi)(y)
∣∣ ·max

α∈A
l(α, y)


≤ C ·

√
O(d)

m
,

where the last inequality follows from the first claim.

Now, we derive Theorem 4.9.2 from Theorem 4.7.1 and Lemma 4.9.3, which is a time-bounded
variant of the theory of universal prediction in [MF98].

Proof of Theorem 4.9.2. Let UE be the universal extrapolation algorithm in Theorem 4.7.1. We
use the same notations nUE and τUE as in Theorem 4.7.1.

For every tG(s)-time samplable distribution family G and every tD(n, |z|)-time samplable dis-
tribution family D, we define another distribution family D′ = {D′〈n,s〉}n,s∈N as D′〈n,s〉 ≡ Dn,Gs . It

holds that d(D′) = O(d(G) + d(D)). Let n1 : N× N→ N be a function such that n1(d(G), d(D)) =
nUE(d(D′)) = 2O(d(G)+d(D)). Furthermore, we define a polynomial τ0(t, t′) such that for every
n, s ∈ N, the distribution D〈n,s〉 is samplable in time τ0(tG(s), tD(n, s)).

As the proof of Theorem 4.8.1, we construct L that executes Lcheat, where the query access to
Label is simulated by UE. On input x<i, xi, w, 1〈n,s,b,t,ε

−1,δ−1〉, the learner L executes the cheating

learner L?
cheat(w), where L answers each query to Labelz,x

i

i by

ans← UE(x<ixi; 1〈n,s,b,t
′,ε′−1,8Cε−1δ−1〉)

for t′ = max{τUE(〈n, s〉, τ0(t, t)), τ1(n, s, t)}, C := c(w, b), and ε′ = ε/(4Cq(w)) (with fresh random-
ness for each access), where τ1 is a polynomial specified later. It is easy to verify that L halts in
polynomial time in the input length and the running time of Lcheat. Below, we show the correctness
of L. For readability, we omit the parameters for L and UE.

For the correctness, we evaluate the following expectation for z ∼ Gs, i ∼ [m], x<i ∼ D<in,z:

E
xi,yi,L

[
l(L(x<i, xi, w), yi)

]
,

where xi ∼ Di,x
<i

n,z , yi ∼ Labelz,x
i

i .
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For every z, i, x<i, we have

E
xi,yi,L

[
l(L(x<i, xi, w), yi)

]
= E

xi,L

 ∑
yi∈{0,1}≤b

Nextb(Dn,z, x<ixi)(yi) · l(L(x<i, xi, w), yi)


≤ E

xi,L

 ∑
yi∈{0,1}≤b

(Nextb(Q
t, x<ixi)(y) + |Nextb(Dn,z, x<ixi)(yi)− Nextb(Q

t, x<ixi)(y)|) · l(L(x<i, xi, w), yi)


= S1 + S2,

where

S1 := E
xi,L

 ∑
yi∈{0,1}≤b

Nextb(Q
t, x<ixi)(yi) · l(L(x<i, xi, w), yi)


= E

xi,L

[
E

yi∼Nextb(Qt,x<ixi)
[l(L(x<i, xi, w), yi)]

]

S2 := E
xi,L

 ∑
yi∈{0,1}≤b

|Nextb(Dn,z, x<ixi)(yi)− Nextb(Q
t, x<ixi)(yi)| · l(L(x<i, xi, w), yi)


≤ E

xi

 ∑
yi∈{0,1}≤b

|Nextb(Dn,z, x<ixi)(yi)− Nextb(Q
t, x<ixi)(yi)| · max

α∈Aw,b
l(α, yi)

 .
First, we show the upper bound on S2. Let D be the sampler for D described by d(D) bits. We

choose a sufficiently large constant c ≥ 1 so that (i) for every d, d′ ∈ N, n1(d, d′) ≤ 2c(d+d′), and (ii)
for every n, s ∈ N and z ∈ {0, 1}s, the sampler D(1n, z; -) is described by c(d(D) + log n+ s) bits.
Let n′(d, d′) := 2c(d+d′) ≥ n1(d, d′) and n0 := n′(d(G), d(D)).

By Lemma 4.9.3, there exists a polynomial τ1 such that for every n, s, t,m, a, b ∈ N, z ∈ {0, 1}s,
and w ∈ {0, 1}∗ with n ≥ n0 and t ≥ τ1(n, s, tD(n, s)),

E
i,x<i

[S2] ≤ E
i,x<i,xi

 ∑
yi∈{0,1}≤b

|Nextb(Dn,z, x<ixi)(yi)− Nextb(Q
t, x<ixi)(yi)| · max

α∈Aw,b
l(α, yi)


≤ C ·

√
O(d(D) + log n+ s)

m

≤
√
c′C2(s+ log n)

m
,

for some universal constant c′ > 0, where we use the fact that log n ≥ log n0 ≥ d(D).

Let m0 := 256c′C2(s+logn)
ε2δ2 = O(C

2·(s+logn)
ε2δ2 ). Then, for every m ≥ m0, we have

E
i,x<i

[S2] ≤
√
c′C2(s+ log n)

m
≤

√
c′C2(s+ log n)

m0
=
εδ

16
.
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It is easy to verify that S2 is always non-negative. Thus, by Markov’s inequality,

Pr
i,x<i

[
S2 ≤

ε

4

]
≥ 1− δ

4
. (4.6)

We remark that the above holds for any n, s, t,m, ε−1, δ−1, a, b ∈ N, any z ∈ {0, 1}s, and any
w ∈ {0, 1}∗ satisfying that n ≥ n0, t ≥ τ1(n, s, tD(n, s)), and m ≥ m0.

Next, we show the upper bound on S1. For readability, we omit “, x<ixi” from Nextb(Q
t′ , x<ixi)

and Nextb(D, x<ixi) and write them as Nextb(Q
t′) and Nextb(D), respectively.

For each xi ∈ supp(Di,x
<i

n,z ), we define Exi and S′
1,xi

as follows:

Exi := E
L,yi∼Nextb(Qt′ )

[l(L(x<i, xi, w), yi)− l(LNextb(Q
t′ )

cheat (w), yi)]

S′1,xi :=

∣∣∣∣∣ E
yi∼Nextb(Qt′ )

[l(L
Nextb(Dn,z)
cheat (w), yi)]− E

yi∼Nextb(Dn,z)
[l(L

Nextb(Dn,z)
cheat (w), yi)]

∣∣∣∣∣ .
Then, we have

S1 = E
xi,L,yi∼Nextb(Qt′ )

[l(L(x<i, xi, w), yi)]

= E
xi,yi∼Nextb(Qt′ )

[l(L
Nextb(Q

t′ )
cheat (w), yi)] + E

xi
[Exi ]

≤ E
xi

[
min

α∈Aw,b
E

yi∼Nextb(Qt′ )
[l(α, yi)]

]
+ ∆Lcheat(w, b) + E

xi
[Exi ]

≤ E
xi

[
E

yi∼Nextb(Qt′ )
[l(L

Nextb(Dn,z)
cheat (w), yi)]

]
+ ∆Lcheat(w, b) + E

xi
[Exi ]

≤ E
xi

[
S′1,xi

]
+ E
xi

[
E

yi∼Nextb(Dn,z)
[l(L

Nextb(Dn,z)
cheat (w), yi)]

]
+ ∆Lcheat(w, b) + E

xi
[Exi ]

≤ E
xi

[
S′1,xi

]
+ E
xi

[
min

α∈Aw,b
E

yi∼Nextb(Dn,z)
[l(α, yi)]

]
+ 2∆Lcheat(w, b) + E

xi
[Exi ]

= E
xi

[
min

α∈Aw,b
E

yi∼Labelz,x
i

i

[l(α, yi)]

]
+ 2∆Lcheat(w, b) + E

xi

[
S′1,xi

]
+ E
xi

[Exi ],

where the first and last inequalities follow from the definition of ∆Lcheat(w, b).
For all n, s,m, t, ε−1, δ−1, a, b ∈ N, i ∈ [m], and w ∈ {0, 1}∗ with n ≥ n0, m ≥ m0, and

t ≥ max{tG(s), tD(n, s)}, we have that t′ ≥ τUE(〈n, s〉, τ0(t, t)) ≥ τUE(〈n, s〉, τ0(tG(s), tD(n, s))),
and by Theorem 4.7.1,

Pr
z∼Gs,x<i∼D<in,z ,xi∼Di,x

<i
n,z

[
L1
(
UE(x<ixi; 1〈n,s,b,t

′,ε′−1,8Cε−1δ−1〉),Nextb(Q
t′ , x<ixi)

)
≤ ε

4Cq(w)

]
≥ 1− εδ

8C
.

By Markov’s inequality,

Pr
z,x<i

[
Pr
xi

[
L1
(
UE(x<ixi),Nextb(Q

t′)
)
≤ ε

4Cq(w)

]
≥ 1− ε

4C

]
≥ 1− δ

2
(4.7)
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Remember that (i) L simulates the oracle access by Lcheat by UE(x<ixi); and (ii) Lcheat makes
at most q(w) times. Thus, for every w ∈ {0, 1}∗ and every z, x<i, xi satisfying the event in inequal-
ity (4.7), it holds that

L1(L(x<i, xi, w), L
Nextb(Q

t′ )
cheat (w)) = L1(L

UE(x<ixi)
cheat (w), L

Nextb(Q
t′ )

cheat (w)) ≤ q(w) · ε

4Cq(w)
=

ε

4C

and

Exi = E
L,yi∼Nextb(Qt′ )

[l(L(x<i, xi, w), yi)− l(LNextb(Q
t′ )

cheat (w), yi)]

≤ max
y∈{0,1}≤b

E
L,Nextb(Qt

′ )
[l(L(x<i, xi, w), y)− l(LNextb(Q

t′ )
cheat (w), y)]

≤ max
y∈{0,1}≤b

∑
α∈Aw,b

(
Pr[L(x<i, xi, w) = α]− Pr[L

Nextb(Q
t′ )

cheat (w) = α]

)
· l(α, y)

≤ max
α′∈Aw,b,y∈{0,1}≤b

l(α′, y) ·
∑

α∈Aw,b

(
Pr[L(x<i, xi, w) = α]− Pr[L

Nextb(Q
t′ )

cheat (w) = α]

)
≤ C · ε

4C
=
ε

4
.

Thus, we have that, for every z, x<i satisfying the event in inequality (4.7),

E
xi

[Exi ] = E
xi,L,yi∼Nextb(Qt′ )

[l(L(x<i, xi, w), yi)− l(LNextb(Q
t′ )

cheat (w), yi)]

≤ 1 · ε
4

+
ε

4C
max

α,α′∈Aw,b,y∈{0,1}≤b

(
l(α, y)− l(α′, y)

)
≤ ε

4
+

ε

4C
· C =

ε

2
.

We also evaluate S′
1,xi

in the same way as S2. By Lemma 4.9.3, we have that, for every

n, s, t,m, a, b ∈ N, z ∈ {0, 1}s, and w ∈ {0, 1}∗ with n ≥ n0, t ≥ τ1(n, s, tD(n, s)), and m ≥ m0,

E
i,x<i

[E
xi

[S′1,xi ]] ≤
√
c′C2(s+ log n)

m
≤

√
c′C2(s+ log n)

m0
=
εδ

16
.

Since S′
1,xi

is always non-negative, by Markov’s inequality,

Pr
i,x<i

[
E
xi

[S′1,xi ] ≤
ε

4

]
≥ 1− δ

4
. (4.8)

Since t′ ≥ τ1(n, s, t) ≥ τ1(n, s, tD(n, s)), by inequalities (4.6), (4.7), and (4.8) and the union
bound, for every w ∈ {0, 1}∗, it holds that (i) Exi [Exi ] ≤ ε/2, (ii) Exi [S′1,xi ] ≤ ε/4, and (iii)

S2 ≤ ε/4 with probability at least 1− δ over the choice of z ∼ Gs, i ∼ [m], and x<i ∼ D<in,z. In this
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case, we have

E
xi,yi,L

[
l(L(x<i, xi, w), yi)

]
≤ S1 + S2

≤ E
xi

[
min

α∈Aw,b
E

yi∼Labelz,x
i

i

[l(α, yi)]

]
+ 2∆Lcheat(w, b) + E

xi

[
S′1,xi

]
+ E
xi

[Exi ] + S2

≤ E
xi

[
min

α∈Aw,b
E

yi∼Labelz,x
i

i

[l(α, yi)]

]
+ 2∆Lcheat(w, b) +

ε

2
+
ε

4
+
ε

4

= E
xi

[
min

α∈Aw,b
E

yi∼Labelz,x
i

i

[l(α, yi)]

]
+ 2∆Lcheat(w, b) + ε.

Hence, we conclude that

Pr
z,i,x<i

[
E

xi,yi,L

[
l(L(x<i, xi, w), yi)

]
≤ E

xi

[
min

α∈Aw,b
E

yi∼Labelz,x
i

i

[l(α, yi)]

]
+ 2∆Lcheat(w, b) + ε

]
≥ 1− δ.

4.9.2 Universal Agnostic Learning

We introduce the average-case variant of agnostic learning and show that universal average-case
agnostic learning is feasible under the non-existence of one-way functions.

In this section, we define a sampler of example size n as a multi-output circuit that outputs
a pair (x, y) ∈ {0, 1}n × {0, 1}poly(n) (we call x an example and y a label of x). For any sampler
S : {0, 1}` → {0, 1}n × {0, 1}poly(n), we use the notation S(1) (resp. S(2)) to refer to the circuit
that produces the first (resp. second) half element of S, i.e., S(r) = (S(1)(r), S(2)(r)) for each seed
r ∈ {0, 1}`. For convenience, we may identify a sampler S : {0, 1}` → {0, 1}n × {0, 1}poly(n) with a
distribution of S(r), where r ∼ {0, 1}`. For each sampler S, we define an example oracle EXS as
the oracle that returns (x, y) ∼ S for each access. For simplicity, we define the time complexity of
sampler as a function in the example size n instead of the seed length `. For any t, s ∈ N, we say
that a sampler S of example size n is t/s-time computable if there exists a program ΠS ∈ {0, 1}≤s
such that U t(ΠS , r) = S(r[`]) for each seed r ∈ {0, 1}t.

In the original agnostic learning model in [KSS94], a learner for a concept class C is given
access to EXS for an unknown sampler S, and the task is to approximate the best function in C
that approximates the label under S (more generally, the best function in C that minimizes the
expected loss for some loss function) for all samplers S (i.e., in the worst case with respect to S).

To introduce the average-case variant of agnostic learning, we define a distribution on samplers
as a family D = {Dn}n∈N of distributions, where Dn is a distribution on descriptions of a sampler
of example size n. Note that, for every distribution D on samplers and every n ∈ N, we use
the notation Dn to the n-th distribution in D, i.e., the distribution on descriptions of samplers of
example size n. Then, our learning model is formulated as follows.

Definition 4.9.4 (Agnostic learning on average). Let b : N → N be a size of each label. Let C be
a concept class defined as a subset of {f : {0, 1}n → {0, 1}b(n) : n ∈ N} and D be a distribution on
samplers S over {0, 1}n×{0, 1}b(n) for the example size n. Let l : {0, 1}∗×{0, 1}∗ → R≥0 be a loss
function.
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We say that a randomized oracle L, referred to as an agnostic learner, agnostically learns C
on average under D for a loss function l if for every sufficiently large n ∈ N, every ε−1, δ−1 ∈ N,
the learner L(1n, 1ε

−1
, 1δ
−1

) is given access to EXS, where S is an unknown target sampler over
{0, 1}n × {0, 1}b(n) selected according to Dn, and outputs a circuit h : {0, 1}n → {0, 1}b(n) such that

E
(x,y)∼S

[l(h(x), y)] ≤ optC (S) + ε,

where
optC (S) = min

f∈C
E

(x,y)∼S
[l(f(x), y)]

with probability at least 1 − δ over the choice of S ∼ Dn, EXS, and randomness for L. We
define a sample complexity m(n, ε, δ) of L as the upper bound on the number of query access by
L(1n, 1ε

−1
, 1δ
−1

) for each n, ε−1, δ−1 ∈ N.
Let D be a class of distributions on samplers. We say that C is agnostic learnable in polynomial

time on average under D for a loss function l if there exists a polynomial-time agnostic learner
that agnostically learns C on average under D for every (unknown) D ∈ D .

If we do not specify the loss function, we always assume the 0-1 loss function l defined as

l(ỹ, y) =

{
1 if ỹ 6= y

0 if ỹ = y.

In this case, the requirement for the hypothesis h in Definition 4.9.4 is simply written as follows:

Pr
(x,y)∼S

[h(x) 6= y] ≤ optC (S) + ε = min
f∈C

Pr
(x,y)∼S

[f(x) 6= y] + ε.

Now, we show the following learnability result on universal agnostic learning from Theo-
rem 4.9.2, which is a formal statement of Theorem 4.2.2.

Theorem 4.9.5. The following are equivalent:

1. There is no infinitely-often one-way function.

2. For every polynomials b(n), s(n), t(n), and t′(n), the class F = {f : {0, 1}n → {0, 1}b(n) :
n ∈ N} is agnostically learnable in polynomial time on average under (unknown) t′(n)-
time samplable distributions over t(n)/s(n)-time computable samplers with sample complexity
m(n, ε, δ) = O(s(n)ε−2 log δ−1).

Note that the sample complexity in item 2 is optimal when δ is constant, as observed in Sec-
tion 4.9.4.

Proof. The implication item 2⇒ item 1 is due to [GGM86; HILL99] and the observation in [Val84].
Thus, we only show the implication item 1 ⇒ item 2.

Suppose that there is no infinitely-often one-way function (item 1). Then, there exists the
universal extrapolation algorithm UE in Theorem 4.7.1.

First, we construct an agnostic learner as a cheating learner L?
cheat as follows: On input 1ε

−1
, 1b

(where ε−1, b ∈ N) and given access to distribution Label over {0, 1}≤b, the learner L?
cheat obtains

q := (96)2(b + 1)ε−2 ln(192ε−1) samples y1, . . . , yq from Label and outputs the most frequently
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sampled label ỹ ∈ {0, 1}≤b, i.e., ỹ = yĩ for ĩ = arg maxi∈[q] |{j ∈ [q] : yi = yj}|. Trivially, L?
cheat

halts in poly(ε−1, b) time.
We apply Theorem 4.9.2 for L?

cheat to obtain the learner L′ that simulates L?
cheat. We can show

that L′ satisfies the following property:

Claim 4.9.6. There exists a polynomial m0(n, ε−1, δ−1) = O(s(n)ε−2δ−2) such that for every t′(n)-
time samplable distribution D over t(n)/s(n)-time computable samplers, every large enough n ∈ N,
every ε−1, δ−1 ∈ N,

Pr
S,i,(x1,y1),...,(xi−1,yi−1)

[
Pr

(x,y)∼S,L′
[L′(x<i, x, 1ε

−1
, 1b(n); 1〈n,s(n),b(n),τ,16ε−1,δ−1〉) 6= y] ≤ optF (S) +

ε

8

]
≥ 1−δ,

where m = m0(n, ε−1, δ−1), S ∼ Dn, i ∼ [m], (x1, y1), . . . , (xi−1, yi−1) ∼ S, x<i = x1y1 · · ·xi−1yi−1,
and τ = O(t′(n) + t(n)m).

First, we assume Claim 4.9.6 and show Theorem 4.9.5.
We construct an agnostic learner L for a fixed confidence error δ = 1/4 with sample complexity

O(s(n)ε−2). To reduce the confidence error 1/4 to arbitrary δ ∈ (0, 1] given as a parameter, it
suffices to repeat L O(log δ−1) times with the accuracy error ε/2 and outputs the best hypothesis
by empirically estimating the accuracy error of each hypothesis within the approximation error
±ε/2 (see [HKLW88]). The time and sample complexity is affected only by the multiplicative factor
O(log δ−1) (note that the emprical estimation only requires additional O(ε−2 log δ−1) samples).

The construction of L is as follows: On input 1n, 1ε
−1

and given access to EXS , where S is an
unknown t(n)/s(n)-time computable sampler of example size n drawn from an unknown t′(n)-time
samplable distribution Dn, the learner L selects i ∼ [m], where m = m0(n, ε−1, 8) and m0 is the
polynomial in Claim 4.9.6, and obtains i− 1 samples (x1, y1), . . . , (xi−1, yi−1) from EXS . Then, L
selects a sufficiently long random string r and outputs a circuit (i.e., hypothesis) hr that is taken
x ∈ {0, 1}n as input and outputs

y = L′(x1y1 · · ·xi−1yi−1, x, 1ε
−1
, 1b(n); 1〈n,s(n),b(n),τ,16ε−1,8〉; r),

where τ = O(t′(n) + t(n)m) indicated in Claim 4.9.6.
It is not hard to verify L halts in poly(n, ε−1) time. In addition, the sample complexity is

m0(n, ε−1, 8) = O(s(n)ε−2). We also verify the correctness of L as follows. By Claim 4.9.6, with
probability at least 7/8 over the choice of S, i, (x1, y1), . . . , (xi−1, yi−1), it holds that

0 ≤ Pr
(x,y)∼S,r

[hr(x) 6= y]− optF (S) ≤ ε/8,

where the non-negativity follows from the definition of optF (S). Thus, by Markov’s inequality,

Pr
r

[
Pr

(x,y)∼S
[hr(x) 6= y]− optF (S) ≤ ε

]
≥ 7/8.

By the union bound, with probability at least 1- 1/8 -1/8= 3/4 over the choice of S, randomness
for L, and samples drawn from EXS , the learner L outputs a hypothesis hr that satisfies

Pr
(x,y)∼S

[hr(x) 6= y] ≤ optF (S) + ε.

In the remainder, we show Claim 4.9.6.
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Proof of Claim 4.9.6. First, we analyze the performance of the cheating learner L?
cheat. Let Label

be an arbitrary distribution over {0, 1}≤b. Let y∗ be the label mostly generated according to Label,
i.e., y∗ := arg maxy∈{0,1}≤b Label(y) (breaking ties arbitrarily). Remember that LLabel

cheat collects

q := (96)2(b+ 1)ε−2 ln(192ε−1) samples y1, . . . , yq. By Hoeffding’s inequality, for each y ∈ {0, 1}≤b,
the estimated outcome probability p̃y = |{i ∈ [q] : yi = y}|/q satisfies that Label(y)− ε/96 ≤ p̃y ≤
Label(y) + ε/96 with probability at least 1− 2e2q(ε/96)2 ≥ 1− (ε/96) · 2−(b+1). By the union bound,
Label(y)− ε/96 ≤ p̃y ≤ Label(y) + ε/96 holds for all y ∈ {0, 1}≤b with probability at least 1− ε/96.
Under this event, the probability that the output ỹ of LLabel

cheat corresponds to y ∼ Label is at least

Label(ỹ) ≥ p̃ỹ − ε/96 ≥ p̃y∗ − ε/96 ≥ Label(y∗)− ε/48.

In this case, we have that

Pr
Label,y∼Label

[LLabel
cheat(1

ε, 1b) 6= y|∀p̃y ∈ Label(y)± ε/96] ≤ Pr
y∼Label

[y 6= y∗] + ε/48

= min
ỹ∈{0,1}≤b

Pr
y∼Label

[y 6= ỹ] + ε/48.

Therefore, for every ε−1, b ∈ N and every Label over {0, 1}≤b,

Pr
Label,y∼Label

[LLabel
cheat(1

ε, 1b) 6= y] = min
ỹ∈{0,1}≤b

Pr
y∼Label

[y 6= ỹ]+ε/48+ε/96 ≤ min
ỹ∈{0,1}≤b

Pr
y∼Label

[y 6= ỹ]+ε/32.

Thus, for every ε−1, b ∈ N,

∆Lcheat(1
ε, 1b, b) := sup

Label

(
Pr

Label,y∼Label
[LLabel
cheat(1

ε, 1b) 6= y]− min
ỹ∈{0,1}≤b

Pr
y∼Label

[y 6= ỹ]

)
≤ ε/32.

Now, we analyze the performance of L′. Let D be an arbitrary t′(n)-time samplable distribution
over t(n)/s(n)-time computable samplers. Let m0 be the polynomial in Theorem 4.9.2.

We define a distribution family E = {En,z}n∈N,z∈{0,1}∗ , where En,z is a distribution of an infinitely

long string x1x2x3 · · · , where for each i ∈ N, xi ∼ U t(n)(s, ri) for a uniformly random seed ri ∼
{0, 1}t (note that if s is a description of a sampler, then each xi corresponds to a sample). Then,
for every n, ε−1, δ−1 ∈ N and m0 := m0(log n, s(n), 1, 16ε−1, δ−1), the prefix x1 · · ·xm0 of Dn,s0
is samplable in O(m0 · t(n)) time. Therefore, by Theorem 4.9.2 (for D and E), for every large
enough n ∈ N and every ε−1, δ−1 (note that we choose a = n and b = b(n)), and for large enough
τ = max{t′(n), O(m0 · t(n))},

Pr
S,i,{(xj ,yj)}i−1

j=1

 Pr
(x,y)∼S,L′

[
L′(x<i, x, 1ε, 1b(n); 1N ) 6= y

]
≤ E

x∼S(1)

min
y∗

Pr
y∼S(2)

|x

[y∗ = y]

+ 2∆Lcheat +
ε

16

 ≥ 1−δ,

where S ∼ Dn, i ∼ [m0], and (x1, y1), . . . , (xi−1, yi−1) ∼ S, N = 〈n, s(n), b(n), τ, 16ε−1, δ−1〉,
x<i = x1y1 · · ·xi−1yi−1, S

(2)
|x is a conditional distribution of S(2) given x ∼ S(1), and ∆Lcheat =

∆Lcheat(1
ε, 1b, b) ≤ ε/32. It is easy to verify that

E
x∼S(1)

 min
y∗∈{0,1}<b(n)

Pr
y∼S(2)

|x

[y∗ = y]

 = optF (S).
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Thus, we conclude that

Pr
S,i,{(xj ,yj)}i−1

j=1

[
Pr

(x,y)∼S,L′

[
L′(x<i, x, 1ε, 1b(n); 1N ) 6= y

]
≤ optF (S) + ε/8

]
≥ 1− δ.

The sample complexity m0 is bounded above by

m0(log n, s(n), 1, 16ε−1, δ−1) = O((log n+ s(n))ε−2δ−2) = O(s(n)ε−2δ−2),

where we assume that log n ≤ s(n); otherwise, a learner can try all possible t(n)/s(n)-time com-
putable samplers in t(n) · 2O(s(n)) ≤ poly(n) time and output the best hypothesis by the standard
empirical estimation of the accuracy error.

4.9.3 Universal Agnostic Learning for General Loss

In this section, we consider agnostic learning for general polynomial-time computable loss functions.

Theorem 4.9.7. The following are equivalent:

1. There is no infinitely-often one-way function.

2. For every b(n) = O(log n), every polynomials s(n), t(n), t′(n), and c(n), and every polynomial-
time computable loss function l with l(ỹ, y) ≤ c(n) for each n ∈ N and each ỹ, y ∈ {0, 1}≤b(n),
the class F = {f : {0, 1}n → {0, 1}b(n) : n ∈ N} is agnostically learnable for the loss func-
tion l in polynomial time on average under (unknown) t′(n)-time samplable distributions over
t(n)/s(n)-time computable samplers with sample complexity m(n, ε, δ) = O(s(n)c(n)2ε−2 log δ−1).

Proof. The implication item 2⇒ item 1 is due to [GGM86; HILL99] and the observation in [Val84].
Thus, we only show the implication item 1 ⇒ item 2.

The outline of the proof is the same as Theorem 4.9.5. The only difference is the construction
of the cheating learner L?

cheat.

Let l : {0, 1}∗ × {0, 1}∗ → R≥0 be an arbitrary polynomial-time computable loss function such
that l(ỹ, y) ≤ c(n) for each n ∈ N and each ỹ, y ∈ {0, 1}≤b(n), where b(n) = O(log n) and c(n) =
poly(n). We construct a cheating learner L?

cheat for minimizing expected loss with respect to l with
additive error ε/32 for all distributions Label over {0, 1}≤b(n).

On input 1n, 1ε
−1

and given access to a distribution Label over {0, 1}≤b(n), the learner Lcheat
obtains q := (64c(n)2b(n)+1)2(b(n) + 1)ε−2 ln(128ε−1c(n)) samples y1, . . . yq from Label and com-
putes p̃y = |{j ∈ [q] : yj = y}|/q for each y ∈ {0, 1}≤b(n) (notice that it takes only O(q2b(n)) =
poly(n, ε−1) times). Note that these estimated probabilities determine an estimated distribution Ỹ
over {0, 1}≤b(n), where each y is drawn from Ỹ with probability p̃y. The leaner Lcheat minimizes
the expected loss under Ỹ , i.e., Lcheat computes l̃α = Ey∼Ỹ [l(α, y)] for each α ∈ {0, 1}≤b(n) and

outputs α̃ = arg minα∈{0,1}≤b(n) l̃α (notice that it takes only O(2b(n)) = poly(n) times).

We show that for every n, ε−1 ∈ N and every distribution Label over {0, 1}≤b(n),

E
Label,y∼Label

[l(LLabel
cheat(1

n, 1ε
−1

), y)] ≤ min
α∈{0,1}≤b

E
y∼Label

[l(α, y)] + ε/32. (4.9)

97



This implies Theorem 4.9.7 by the same argument as Theorem 4.9.5, i.e., we apply Theorem 4.9.2
for Lcheat to obtain the learner L′ that simulates Lcheat, and then we construct an agnostic learner
L (with fixed confidence error δ = 1/4) that selects i ∼ [m] and randomness r, where m =
O(s(n)c(n)2ε−2) indicated in Theorem 4.9.2, collects i − 1 samples (x1, y1), . . . , (xi−1, yi−1) from
EXS , and outputs hr that takes x ∈ {0, 1}n as input and outputs

y = L′(x1y1 · · ·xi−1yi−1, x, 1n, 1ε
−1

; 1〈n,s(n),b(n),τ,32ε−1,8〉; r),

for τ = O(t′(n) + t(n)m). The correctness of L holds in the same way as Theorem 4.9.5 if inequal-
ity (4.9) holds.

We verify inequality (4.9). Let α∗ = arg minα∈{0,1}≤b(n) Ey∼Label[l(α, y)]. Remember that

LLabel
cheat collects q := (64c(n)2b(n)+1)2(b(n) + 1)ε−2 ln(128ε−1c(n)) samples y1, . . . , yq. By Hoeffd-

ing’s inequality, for each y ∈ {0, 1}≤b(n), the estimated outcome probability p̃y = |{i ∈ [q] :
yi = y}|/q satisfies that Label(y) − ε/(64c(n)2b(n)+1) ≤ p̃y ≤ Label(y) + ε/(64c(n)2b(n)+1) with

probability at least 1 − 2e2q(ε/64c(n)2b(n)+1)2 ≥ 1 − (ε/64c(n)) · 2−(b(n)+1). By the union bound,
Label(y) − ε/(64c(n)2b(n)+1) ≤ p̃y ≤ Label(y) + ε/(64c(n)2b(n)+1) holds for all y ∈ {0, 1}≤b(n) with
probability at least 1 − ε/64c(n). Under this event, the output α̃ ∈ {0, 1}≤b(n) of LLabel

cheat satisfies
that

E
y∼Ỹ

[l(α̃, y)] ≤ E
y∼Ỹ

[l(α∗, y)] =
∑

y∈{0,1}≤b(n)

p̃y · l(α∗, y)

≤
∑

y∈{0,1}≤b(n)

(Label(y) +
ε

64c(n)2b(n)+1
) · l(α∗, y)

≤
∑

y∈{0,1}≤b(n)

Label(y)l(α∗, y) +
ε · |{0, 1}≤b(n)|
64c(n)2b(n)+1

· max
y∈{0,1}≤b(n)

l(α∗, y)

≤ E
y∼Label

[l(α∗, y)] +
ε

64

= min
α∈{0,1}≤b(n)

E
y∼Label

[l(α, y)] +
ε

64
.

Let B be the event that there exists y ∈ {0, 1}≤b(n) such that Label(y)− ε/(64c(n)2b(n)+1) ≤ p̃y ≤
Label(y) + ε/(64c(n)2b(n)+1) does not hold. Then, we have

E
Label,y∼Label

[l(LLabel
cheat(1

n, 1ε
−1

), y)] ≤ Pr[¬B] ·
(

min
α∈{0,1}≤b(n)

E
y∼Label

[l(α, y)] +
ε

64

)
+ Pr[B] · max

α,y∈{0,1}≤b(n)
l(α, y)

≤ 1 ·
(

min
α∈{0,1}≤b(n)

E
y∼Label

[l(α, y)] +
ε

64

)
+

ε

64c(n)
· c(n)

= min
α∈{0,1}≤b(n)

E
y∼Label

[l(α, y)] +
ε

32
.

4.9.4 Lower Bound on Sample Complexity in Agnostic Learning on Average

In this section, we show that the dependence of s and ε−1 on the sample complexity of our agnostic
learner (in Theorems 4.2.2 and 4.9.5) is optimal, particularly in learning parities on average with
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noise over unit vectors. The proof is essentially same as the proof of the fundamental theorem of
statistical learning (cf. [SB14, Sections 6 and 28]) except that we consider a natural average-case
analogue of shattered sets.

We review the problem of learning parities with noise (LPN). For every α ∈ {0, 1}n, let
χα : {0, 1}n → {0, 1} denote a parity function defined as χα(x) = 〈x, α〉F2 , where 〈,〉F2 represents
the inner product on F2. For each n ∈ N, α ∈ {0, 1}n, γ ∈ [0, 1/2], and S ⊆ {0, 1}n, we define a
distribution LPNSα,γ over samples in {0, 1}n × {0, 1} as the distribution of (x, χα(x)⊕ ξ) for x ∼ S
and ξ ∼ Ber(1/2 − γ), where Ber(1/2 − γ) represents the Bernoulli distribution with parameter
1/2− γ, i.e., ξ = 1 (resp. ξ = 0) with probability 1/2− γ (resp. 1/2 + γ). It is easily verified that,
for every γ ∈ [0, 1/2] and every S ⊆ {0, 1}n,

optF (LPNSα,γ) = min
f : {0,1}n→{0,1}

Pr
(x,b)∼LPNSα,γ

[f(x) 6= b] =
1

2
− γ.

We mainly focus on the specific subset Sen = {e1, . . . , ebn/2c} ⊆ {0, 1}n, where each ej ∈ {0, 1}n is

the j-th unit vector, i.e., eji = 1 iff i = j. Note that for every c ∈ N, the distribution LPN
Se|α|
α,2−c is

samplable in time O(|α| · c) when α is given as advice.
We show the following matching lower bound on sample complexity for LPN over Sen.

Theorem 4.9.8. Suppose that a (possibly not efficient) agnostic learner L satisfies that for every
large enough n ∈ N, every ε−1 ∈ N, and every c ∈ N with c ≤ log2 n,

Pr
α∼{0,1}n,LPNS

e
n
α,2−c

LLPN
Sen
α,2−c (1n, 1ε

−1
) outputs h s.t. Pr

(x,b)∼LPNS
e
n
α,2−c

[h(x) 6= b] ≤
(

1

2
− 2−c

)
+ ε

 ≥ 7

8
.

Then, the sample complexity mL of L must satisfy that mL(n, ε) = Ω(nε−2) (note that the secret
information is represented by s := |α| = n bits).

Theorem 4.9.8 is obtained in the same way as the fundamental theorem of statistical learning,
where we use the simple observation that parity functions shatter Sen on average over the choice of
parity functions (instead of the argument of the VC dimension). Here, we only present the proof
outline. For the detailed argument, we refer the reader to the proof in [SB14, Section 28.2.2].

Proof sketch. Suppose that the sample complexity mL(n, ε) satisfies that mL(n, ε) < 8bn/2cε−2.
Below, we derive a contradiction to show mL(n, ε) ≥ 8bn/2cε−2 = Ω(nε−2). For readability, we

omit the superscript Sen from LPN
Sen
α,ρ/2 in this proof.

Fix large enough n ∈ N and k ∈ N with k ∈ (log 8
√

2, log2 n + 2) arbitrarily. Let m = bn/2c.
Let ε = 2−k and ρ = 8ε (note that ρ < 1/

√
2). Let c = − log ρ = k − 3. Since c + 1 ≤ log2 n, the

learner L satisfies that

Pr
α∼{0,1}n,LPNα,ρ/2

[
LLPNα,ρ/2(1n, 1ε

−1
) outputs h s.t. Pr

(x,b)∼LPNα,ρ/2
[h(x) 6= b] ≤ (1 + ρ)/2 + ε

]
≥ 7

8
,

and L(1n, 1ε
−1

) makes only at most 8mε−2 queries. Without loss of generality, we assume that
L(1n, 1ε

−1
) makes exactly M := 8mε−2 queries, and M samples Sα := {(xi, χα(xi) ⊕ ξi)}Mi=1 are

given as auxiliary input, where α ∼ {0, 1}n, xi ∼ Sen, and ξi ∼ Ber((1 + ρ)/2) for each i.
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For each α ∈ {0, 1}n, let optα := optF (LPNα,ρ/2) = (1− ρ)/2. For each hypothesis h : {0, 1}n →
{0, 1}, let `α(h) be the error probability of h, i.e.,

`α(h) := Pr
(x,b)∼LPNα,ρ/2

[h(x) 6= b] =
1 + ρ

2
· |{i ∈ [m] : h(ei) 6= αi}|

m
+

1− ρ
2
· |{i ∈ [m] : h(ei) = αi}|

m
.

Therefore,

`α(h)− optα = ρ · |{i ∈ [m] : h(ei) 6= αi}|
m

. (4.10)

Let L(Sα) denote the hypothesis produced by L(1n, 1ε
−1

) given a sample set Sα. Then, we have

Pr
α,Sα

[`α(L(Sα))− optα > ε] ≤ 1/8.

Now, we consider another learning algorithm L∗ that is given Sα and produces a hypothesis
L∗(Sα) : Sen → {0, 1} such that, for each ei ∈ Sen, the value of L∗(Sα)(ei) is the majority among
the labels of ei in the sample set Sα (breaking ties arbitrarily). Then, L∗ is the optimal learner
(cf. [SB14, Lemma 28.1]), i.e.,

Pr
α,Sα

[`α(L∗(Sα))− optα > ε] ≤ Pr
α,Sα

[`α(L(Sα))− optα > ε] ≤ 1/8. (4.11)

Furthermore,

E
α,Sα

[`α(L∗(Sα))− optα] =
ρ

m
E
α,Sα

[
|{i ∈ [m] : L∗(Sα)(ei) 6= αi}|

]
=

ρ

m

m∑
i=1

Pr
α,Sα

[L∗(Sα)(ei) 6= αi].

By Slud’s inequality and careful calculations (see [SB14, Section 28.2.2]), the right-hand side is
bounded below as

ρ

m

m∑
i=1

Pr
α,Sα

[L∗(Sα)(ei) 6= αi] ≥
ρ

2

(
1−

√
2ρ2M/m

)
,

where we use the fact that ρ < 1/
√

2.
Since M < 8mε−2 = m/(8ρ2),

E
α,Sα

[`α(L∗(Sα))− optα] ≥ ρ

2

(
1−

√
2ρ2M/m

)
>
ρ

2

(
1− ρ

2

)
=
ρ

2
− ρ2

4
≥ ρ

4
= 2ε.

By equation (4.10), it holds that `α(L∗(Sα))− optα ≤ ρ for every α and Sα. Therefore, we have

Pr
α,Sα

[`α(L∗(Sα))− optα > ε] >
1

8
, (4.12)

otherwise,

E
α,Sα

[`α(L∗(Sα))− optα] ≤ ε · 1 +
1

8
· ρ = 2ε.

Inequality (4.12) contradicts inequality (4.11).
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Chapter 5

Learning in Pessiland II: More
Dichotomies between Learning and
Cryptography

This chapter gives further dichotomy between learning and cryptography, where our focus lies
mainly on stronger learning-theoretic consequences in a restricted setting of average-case learning
and with an additional assumption. In Section 5.1, we show the equivalence between the existence of
OWF and the average-case hardness of MINLT in the BFKL model [BFKL93] under the additional
derandomization assumption. Remember that the problem MINLT is known to be NP-complete
(see Section 2.6). In Section 5.2, we study relationships between hardness of learning and an
auxiliary-input one-way function.

5.1 MINLT vs. One-Way Functions

In this section, we show that the search version of MINLT is efficiently solvable on average in
the BFKL model [BFKL93] under the non-existence of OWF and the standard derandomization
assumption.

First, we review the problem MINLT. We introduce additional notions. In this section, we
may call a distribution over {0, 1}n × {0, 1} a sampler. For any m ∈ N and any distribution
family D = {Dn}n∈N, where each Dn is a distribution on samplers over {0, 1}n × {0, 1}, we let
Dm = {Dmn }n∈N denote a distribution family over sample sets such that each Dmn is the distribution
of a sample set {(x1, b1), . . . , (xm, bm)}, where (xi, bi) ∼ S for each i ∈ [m] and S ∼ Dn (note
that the sampler S is selected only once). We also use the notation (x, b) ∼ Dmn to represent that
x = (x1, . . . , xm) and b = (b1, . . . , bm) for {(x1, b1), . . . , (xm, bm)} ∼ Dmn .

We define LT-complexity of sample sets.

Definition 5.1.1 (LT-complexity [Ko91]). Let X = {(x1, b1), . . . , (xm, bm)} be a sample set, where
xi ∈ {0, 1}∗ and bi ∈ {0, 1} for each i ∈ [m]. For every t ∈ N, the t-time-bounded LT-complexity of
X is denoted by LTt(X) and defined as

LTt(X) := min{|Π| : Π ∈ {0, 1}∗such that U t(Π, xi) = bi for all i ∈ [m]}.

Now, we define MINLT as a problem that asks LT-complexity of a given sample set.
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Definition 5.1.2 (MINLT [Ko91]). For every t ∈ N, we define the language MINLT[t] as follows:

MINLT[t] =
{

(X, 1s) : n,m ∈ N, X ∈ ({0, 1}n × {0, 1})m,LTt(X) ≤ s
}
.

We define the search version of MINLT[t] as a problem that asks, for a given X = {(x1, b1), . . . , (xm, bm)},
where xi ∈ {0, 1}n and bi ∈ {0, 1} for each i ∈ [m], to find Π ∈ {0, 1}∗ such that |Π| = LTt(X) and
U t(Π, xi) = bi holds for all i ∈ [m].

In this section, we show the following equivalence result.

Theorem 5.1.3. Under the standard derandomization assumption (Hypothesis 5.1.6), the following
are equivalent:

1. There exists no infinitely-often one-way function;

2. For every polynomial-time evaluatable concept class C , there exist a polynomial-time random-
ized algorithm L and a polynomial τ0 such that for every polynomial t(n), every unknown t(n)-
time samplable distribution E over examples, every unknown t(n)-time samplable distribution
F over C , every sufficiently large n ∈ N, and every m, δ−1, τ ∈ N with τ ≥ τ0(n,m, t(n)), the
algorithm L(-; 1〈n,m,δ

−1,t(n),τ〉) solves the search version of MINLT[τ ] on average in the BFKL
model with respect to E and F with error probability at most δ.

Before presenting the proof, we mention related works. Remember that MINLT is recently
shown to be NP-complete by Hirahara [Hir22a]. In meta-complexity, there are several works that
base OWF on the average-case hardness of NP-complete problem on the uniform distribution over
instances. Liu and Pass [LP22] presented the characterization by the average-case hardness of
MINcKT on the uniform distribution, where MINcKT is the problem of asking Kt(x|y) for given
strings x and y (technically, the time-bound t must be smaller enough than |y| in their result).
Allender, Cheraghchi, Myrisiotis, Tirumala, and Volkovich [ACMTV21] presented the characteri-
zation by the average-case hardness of McKTP on the uniform distribution, where McKTP is the
problem of asking another related meta-complexity notion called the conditional KT-complexity.
Compared with the previous work, we consider the average-case hardness on more general dis-
tributions in the BFKL model than the uniform distribution (instead, we require an additional
derandomization assumption). Note that the BFKL model was the most standard and general
average-case formulation of learning before this thesis.

In this section, we only present the proof of Theorem 5.1.3 (1 ⇒ 2), and the converse follows
from the well-known results [Val84; GGM84; HILL99].

First, we present a meta-theorem. Roughly speaking, the meta-theorem shows that if there ex-
ists no infinitely-often one-way function, then we can construct an algorithm that solves MINLT[τ ]
on average under any samplable distribution on samplers that satisfies a time-bounded LT-complexity
analogue of the coding theorem.

Lemma 5.1.4. If there exists no infinitely-often one-way function, then for every constant C >
0, there exists a randomized algorithm L such that for every polynomials t(n), σ(n) and every
(unknown) t(n)-samplable distribution D = {Dn}n∈N on samplers, for every sufficiently large n ∈
N, for every m, δ−1, τ ∈ N, the algorithm L(-; 1〈n,m,δ

−1,t(n),σ(n),τ〉) solves the search version of
MINLT[τ ] on average under Dm with error probability at most δ as long as D satisfies that, for all
γ−1 ∈ N,

Pr
X=(x,b)∼Dmn

[
LTτ (X) ≤ min{− logDmn (b|x) + C(log τ + log γ−1), σ(n)}

]
≥ 1− γ,
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where Dmn (b|x) = Pr(x′,b′)∼Dmn [b′ = b|x′ = x].

Proof. Let tU (n) be a simulation overhead function of the universal Turing machine U , i.e., for
every t ∈ N, every Turing machine M , and every input x ∈ {0, 1}∗, if M(x) halts in t time, then
U tU (t)(M,x) = M(x).

We define a polynomial-time-computable family f = {fn : {0, 1}poly(n) → {0, 1}poly(n)} as

f〈n,m,t,σ,τ〉(i, j,Πf ,Πe, s
0, s1, . . . , sm) = (i, x1, U τ ((Πf )[i], x

1), . . . , xm, U τ ((Πf )[i], x
m)),

where i ∈ [σ], j ∈ [n], Πf ,Πe ∈ {0, 1}n, s0, s1, . . . , sm ∈ {0, 1}tU (t), and x1, . . . xm are determined
as follows: for each k ∈ [m],

S = U tU (t)((Πe)[j], 〈1n, s0〉)

xk =

{
CircEval(S, sk) if S is a description of a circuit of output length n

0n otherwise,

where CircEval is the standard circuit evaluation algorithm that runs in polynomial time. Without
loss of generality, we assume that the circuit size of S above is at most tU (t) because its description
is printed in tU (t) time.

Since we execute U in polynomial time in above, f is a polynomial-time-computable family.
We assume that the input to fn is given as a concatenated string. For each n,m, t, σ, τ ∈ N, let
r(n,m, t, σ, τ) be the input size of f〈n,m,t,σ,τ〉, i.e., r(n,m, t, σ, τ) = dlog σe+dlog ne+2n+tU (t)(m+
1).

By Proposition 4.6.6 and the assumption that there exists no infinitely-often one-way function,
there exists a randomized polynomial-time algorithm A such that for every n,m, t, σ, τ ∈ N and
every δ−1 ∈ N,

Pr
[
A(f〈n,m,t,σ,τ〉(Ur(n,m,t,σ,τ)); 1〈n,m,t,σ,τ〉, 1δ

−1
) /∈ f−1

〈n,m,t,σ,τ〉(f〈n,m,t,σ,τ〉(Ur(n,m,t,σ,τ)))
]
≤ δ.

We construct a randomized algorithm L in the theorem fromA. For given parameters n,m, δ−1, t, σ, τ ∈
N and a sample set X = {(xi, bi)}mi=1, the algorithm L executes

A(i, x1, b1, . . . , xm, bm; 1〈n,m,t,σ,τ〉, 1δ
′−1

)

for each i ∈ [σ] and for δ′ defined as

δ′ =
1

2
· (δ/2)C

n2στC
δ

2
,

where C > 0 is the constant in the theorem. For each i, if A returns some inverse element
Xi = (i, ji,Πi

f ,Π
i
e, s

i,0, si,1, . . . , si,m), then L checks whether f(Xi) = (i, x1, b1, . . . , xm, bm). Let
i∗ ∈ [σ] be the minimum integer i for which A succeeds in inverting (if not, A returns ⊥ and
halts). Then, L outputs (Πi∗

f )[i∗] as a hypothesis. It is not hard to verify that L halts in time

poly(n,m, δ−1, t, σ, τ).

For the correctness of L, we first show the following claim.
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Claim 5.1.5. For any polynomials t(n), σ(n), any t(n)-samplable distribution D = {Dn}n∈N on
samplers, any sufficiently large n ∈ N, and any m, τ ∈ N, if D satisfies that for all γ−1 ∈ N,

Pr
X=(x,b)∼Dmn

[
LTτ (X) ≤ min{− logDmn (b|x) + C(log τ + log γ−1), σ(n)}

]
≥ 1− γ,

then it holds that, for every γ−1 ∈ N,

Pr
X={(xi,bi)}mi=1∼Dmn

[
Pr
Ur

[
f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)

]
≥ γC

n2σ(n)τC
· Dmn (X)

]
≥ 1− γ,

where r := r(n,m, t(n), σ(n), τ).

Proof. We define a t(n)-samplable distribution D′ = {D′n}n∈N such that each D′n is a distribution of
the first half of S ∼ Dn (i.e., the sub-circuit that produces examples). Let M be the deterministic
t(n)-time sampling algorithm for D′, and let d = |M |.

We only consider a sufficiently large n ∈ N so that n ≥ 2d. Then, with probability n−1·2−d ≥ n−2

over the choice of j ∈ [n] and Πe ∈ {0, 1}n, the program (Πe)[j] (in the input of f) corresponds
to the description of M . Under this condition, the distribution of S in the computation of f is
statistically identical to D′n, and for each m ∈ N and (x, b) ∈ supp(Dmn ), the probability that x is
sampled according to Dmn (we denote this probability by Dmn (x)) is equivalent to the conditional
probability that x = (x1, . . . , xm) holds for (i, x1, b1, . . . , xm, bm) ∼ f(Ur). Thus, we have that for
each m ∈ N and each (x, b) ∈ supp(Dmn ),

Pr
Ur

[
x = (x1, . . . , xm) for f(Ur) = (i, x1, b1, . . . , xm, bm)

]
≥ D

m
n (x)

n2
.

Fix γ−1 ∈ N and X = (x, b) ∈ supp(Dmn ) satisfying the following condition arbitrarily:

LTτ (X) ≤ min{− logDmn (b|x) + C(log τ + log γ−1), σ(n)} (5.1)

Over the choice of i ∈ [σ(n)] (in the input of f), the event that i = LTτ (X) (≤ σ(n)) occurs
with probability σ(n)−1. We consider the event Ex that i = LTτ (X) and x = (x1, . . . , xm) holds
for f(Ur) = (i, x1, b1, . . . , xm, bm). Then, we have

Pr
f(Ur)

[Ex] ≥ D
m
n (x)

n2σ(n)
.

Under the condition that Ex occurs, the probability that (Πf )[i] (note that i = LTτ (X)) corresponds
to the program Π∗X satisfying that |Π∗X | = LTτ (X) and bi = U τ (Π∗X , x

i) for each i ∈ [m] is

Pr
Πf

[
(Πf )[i] = Π∗X

]
= 2−LTτ (X)

≥ 2logDmn (b|x)−C(log τ+log γ−1)

=
γC · Dmn (b|x)

τC
,

where the inequality follows from (5.1).
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Therefore, for each X = (x, b) ∈ supp(Dmn ) (let x = (x1, . . . , xm) and b = (b1, . . . , bm)), if (x, b)
satisfies (5.1), then we have

Pr
Ur

[
f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)

]
≥ Pr

Πf

[
(Πf )[LTτ (X)] = Π∗X

]
· Pr
f(Ur)

[Ex]

≥ γC · Dmn (b|x)

τC
· D

m
n (x)

n2σ(n)

=
γC

n2σ(n)τC
· Dmn (X).

Since Pr(x,b)∼Dmn [(x, b) satisfies (5.1)] ≥ 1− γ follows from the assumption, the claim holds. �

Now, we show the correctness of L(-; 1〈n,m,δ
−1,t(n),σ(n),τ〉). Suppose that the error probability of

L is grater than δ. Then, we derive a contradiction. For readability, we omit the parameters of L
below.

By the assumption on D in the theorem and Claim 5.1.5, we have that

Pr
X={(xi,bi)}mi=1∼Dmn

[
Pr
Ur

[
f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)

]
≥ (δ/2)C

n2σ(n)τC
· Dmn (X)

]
≥ 1− δ/2.

Let GoodSamp ⊆ supp(Dmn ) be the set of samples X ∈ supp(Dmn ) satisfying the event in the
probability above, i.e., PrX∼Dmn [X ∈ GoodSamp] ≥ 1 − δ/2, and for each X = {(xi, bi)}mi=1 ∈
GoodSamp,

Pr
Ur

[
f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)

]
≥ (δ/2)C

n2σ(n)τC
· Dmn (X).

For each X = {(xi, bi)}mi=1 ∈ supp(Dmn ), we let FX denote the event that L(X) fails in finding
a program Π ∈ {0, 1}∗ such that |Π| = LTτ (X) and bi = U τ (Π, xi) for each i ∈ [m]. Notice that
FX occurs only if A(LTτ (X), x1, b1, . . . , xm, bm) fails in finding an inverse element.

By the assumption that the error probability of L is greater than δ, we have

Pr
X∼Dmn ,L

[FX ∧X ∈ GoodSamp] ≥ Pr
X∼Dmn ,L

[FX ]− Pr
X∼Dmn

[X /∈ GoodSamp]

≥ δ − δ/2 = δ/2.

Furthermore, we obtain that

δ/2 ≤ Pr
X∼Dmn ,L

[FX ∧X ∈ GoodSamp]

=
∑

X∈GoodSamp

Dmn (X) · Pr
L

[FX ]

≤
∑

X={(xi,bi)}mi=1∈GoodSamp

Dmn (X) · Pr
A

[A(LTτ (X), x1, b1, . . . , xm, bm) fails in inverting]

≤
∑

X={(xi,bi)}mi=1∈GoodSamp

n2σ(n)τC

(δ/2)C
Pr
Ur

[
f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)

]
· Pr
A

[A(LTτ (X), x1, b1, . . . , xm, bm) fails in inverting]
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=
n2σ(n)τC

(δ/2)C
Pr
A,Ur

[A(f(Ur)) fails in inverting ∧ ∃X = {(xi, bi)}mi=1 ∈ GoodSamp

s.t. f(Ur) = (LTτ (X), x1, b1, . . . , xm, bm)]

≤ n2σ(n)τC

(δ/2)C
Pr
A,Ur

[A(f(Ur)) fails in inverting].

Therefore, the failure probability of A is at least

δ

2
· (δ/2)C

n2σ(n)τC
= 2δ′.

This is contradiction because the failure probability of A is at most δ′ by the choice of the parameter
for A in L.

Next, we show that the coding theorem in Lemma 5.1.4 holds if a distribution on samplers is
separated into two distributions E and F over examples and a target function as in the BFKL
model [BFKL93]) under the following derandomization assumption for nondeterministic circuits.

Hypothesis 5.1.6 (Pseudorandom generator against nondeterministic circuits). There exists a
constant C0 > 0 such that for every polynomial m, there exists a poly(m(n))-time computable
pseudorandom generator G = {Gn}n∈N, where Gn : {0, 1}C0 logm(n) → {0, 1}m(n) that 1/m(n)-fools
m(n)-size nondeterministic circuits, i.e., for every m(n)-size nondeterministic circuit C and every
n ∈ N, ∣∣∣∣∣ Pr

z∼{0,1}C0 logm(n)
[C(G(z)) = 1]− Pr

w∼{0,1}m(n)
[C(w) = 1]

∣∣∣∣∣ ≤ 1

m(n)
.

For example, Hypothesis 5.1.6 holds if E requires exponential-size (single-valued) nondetermin-
istic circuits almost everywhere [SU05].

For every distribution families E = {En}n∈N and F = {Fn}n∈N, where each En is over {0, 1}n,
and each Fn is over (binary representations of) functions in a concept class Cn, we use the notation
DE,F to refer to the following distribution of samplers: for each n ∈ N, (i) select f ∼ Fn, and (ii)
output a sampler SE,f that generates (x, f(x)) for x ∼ En.

Lemma 5.1.7. If Hypothesis 5.1.6 holds, then for every polynomial-time evaluatable concept class
C = {Cn}n∈N, where Cn ⊆ {f : {0, 1}n → {0, 1}}, there exist a polynomial τ0 and a constant C > 0
such that for every polynomial t(n), every t(n)-time samplable distribution E over examples, and
every t(n)-time samplable distribution F over C , for every sufficiently large n ∈ N, every m, τ ∈ N
with τ ≥ τ0(n,m, t(n)), and every X = (x, b) ∈ supp((DE,F )mn ), it holds that

LTτ (X) ≤ − log(DE,F )mn (b|x) + C log τ.

Particularly, DE,F satisfies the condition in Theorem 5.1.4 for every τ ≥ τ0(n,m, t(n)) when σ(n)
in Theorem 5.1.4 is the upper bound on the length of binary representation for the class Cn.

Proof. The proof essentially appeared in [AGMMM18; Hir21b], the difference is only that we
consider the time-bounded LT-complexity.

For readability, we omit the subscript E ,F of DE,F . Let F be the t(n)-time sampling algorithm
for F .
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Fix X = (x, b) ∼ Dmn arbitrarily. Let x = (x1, . . . , xm), b = (b1, . . . , bm), and p = Dmn (b|x).
Then, we have

p = Dmn (b|x) = Pr
f∼Fn

[f(xi) = bi for each i ∈ [m]]

= Pr
r∼{0,1}t(n)

[f = F (1n, r) and f(xi) = bi for each i ∈ [m]]

Let R ⊆ {0, 1}t(n) be a set of random strings r ∈ {0, 1}t(n) such that f = F (1n, r) and f(xi) = bi

for each i ∈ [m]. Then, we have p = |R| · 2−t(n).

Let s = d− log pe and ` = t(n) − s − 2. We consider the pairwise-independent hash family

H = {hU,v : {0, 1}t(n) → {0, 1}`}(U,v), where U ∈ F`×t(n)
2 , v ∈ F`2, and hU,v(r) = U · r + v (where we

identify {0, 1} with F2).

By Chebyshev’s inequality, with probability at least 1/4 over the choice of (U, v), there ex-
ists an element rU,v ∈ R ∩ h−1

U,v(0
`), and |h−1

U,v(0
`)| ≤ 2s+3 holds (cf. [AGMMM18, Claim 4.2.1]).

Furthermore, by Gaussian elimination, any r ∈ h−1
U,v(0

`) is reconstructed from (U, v) and addi-

tional log |h−1
U,v(0

`)| ≤ s+ 3 bits of information (i.e., index in h−1
U,v(0

`)) in poly(t(n)) time (cf. [AG-

MMM18, Claim 4.2.2]). Particularly, rU,v ∈ R∩h−1
U,v(0

`) is also reconstructed from (U, v) and some

wU,v ∈ {0, 1}≤s+3.

Now, we consider the following nondeterministic algorithm A. On input z ∈ {0, 1}`(t(n)+1)

and auxiliary advice x = (x1, . . . , xm) and b = (b1, . . . , bm), the algorithm A regards z as a tuple

(U, v), where U ∈ F`×t(n)
2 and v ∈ F`2, and nondeterministically guesses wz ∈ {0, 1}≤s+3 such that

the reconstruction algorithm specified above generates a function f : {0, 1}n → {0, 1} such that
f(xi) = bi holds for each i ∈ [m]. If there exists such a wz, then A accepts z. Notice that, by the
argument above, the following holds:

Pr
z∼{0,1}`(t(n)+1)

[A(z;x, b) = 1] ≥ 1/4.

By the standard way to translate a Turing machine into a circuit, we obtain a nondeterministic
circuit Ã of size τ(n,m, t(n)) that corresponds to A, where τ is a polynomial determined by the
time complexity for evaluating C (because A needs to execute the evaluation algorithm for C ).
Let G : {0, 1}C0 log τ(n,m,t(n)) → {0, 1}τ(n,m,t(n)) be the pseudorandom generator in Hypothesis 5.1.6
for circuit size τ(n,m, t(n)). Then, there must exist a string z′ ∈ {0, 1}C0 log τ(n,m,t(n)) such that
Ã(G(z′)) = 1; otherwise,

Pr
z∼{0,1}τ(n,m,t(n))

[Ã(z) = 1]− Pr
z′∼{0,1}C0 log τ(n,m,t(n))

[Ã(G(z′)) = 1] ≥ 1/4− 0 = 1/4,

which contradicts that G is a pseudorandom generator.

Since Ã(G(z′)) = 1, there exists a witness w ∈ {0, 1}≤s+3 such that the reconstruction algorithm
above generates f : {0, 1}n → {0, 1} satisfying that f(xi) = bi holds for each i ∈ [m] from G(z′)
(regarded as a seed for the hash function) and index w. We remark that this consistent function f
is uniformly constructed from G, z′, w in τ ′(n,m, t(n)) time, where τ ′ is a polynomial determined
by the time-complexity of evaluating C and computing G.

Thus, there exists a polynomial τ ′′ (determined by the time-complexity of evaluating C and
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computing G, and simulation overhead for U) such that

LTτ ′′(n,m,t(n))(X) ≤ |G|+ |z′|+ |w|+O(1)

≤ s+O(log τ ′′(n,m, t(n)))

≤ − logDmn (b|x) + C1 log τ ′′(n,m, t(n)),

for some absolute constant C1 > 0.

Lemmas 5.1.4 and 5.1.7 immediately imply the average-case easiness of MINLT in the BFKL
model under the non-existence of OWF.

Corollary 5.1.8 (Item 1 ⇒ Item 2 in Theorem 5.1.3). Let C = {Cn}n∈N be a polynomial-time
evaluatable class, where Cn ⊆ {f : {0, 1}n → {0, 1}}, such that the length of binary representation
for Cn is at most `C (n) for some polynomial `C .

Under the non-existence of infinitely-often one-way functions and Hypothesis 5.1.6, there exist
a polynomial-time randomized algorithm L and a polynomial τ0 such that for every polynomial
t(n), every unknown t(n)-time samplable distribution E over examples, every unknown t(n)-time
samplable distribution F over C , every sufficiently large n ∈ N, and every m, δ−1, τ ∈ N with
τ ≥ τ0(n,m, t(n)), the algorithm L(-; 1〈n,m,δ

−1,t(n),`C (n),τ〉) solves the search version of MINLT[τ ]
on average under DmE,F with error probability at most δ.

5.2 Learning vs. Auxiliary-Input One-Way Functions

In this section, we present the characterization of the existence of AIOWFs by the hardness of
learning in the hybrid model between the PAC learning model and the BFKL model, which is the
same as the BFKL model except that we consider arbitrary (possibly not efficiently samplable)
example distributions as the original PAC learning model.

Theorem 5.2.1. The following are equivalent:

1. There exists no AIOWF;

2. Every polynomial-time-evaluatable concept class C and every sampleable distribution F over
C , the class C is PAC learnable on average in the BFKL model with respect to all unknown
example distributions and F ;

3. Every polynomial-time-evaluatable concept class C and every sampleable distribution F over
C , the class C is weakly PAC learnable on average in the BFKL model with respect to all
unknown example distributions and F .

Note that Theorem 5.2.1 yields several new insights into the hardness of PAC learning. For
instance, Vadhan [Vad06] showed the characterization of computational zero-knowledge in cryptog-
raphy by AIOWF. Thus, our result provides a closer relationship between the average-case hardness
of learning and the hardness of obtaining knowledge, as studied in cryptography. Even within learn-
ing theory, this result implies that if worst-case PAC learning on the uniform distribution is easy,
then average-case PAC learning on any distribution is also easy because the former is sufficient
to break any auxiliary-input cryptography, as observed by Applebaum, Barak, and Xiao [ABX08].
Such a relationship seems quite non-trivial and fundamental knowledge on two worst-case require-
ments in PAC learning (on target functions and example distributions), which had not been known
before.
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5.2.1 Intuition: Duality between Learning and Auxiliary-Input Cryptography

We give an intuition of the correspondence between hardness of learning and auxiliary-input one-
way functions. The essential idea is same as [BFKL93] except the consideration of auxiliary-input.

Let C be a concept class. As discussed in Chapter 2.6, the essential task of PAC learning C is,
for a given sample set (x1, b1), . . . , (xm, bm), to find a consistent function f ∈ C such that f(xi) = bi

for each i by Occam’s razor [BEHW87].
Now, we regard the examples x1, . . . , xm as auxiliary-input and the hidden function f as a

hidden random seed. Then, we can regard the labels b1, . . . , bm as the output of such an auxiliary-
input function. Additionally if the hidden function f is selected uniformly at random, it is not hard
to verify that the task of finding a consistent function exactly corresponds to the task of inverting
AIOWF. Even if f is selected according to some samplable distribution F , the same argument
holds by considering the random seed for F as a random seed for AIOWF.

We remark that, in the simple outline above, the roles of inputs and functions are switched
in learning and auxiliary-input cryptography. In learning, the public information is examples
(i.e., input for a target function) and the secret information is a target function. By contrast, in
auxiliary-input cryptography, the public information is the auxiliary-input (i.e., the description of
cryptographic primitives) and the secret information is a random seed (i.e., input for cryptographic
primitives). This correspondence clearly explains why the hardness of learning with the worst-case
requirement on example distributions corresponds to the existence of AIOWF with the worst-case
requirement on auxiliary-input. Furthermore, the idea of switching the roles of inputs and functions
is crucial for the duality of learning and cryptography and applied many times in the remainder
of the thesis. Particularly, a similar technique is used in Chapter 7 to obtain the characterization
of the hardness of standard PAC learning by another auxiliary-input cryptographic primitive. In
addition, switching of the roles of inputs and functions will be further studied in a more fine-
grained way in Chapter 6, which is at the core of the first characterization of polynomial-stretch
pseudorandom generators computable in constant parallel time (i.e., NC0).

5.2.2 Proof of Theorem 5.2.1

First, we show the implication from the non-existence of AIOWF to the feasibility of learning. We
use the following proposition.

Proposition 5.2.2. If there exists no auxiliary-input one-way function, then for every polynomial-
time-computable auxiliary-input function f =

{
fz : {0, 1}s(|z|) → {0, 1}t(|z|)

}
z∈{0,1}∗, there exists a

randomized polynomial-time algorithm A such that for every z ∈ {0, 1}∗ and every δ−1 ∈ N,

Pr
x∼{0,1}s(|z|),A

[A(z, fz(x); 1δ
−1

) 6∈ f−1
z (fz(x))] ≤ δ.

Proof Sketch. We define a new family f ′ =
{
f ′z,k

}
z∈{0,1}∗,k∈N

so that

f ′z,k(x1, . . . , xk) = (fz(x1), . . . , fz(xk))

for every x1, . . . , xk ∈ {0, 1}s(n), where we implicitly assume that (z, k) is encoded into a binary
string. Yao’s amplification theorem [Yao82; Gol01] shows that inverting fz with probability 1 − δ
reduces to the task of inverting fz,k for some k = poly(|z|, δ−1).
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Lemma 5.2.3 (Item 1⇒ Item 2 in Theorem 5.2.1). There exists no AIOWF, then every polynomial-
time-evaluatable concept class C and every sampleable distribution F over C , the class C is PAC
learnable on average in the BFKL model with respect to all unknown example distributions and F .

Proof. Let C be an arbitrary polynomial-time-evaluatable concept class. Note that, to show
Lemma 5.2.3, we only need to consider the uniform distribution over functions in C as the sam-
plable distribution F over C because we can also contain the sampler F of F in the evaluation
algorithm for C and regard the uniformly random seed for F as the representation of the concept
class. By this argument, we can also assume the set of representations for Cn exactly corresponds
to {0, 1}s(n), where s is a polynomial. Let C be a polynomial-time evaluation algorithm for C .

We construct a polynomial-time computable auxiliary-input function g = {gn,m,z : {0, 1}s(n) →
{0, 1}m}n,m∈N,z∈{0,1}nm (where we implicitly assume that (n,m, z) is encoded into a binary string)
as follows: For each n,m ∈ N and z = x1 ◦ · · · ◦ xm (where xi ∈ {0, 1}n for each i),

gn,m,z(f) = f(x1) ◦ · · · ◦ f(xm),

where we identify f ∼ {0, 1}s(n) with a function in Cn. Note that each f(xi) is actually computed
as C(f, xi). Since C is polynomial-time computable, g is also polynomial-time computable.

By Proposition 5.2.2, there exists an randomized algorithm A such that for every n,m, γ−1 ∈ N
and every x1, . . . , xm ∈ {0, 1}n,

Pr
f∼{0,1}s(n),A

[A(n,m, z, gn,m,z(f); 1γ
−1

) 6∈ g−1
n,m,z(gn,m,z(f))] ≤ γ, (5.2)

where z := x1 ◦ · · · ◦ xm.
We construct the learner L as follows: On input 1n, 1ε, 1δ and given access to EXf,D, the learner

L collects m := dε−1(s(n) + ln δ−1 + 1)e samples (x1, b1), . . . , (xm, bm) from EXf,D and executes

f̃ ← A(n,m, x1 ◦ · · · ◦xm, b1 ◦ · · · ◦ bm; 12δ−1
). If A succeeds in inverting (it is easily verified), then L

outputs f̃ as a hypothesis (otherwise, L outputs ⊥). It is easy to verify that L halts in polynomial
time in n, ε−1 and δ−1.

We verify the correctness. Fix n, ε−1, δ−1 ∈ N arbitrarily, and let D be an arbitrary example
distribution over {0, 1}n. Let m := dε−1(s(n) + ln δ−1 + 1)e. For convenience, we may regard the
m samples is given as input for L. By Eq. (5.2), we have

Pr
x1,...,xm∼D,L,f

[
L(1n, 1ε, 1δ, (x1, b1), . . . , (xm, bm)) outputs some hypothesis f̃ 6= ⊥

]
≥ 1− δ/2.

Notice that whenever L(1n, 1ε, 1δ, (x1, b1), . . . , (xm, bm)) outputs f̃ 6= ⊥, it holds that f̃(xi) = bi for
each i ∈ [m]. In fact, this is sufficient to apply the Occam’s razor [BEHW87]. For completeness,
we present the formal proof. Trivially, it suffices to show the following claim.

Claim 5.2.4.

Pr
f,EX,L

[
LEX(1n, 1ε

−1
, 1δ
−1

) outputs some hypothesis f̃ 6= ⊥ and Pr
x∼D

[f̃(x) 6= f(x)] > ε

]
≤ δ/2.

Proof. We define a subset BD(f, ε) ⊆ {0, 1}s(n) as the set of representations of functions in Cn that
are ε-far from f under D, i.e.,

BD(f, ε) =

{
f̃ ∈ {0, 1}s(n) : Pr

x∼D
[f̃(x) 6= f(x)] > ε]

}
.
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The probability in the claim is bounded above by

E
f

 ∑
f̃∈{0,1}s(n)

Pr
L,EX

[LEX outputs f̃ ∧ f̃ ∈ BD(f, ε)]

 = E
f

 ∑
f̃∈BD(f,ε)

Pr
L,EX

[LEX outputs f̃ ]


Whenever L outputs f̃ 6= ⊥, the hypothesis f̃ is consistent with the target function on the given
samples (otherwise, the inverter fails, and L outputs ⊥). Thus, the expectation is bounded above
by

E
f

 ∑
f̃∈BD(f,ε)

Pr
x1,...,xm∼D

[f̃(xi) = f(xi) for all i ∈ [m]]

 = E
f

 ∑
f̃∈BD(f,ε)

(
Pr

x∼Dn
[f̃(x) = f(x)]

)m
≤ E

f

 ∑
f̃∈BD(f,ε)

(1− ε)m


≤ E
f

[|BD(f, ε)|(1− ε)m]

≤ E
f

[
2s(n)(1− ε)m

]
= 2s(n)(1− ε)m

≤ 2s(n)(1− ε)ε−1(s(n)+ln δ−1+1)

≤ 2s(n)/e(s(n)+ln δ−1+1)

< δ/2,

where the first inequality follows from the definition of BD(f, ε). �

Next, we show that the other direction, i.e., the implication from the feasibility of learning to
the non-existence of auxiliary-input one-way functions.

Lemma 5.2.5 (Item 3 ⇒ Item 1 in Theorem 5.2.1). If every polynomial-time-evaluatable concept
class C and every sampleable distribution F over C , the class C is PAC learnable on average in the
BFKL model with respect to all unknown example distributions and F , then there exists no AIPRF
(thus there exists no AIOWF by Theorem 2.5.8).

Note that this lemma completes the proof of Theorem 5.2.1: (3 ⇒ 1) follows from the lemma
above; (1 ⇒ 2) follows from Lemma 5.2.3; and (2 ⇒ 3) trivially holds by definition.

Proof. Suppose for contradiction that AIPRF F = {Fz : {0, 1}|z|×{0, 1}|z| → {0, 1}}z∈{0,1}∗ exists.

We define a concept class C specified by the following evaluation algorithm C = {Cn : {0, 1}dn/2e×
{0, 1}n → {0, 1}}n∈N: for each n ∈ N,

C2n−1(u, y) = 1

C2n(u, z ◦ x) = Fz(u, x),
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where u ∈ {0, 1}n, z, x ∈ {0, 1}n, and y ∈ {0, 1}2n−1. It is easily verified that C is evaluated in
polynomial time.

For convenience, we consider the average-case weak prediction model in Definition 2.3.4. By
the assumption, there exists a weak learner L that learns C in the BFKL model with advantage
poly−1(|z|), where we consider the uniform distribution over functions in C (i.e., the uniform
distribution over u in the above) and an arbitrary unknown example distribution.

We construct an adversary A for F based on L as follows: On input z ∈ {0, 1}n (i.e., auxiliary-
input of Fz) and query access to a function f : {0, 1}n → {0, 1} (which is either of a pseudorandom
function or a truly random function), A executes L, where A passes (z ◦ x, f(x)) as each example
and z ◦x∗ as a challenge for independently selected x, x∗ ∼ {0, 1}n. If L outputs some prediction b,
then A checks whether f(x∗) = b by its own oracle access. If L succeeds in predicting, A outputs
1, otherwise, it outputs 0. Notice that the probability that A outputs 1 is exactly the same as the
probability that L succeeds in predicting over the choice of f and randomness for A. Obviously, A
halts in polynomial time in n.

On one hand, consider the case where f is selected from pseudorandom functions. In this case,
it is not hard to verify that A executes P in the valid setting where the target function is f and
the example distribution is z ◦ Un. Thus, A outputs 1 with probability at least 1/2 + 1/poly(n).

On the other hand, consider the case where f is selected from all n-input functions, i.e., a truly
random function. Because P looks at only poly(n) values of f , randomly selected x∗ is contained
in previous examples with only negligibly small probability. If x∗ is not contained in the previous
examples, then P cannot guess the value of f(x∗) better than at random because f is a truly
random function. Thus, A outputs 1 with probability at most 1/2 + negl(n).

Therefore, A distinguishes the above two cases with non-negligible probability, which contradicts
the assumption that F is AIPRF.
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Chapter 6

Learning versus Pseudorandom
Generators in Constant Parallel Time

In this chapter, we study relationships between learning and pseudorandomness in extremely
low complexity regimes. Particularly, we show the first characterization result of an important
cryptographic primitive, polynomial-stretch pseudorandom generators in constant parallel time, by
average-case hardness of natural learning problems.

6.1 Background

A dichotomy between learning and cryptography is one of the central topics in theoretical com-
puter science. An implication from cryptography to hardness of learning has already been studied
in the pioneering work by Valiant [Val84], who observed that the existence of a secure cryptographic
primitive implies the hardness of learning polynomial-size circuits (P/poly). Many follow-up studies
further showed the hardness of learning more restricted classes such as AC0 under several crypto-
graphic or deeply related assumptions [KV94a; Kha93; AK95; ABW10; Dan16; DS16; Vad17;
DV21]. The opposite implication from hardness of learning to cryptography is relatively less un-
derstood and first studied by Impagliazzo and Levin [IL90] and Blum, Furst, Kearns, and Lipton
[BFKL93]. Particularly, Blum, Furst, Kearns, and Lipton [BFKL93] formulated the average-case
hardness of PAC learning and presented constructions of several cryptographic primitives based on
the average-case hardness of learning. These early studies characterized a central cryptographic
primitive called a one-way function (OWF) by the average-case hardness of learning P/poly. The
dichotomy between learning and cryptography has been further studied over decades in various
settings [NR06; OS17; San20]. In previous chapters, we also presented several equivalence re-
sults between the average-case hardness of learning polynomial-time evaluated classes and general
polynomial-time computable cryptographic primitives.

In general, the complexity for computing cryptographic primitives is deeply related to the
complexity of a concept class for learning (i.e., a class of target functions learners try to learn). This
observation leads us to study the dichotomy between learning and cryptography in low complexity
classes. One motivation of this is highly efficient cryptography based on the hardness assumption
of learning simple classes, as mentioned by Blum, Furst, Kearns, and Lipton [BFKL93]. This
direction is successful in certain fields; e.g., several candidates for a cryptographic primitive called
a weak pseudorandom function were proposed in low complexity based on the hardness of learning
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problems for which no efficient algorithm is known at present [ABGKR14; BCGIKS21]. Another
motivation is identifying the capability of efficient learning based on well-established arguments in
cryptography. This direction has also been demonstrated for decades in studies on cryptographic
hardness of learning [e.g., KV94a; Kha93; AK95; AR16; DV21].

In this work, we study a dichotomy between learning and polynomial-stretch pseudorandom
generators (PPRGs) computable in constant-depth circuits (i.e., NC0), where a PPRG is a funda-
mental cryptographic primitive stretching a given n-bit random seed into an n1+Θ(1)-bit pseudo-
random string that is indistinguishable from a truly random string by efficient adversaries. This
research question is strongly motivated by both sides of constructing highly efficient cryptography
and identifying the capability of efficient learning. Below, we explain further backgrounds.

From the perspective of cryptography. A PPRG in NC0 is one of the most studied prim-
itives in parallel cryptography [cf. CM01; App13] because of its remarkable applications, such as
highly efficient cryptography [IKOS08] and a recent breakthrough on indistinguishability obfus-
cation (iO) based on well-founded assumptions [JLS21; JLS22]. Despite its importance, to the
best of our knowledge, the only known framework for constructing PPRGs in NC0 is one based on
Goldreich’s OWF [Gol11a]. For example, the celebrated work by Applebaum, Ishai, and Kushile-
vitz [AIK06] on randomized encodings only yields the characterization of sublinear-stretch PRGs
in NC0, but characterizing PPRGs in NC0 seems out of reach at present. Therefore, it is natural
to inquire into a new candidate for PPRGs in NC0 and a characterization result through the lens
of the dichotomy between learning and cryptography.

Strictly speaking, we mainly discuss a generator defined as a collection of PPRGs, where the
generator has a public index randomly and efficiently (but not in NC0) selected in the preprocess-
ing [cf. Gol01, Section 2.4.2]. This relaxed setting is standard, especially when we discuss a PPRG
in NC0 [cf. App13, Remark 1.1], and such relaxation does not affect the applications mentioned
above.

From the perspective of computational learning theory. An ultimate goal in computa-
tional learning theory is to identify the simplest concept class that is not efficiently learnable under
a plausible hardness assumption. Many hardness results of learning in the current frontline are
related to PPRGs in NC0. Applebaum, Barak, and Wigderson [ABW10] proved the hardness of
learning O(log n)-junta functions under the existence of PPRGs in NC0 with an additional assump-
tion on input-output connections. Applebaum and Raykov [AR16] and Daniely and Vardi [DV21]
proved the hardness of learning for central classes such as depth-3 AC0 circuits and ω(1)-term DNF
formulas under assumptions related to polynomial-stretch Goldreich’s PRG, which is a special case
where the output bits are computed by one fixed predicate. Oliveira, Santhanam, and Tell [OST22]
proved that a security of polynomial-stretch Goldreich’s PRG implies the impossibility of improving
parameters of natural properties for simple classes such as DNF-XOR circuits under a plausible
assumptions on the existence of suitable expanders, where a natural property is a notion deeply
related to learning [CIKK16; CIKK17].

Since the equivalence between pseudorandomness and unpredictability follows from the well-
known result by Yao [Yao82], a reader might expect a correspondence between PPRG in NC0

and hardness of learning NC0. However, this intuition seems incorrect because while a PPRG
in NC0 is conjectured to exist, learning NC0 (i.e., functions with constant locality) is trivially
feasible by applying Occam’s razor [BEHW87]. In this sense, there seems to exist a gap between
pseudorandomness and hardness of learning when we consider considerably low complexity classes
such as NC0. Nevertheless, can we obtain some learning-theoretic characterization for a collection
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of PPRG in NC0? In this work, we provide an affirmative answer to this question.

6.1.1 Our Learning Model

We introduce the learning model mainly discussed in this work, which is a natural variant of the
PAC learning model. For the formal definition, see Section 6.5.2.

In this chapter, we always consider the prediction version of the BFKL model [BFKL93] and do
not mention it explicitly. Remember that, in the prediction version of the BFKL model, an unknown
Boolean-valued target function f (contained in some concept class C ) is selected according to a
known target distribution1, and a learner is given samples of the form (x, f(x)), where x is an
example and selected identically and independently according to a known example distribution.
After learning with the samples, the learner tries to guess a value of f(x) for an additionally given
input x (i.e., challenge) selected according to the same example distribution with good probability;
specifically, with probability at least 1/2 + γ (we refer to γ as an advantage) over the choices of
randomness for the learner, samples, and a target function.

A new perspective in this paper is to consider parameterized complexity of learning for a param-
eterized concept class and parameterized classes of example distributions and target distributions.
We remark that parameterized learnability has been discussed in certain previous studies [e.g.
AKL09]. The main difference from the previous formulation is the separate consideration of time
complexity and sample complexity. In this paper, we only consider fixed-parameter tractability
on sample complexity, and the time complexity can be arbitrary polynomial depending on pa-
rameters (or sub-exponential functions). Specifically, for parameters k1, . . . , kc on a concept class
C and classes of example distributions and target distributions, we say that C is learnable with
(k1, . . . , kc)-FPT samples if C is learnable with f(k1, . . . , kc) · nΘ(1) samples, where f is some com-
putable function. Our learning model captures a (natural) situation in which collecting labeled
data is more expensive than using computational resources. This formulation also provides a new
perspective on parameterized complexity of learning; e.g., PAC learning k-junta (i.e., functions
depending on only k coordinates of the input) is known to be W[2]-hard [AKL09], but feasible
with FPT samples (with k2k · nΘ(1) samples and in O(nk) time) by Occam’s razor [BEHW87]. By
contrast, it can be shown that learning degree-d F2-polynomials is infeasible even in this setting
based on the VC theory [cf. SB14].2

We define the sparsity of a distribution as the maximum Hamming weight of samples.

Definition 6.1.1. For c ∈ N, we say that a family D = {Dn}n∈N of distributions on {0, 1}∗
is c-sparse if Prx←Dn [wt(x) ≤ c] ≥ 1 − negl(n), where wt(x) represents the Hamming weight of
x, and negl(n) represents some negligible function, i.e., for any polynomial p(n), it holds that
negl(n) < 1/p(n) for any sufficiently large n ∈ N.

6.2 Our Results

As a main result, we show that a collection of PPRGs in NC0 is characterized by the learnability
of various central classes with FPT samples with respect to a sparse example distribution and an
NC0-samplable target distribution.

1In this chapter, we use the term “target distribution” to refer to the distribution over target functions for
convenience.

2We can also show that learning degree-d F2-polynomials with FPT samples is infeasible even in the average-case
setting over uniformly random degree-d F2-polynomials (see Lemma 6.7.3).
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Theorem 6.2.1 (informal). The following are equivalent:

1. There exists a collection of (infinitely-often secure) PPRGs in NC0.

2. c-sparse F2-polynomials are not polynomial-time learnable on average with respect to a target
distribution samplable by a depth-d NC0 circuit and a samplable distribution on c′-sparse
example distributions with (c, c′, d)-FPT samples.

3. c-Fourier-sparse functions are not polynomial-time learnable on average with respect to a
target distribution samplable by a depth-d NC0 circuit and a samplable distribution on c′-
sparse example distributions with (c, c′, d)-FPT samples.

4. For any f ∈ {OR}∪{MODm : m ∈ N\{1}}, depth-d f -decision trees are not polynomial-time
learnable on average with respect to a target distribution samplable by a depth-d′ NC0 circuit
and a samplable distribution on c-sparse example distributions with (d, c, d′)-FPT samples.

Informally, Theorem 6.2.1 yields a new dichotomy between highly efficient pseudorandom gener-
ators and sample-efficient heuristics for learning with sparse data. Below we argue that the learning
settings of Theorem 6.2.1 are natural.

Concept classes. For the formal descriptions of each parameterized concept class, see Sec-
tion 6.5.1. Here, we remark that the sparsity of F2-polynomials and Fourier representations is one
of the most important complexities of Boolean functions [cf. ODo14]. The fourth item above con-
cerns the extensions of decision trees, containing the well-studied class of parity decision trees3 [e.g.,
KM93]. Although OR decision trees have received relatively less research attention compared with
the other concepts, learning OR decision trees with sparse data seems to be a natural setting
where the decision is made by a few queries about whether some unusual features are observed.
Interestingly, our result shows that the average-case learnability for these various concepts becomes
equivalent when data are sparse through the existence of a collection of PPRGs in NC0.

Example distributions. We remark two points. First, we consider a distribution of exam-
ple distributions (i.e., average cases on example distributions), where the example distribution is
selected at the initialization step (see Definition 6.5.5 for the formal description). Note that this
captures more general settings of learning than the original BFKL model [BFKL93]; e.g., our frame-
work captures a distribution determined by some hidden random parameter. From the perspective
of cryptography, the hardness assumption on a distribution of example distributions is weaker than
ones in distribution-specific settings. Second, we consider learning on sparse example distributions.
Such a learning framework naturally captures learning on data with rarely observed features, such
as symptoms of patients.

Target distributions. We consider NC0-samplable distributions as target distributions, and
this is a natural assumption in average-case complexity theory in learning; e.g., the uniform dis-
tribution over functions in C is often regarded as a projection of random strings onto the binary
representations for functions in C (e.g., random DNFs), and almost all target distributions consid-
ered in previous studies on average-case learning are NC0-samplable [JS05; Sel08; Sel09; JLSW11;
AC15].

3In fact, the equivalence between constant-depth parity decision trees and constant-Fourier-sparse functions follows
from the work by Kushilevitz and Mansour [KM93]. However, it is unclear whether these learning settings are
equivalent when we restrict the target distributions to NC0-samplable because the transformation between these
representations may be infeasible in NC0.
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We also remark that Theorem 6.2.1 holds even in super-polynomial regimes; e.g., sub-exponential-
time average-case hardness of learning with FPT samples corresponds to a collection of PPRGs
secure against sub-exponential-time adversaries (where the loss of security is only polynomial).
Note that super-polynomial security is applied for the construction of iO based on well-founded
assumptions [JLS21; JLS22]. Particularly, Jain, Lin, and Sahai [JLS21] assumed (i) the hardness
of learning problems LWE and LPN, (ii) the existence of a collection of PPRGs in NC0, and (iii)
the Diffie-Hellman-style assumption (i.e., SXDH). Our result characterizes assumption (ii) based
on the hardness of learning and, along with their work, opens an interesting research direction: Is
the well-founded hardness assumption of learning sufficient for constructing iO (i.e., Obfustopia)?

Next, we present several related results on the hardness of learning and PPRGs in relaxed
complexity classes, which are obtained by relaxing some conditions in Theorem 6.2.1.

On removing sparsity conditions. Although Theorem 6.2.1 shows one characterization of a
collection of PPRGs in NC0 by learnability with sparse data, the sparsity is somewhat restrictive,
and there exist a large amount of non-sparse data in the real world. As a second result, we show
that learnability with non-sparse data for the classes in Theorem 6.2.1 still characterizes a collection
of PPRGs in superclasses of NC0.

Theorem 6.2.2 (informal). The following hold:

1. There exists a collection of PPRGs in O(1)-sparse F2-polynomials iff c-sparse F2-polynomials
are not polynomial-time learnable on average with respect to a target distribution samplable by
a c′-sparse F2-polynomial and a samplable distribution on example distributions with (c, c′)-
FPT samples.

2. There exists a collection of PPRGs in O(1)-Fourier-sparse functions iff c-Fourier sparse func-
tions are not polynomial-time learnable on average with respect to a target distribution sam-
plable by a c′-Fourier sparse functions and a samplable distribution on example distributions
with (c, c′)-FPT samples.

The generators above still have good parallelism in the sense that each output bit is computable
by a constant number of parallel and simple computations (i.e., logical AND or logical XOR).

On obtaining a single PPRG. The theorems above hold only in the case of a collection of
PPRGs, and the learning-theoretic characterization of a single PPRG is currently open. Although
a collection of PPRGs is standard in parallel cryptography, a single parallel PPRG is still a natural
and desirable primitive because it does not require the additional public random strings.

As a third result, we show that if we allow NC0 circuits to have one top-most XOR-gate with
unbounded fan-in, where the other types of gates (i.e., NOT, OR, and AND) have bounded fan-in
(we denote this class4 by ⊕-NC0), then a single PPRG in ⊕-NC0 is characterized by the hardness
of learning constant-degree F2-polynomials on the uniform example distribution.

Theorem 6.2.3 (informal). For any polynomial r(n), the following are equivalent:

1. There exists a PPRG in ⊕-NC0.

2. Degree-d F2-polynomials are not polynomial-time learnable on average with respect to a uni-
form example distribution and a target distribution samplable by a degree-d′ F2-polynomial
using r(n)-bit random seeds with (d, d′)-FPT samples.

4It is not hard to verify that ⊕-NC0 is indeed equivalent to NC0[⊕] (i.e., a class of NC0 circuits with XOR-gates
with unbounded fan-in) and a class of constant-degree F2-polynomials.

117



We remark several points. First, in the theorem above, the length of the seeds for selecting a
target function is also fixed to some polynomial r(n) independent of the parameters (i.e., degree
of F2-polynomials). This restriction is essential for the result because if we remove this restriction,
then unlearnability with FPT samples holds unconditionally even for time-unbounded learners (see
Section 6.7.1). Second, the average-case hardness of learning on the uniform example distribution
is equivalent to weak pseudorandom functions (WPRFs), where a WPRF is an efficiently samplable
family of functions indistinguishable from a random function on inputs passively selected uniformly
at random [NR99]. Thus, Theorem 6.2.3 can also be regarded as the equivalence between PPRG
and WPRF within the class ⊕-NC0.

Finally, we show that if we consider a general case of samplable distributions of example dis-
tributions (instead of the uniform example distribution), then the dichotomy in Theorem 6.2.3 is
extended to a collection of PPRGs in ⊕-NC0. In other words, we can characterize the difference
between a single PPRG and a collection of PPRGs in ⊕-NC0 by the difference in the generality of
example distributions on the hardness of learning.

Theorem 6.2.4 (informal). For any polynomial r(n), the following are equivalent:

1. There exists a collection of PPRGs in ⊕-NC0.

2. Degree-d F2-polynomials are not polynomial-time learnable on average with respect to a tar-
get distribution samplable by a degree-d′ F2-polynomial using r(n)-bit random seeds and a
samplable distribution on example distributions with (d, d′)-FPT samples.

Note that Theorems 6.2.2–6.2.4 also hold in super-polynomial regimes with polynomial security
loss.

Theorems 6.2.1–6.2.4 indicate that by selecting a parameterized example distribution and a
parameterized target distribution arbitrarily and by assuming the hardness of learning with FPT
samples, we can construct a secure parallel PPRG. Conversely, if we believe in PPRGs in the
correspondence class, then such a hard-to-learn parameterized setting must exist. However, we
remark that Theorems 6.2.1–6.2.4 are general results on the dichotomy between the hardness of
learning and parallelly computable PPRGs, and they do not explicitly specify the distributions
with respect to which learning is hard on average with FPT samples.

Here, we propose a natural learning task, learning random parity decision trees, whose hardness
does not contradict our current knowledge.

Definition 6.2.5 (Learning random parity decision trees). Let D = {Dn}n∈N be an arbitrary
example distribution, where Dn is a distribution on {0, 1}n for each n ∈ N. For any d ∈ N and
m : N → N, we define a problem of learning random depth-d parity decision trees (d-LRPDT) on
D with m(n) samples as follows:

Input: samples {(x(i), T (x(i)))}i∈{1,...,m(n)} and a challenge xc, where x(1), . . . , x(m(n)), xc ∈
{0, 1}n are selected according to Dn, and T is a random parity decision tree of depth
d and size 2d in which each query at internal nodes is ⊕i∈Sxi for a uniformly random
subset S ⊆ {1, . . . , n} (selected independently for each node) and each leaf is labeled by
a uniformly random value in {0, 1} (selected independently for each leaf).
Output: T (xc)

For any polynomial m(n) and p(n), we say that d-LRPDT is (m(n), 1/p(n))-hard on D if no
randomized polynomial-time algorithm solves d-LRPDT on D with m(n) samples with probability
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at least 1/2 + 1/p(n), i.e., for any randomized polynomial-time algorithm A and sufficiently large
n ∈ N,

Pr
A,Dn,T

[
A
(

(x(1), T (x(1))), . . . , (x(m(n)), T (x(m(n)))), xc

)
= T (xc)

]
<

1

2
+

1

p(n)
.

By Theorem 6.2.1, if d-LRPDT is hard with FPT samples on some parametrized sparse example
distribution, then a collection of PPRGs exists in NC0. By inspecting our proof, we show that the
sample complexity can be made as small as n1+ε for an arbitrarily small constant ε > 0.

Corollary 6.2.6. Let ε ∈ (0, 1) be an arbitrary constant. Suppose that there exist d ∈ N and
an example distribution D such that d-LRPDT is hard on D with n1+ε samples5. Then, we can
construct parallel PPRGs according to the complexity of D as follows:

• If D is O(1)-sparse and samplable, then a collection of PPRGs in NC0 exists.

• If D is the uniform distribution, then a PPRG in ⊕-NC0 exists.

• If D is samplable, then a collection of PPRGs in ⊕-NC0 exists.

The first and third items hold even for samplable distributions on example distributions.

For instance, as a natural candidate for O(1)-sparse example distributions, we propose the
uniform distribution over binary strings of Hamming weight c ∈ N.

Corollary 6.2.7. If there exist c, d ∈ N and ε ∈ (0, 1) such that d-LRPDT is hard on the uniform
example distribution over binary strings of Hamming weight c with n1+ε samples, then a collection
of PPRGs in NC0 exists.

We remark that it is consistent with our knowledge that d-LRPDT cannot be solved. Depth-d
parity decision trees are exactly learnable by the Goldreich–Levin algorithm when additional query
access to the target function (i.e., membership query) is available [GL89; KM93]. However, it is
a central open question whether the membership query is necessary, and d-LRPDT is a natural
test case for this question. An efficient learner for random log-depth decision trees was developed
by Jackson and Servedio [JS05], but it is unclear whether this algorithm can be extended to the
case of random parity decision trees. From Corollary 6.2.6, we propose further learning-theoretic
and cryptographic analysis of the hardness of learning parity decision trees as a future research
direction. Particularly, one important property of the PPRGs constructed in Corollary 6.2.6 is that
the output bits are computed by various predicates. Therefore, they seem to resist an attack that
depends on a specific property of one fixed predicate, even in the setting in Corollary 6.2.7.

6.3 Related Work

Applebaum, Barak, and Wigderson [ABW10] proved the hardness of learning O(log n)-junta func-
tions under the existence of PRGs in NC0 with an additional assumption that (roughly speaking)
a small subset of output bits can be embedded indistinguishably with good local expansion. Ap-
plebaum and Raykov [AR16] proved the hardness of learning depth-3 AC0 circuits under the as-
sumption related to polynomial-stretch Goldreich’s PRGs, which matches the unconditional upper

5For the requirement for the advantage of learning, see Section 6.8.
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bound presented in [LMN93]. We remark that their assumption is reducible to a more reliable
assumption on Goldreich’s OWFs due to the search-to-decision reduction developed in [App13;
AR16], where they essentially use the structures of Goldreich’s OWFs. Daniely and Vardi [DV21]
showed the hardness of learning ω(1)-term DNF formulas and related classes on a product example
distribution by assuming Goldreich’s PRG for arbitrary polynomial stretch. We remark that our
results are incomparable with these previous studies. We assume the existence of the more general
cryptographic primitive (i.e., a collection of PPRGs in NC0) to show the hardness of learning other
simple and central classes. This generalization weakens the hardness result to a more general class
of example distributions instead of product distributions compared with [DV21], while we can also
obtain the opposite direction from the hardness of learning to cryptography. The result of [OST22]
on natural properties also differs in the learning setting, particularly natural properties essentially
correspond to learning with membership queries on the uniform example distribution [CIKK16].

Blum, Furst, Kearns, and Lipton [BFKL93] constructed OWFs, PRGs, and private-key encryp-
tion schemes based on the average-case hardness of learning. To construct PPRGs by using their
technique, we need to assume a stronger hardness assumption on learning with membership queries.
The use of membership queries was removed by Naor and Reingold [NR99], and we apply the same
technique to show one direction in Theorem 6.2.3. Note that the complexity of these PPRGs de-
pends on the complexity of evaluating concept classes. Thus, this approach does not seem to yield
a PPRG in NC0 because if a concept class has the evaluation performed in NC0, then such a class
is trivially learnable. The followup studies [NR06; OS17; San20] discussed relationships between
cryptography and hardness of learning in P and P/poly. Other studies [e.g., Reg09] developed
various cryptographic schemes based on the hardness of learning linear functions with noise, but
it is not clear whether PPRGs in NC0 are obtained as a consequence of these studies. LRPDT is
regarded as a related problem in which we learn parity with noise determined by a constant number
of other parities, and it is indeed reducible to learning parity with noise in the case of a uniform
example distribution [FGKP09].

With regard to parallel cryptography, the constructions of PRGs in NC0 were presented by Ap-
plebaum, Ishai, and Kushilevitz [AIK06] (sublinear-stretch) and Applebaum, Ishai, and Kushilevitz
[AIK08] (linear-stretch). Recently, Ren and Santhanam [RS21] and Liu and Pass [LP21c] charac-
terized the existence of OWF in NC0 based on the average-case meta-complexity notion, which
only yields sublinear-stretch PRGs in NC0, and PPRGs in NC0 seem out of reach at present. Some
candidates for a collection of PPRGs in NC0 were studied by Cook, Etesami, Miller, and Trevisan
[CEMT14], Bogdanov and Qiao [BQ12], Applebaum, Bogdanov, and Rosen [ABR16], Applebaum
[App13], O’Donnell and Witmer [OW14], Applebaum and Lovett [AL18], and Couteau, Dupin,
Méaux, Rossi, and Rotella [CDMRR18] based on the framework of Goldreich’s OWF [Gol11a].
This type of generator is natural but somewhat restrictive in the sense that all output bits are
computed by the same predicate fixed in advance. One advantage of the previous framework is
that the security of the generator can be based on a hardness notion of one-wayness, which is more
reliable than pseudorandomness [App13].6 By contrast, an advantage of the framework proposed
in this study is that the output bits of the resulting generator are computed by various predicates;
thus, it seems to resist an attack that depends on a specific property of one fixed predicate.

We will introduce a key notion of FPT dualization with the junta-sparse condition in Section 6.4,

6In terms of learning, the difference between one-wayness and pseudorandomness is similar to the difference
between proper learning and improper learning. In general, proper learning is often harder than improper learning,
as discussed in Chapter 2.6.
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and it seems conceptually related to the analysis of Boolean functions on Hamming balls and slices
(i.e., substrings of fixed Hamming weight). Particularly, Filmus and Ihringer [FI19] and Filmus
[Fil22] proved that every constant-degree polynomial on a slice is also O(1)-junta on the same slice.
By contrast, our result can also be rephrased as that every sparse polynomial on a Hamming ball
is a dual of O(1)-junta.

6.4 Techniques

In this section, we present an overview of key notions and proof sketches of the main results.

6.4.1 Proof Techniques for Theorems 6.2.1 and 6.2.2

The key notion to show Theorems 6.2.1 and 6.2.2 is the dualization of concept classes, which was
explicitly discussed independently by Applebaum, Barak, and Wigderson [ABW10] and Vadhan
[Vad17] and applied (implicitly or explicitly) in recent studies on the hardness of learning [DS16;
Dan16; DV21]. Informally, the dualization of a concept class C consists of two mappings from
examples to target functions in C and from target functions in C to examples satisfying the
following condition. If an example x (resp. a target function f ∈ C ) is mapped to a target function
x∗ ∈ C (resp. an example f∗) by these mappings, then the value of x∗(f∗) is equal to f(x). We
refer to this x∗ (resp. f∗) as a dual of x (resp. f) and use the superscript ∗ to represent duals.
The dualization of a concept class directly enables us to switch the roles of inputs and functions,
which was at the core of duality between learning and cryptography, as mentioned in Section 5.2.1.
In this context, we can regard the technique in Section 5.2 as an application of the dualization of
P/poly by the universal circuit.

First, we observe that the dualization of a concept class C provides a relationship between a
collection of PRGs and learnability for C . On the one hand, if there exists a collection G of PRGs in
C , then we can construct a sample set of size m from the pseudorandom string y = G(x) of length
m (where x is a random seed) as {(G∗i , yi)}i∈[m], where Gi ∈ C represents the function computing
the i-th bit of G, and G∗i is its dual. Notice that x∗(G∗i ) = Gi(x) = yi for each i ∈ [m]. Therefore, if
we consider this x∗ as a target function for learning C and the uniform distribution over the samples
as the example distribution, any feasible learner cannot distinguish these labels from random labels
unless the learner looks at almost all samples in the set. On the other hand, we can obtain a
collection of PRGs from the problem of learning C by translating a sample set {(x(i), f(x(i)))}i∈[m]

(where f is a target function) into a generator G(f∗) = (x(1))∗(f∗) ◦ · · · ◦ (x(m))∗(f∗). By the
equivalence between pseudorandomness and unpredictability [Yao82], if learning C is hard even with
non-negligible advantage, then the value of G(f∗) = f(x(1)) ◦ · · · ◦ f(x(m)) must be pseudorandom.
If we assume that the target distribution is samplable in a complexity class C ′ and regard the seed
to the sampler as a random seed to G, then we can implement this G in C ◦ C ′.

At a high level, we will use the argument above to show Theorems 6.2.1 and 6.2.2. However,
there are several obstacles. First, the argument from PRG to the hardness of learning only yields
hardness of learning with a fixed sample complexity depending on the stretch of the PRG. Second,
more importantly, NC0 cannot be dualized. Intuitively, for an NC0-computable f : {0, 1}n → {0, 1}
(i.e., f depends on only O(1) coordinates) and input x ∈ {0, 1}n, the value of f(x) depends
on Ω(log n)-bit information of f , such as relevant coordinates. Thus, we cannot regard f(x) as a
function depending on onlyO(1)-bit information in a representation of f . In Section 6.9, we formally
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show the impossibility of the dualization of NC0 based on the lower bound on communication
complexity. Below we present how we deal with these two obstacles.

FPT Dualization

We deal with the first obstacle by assuming polynomial-stretch PRGs. The merit of a PPRG is
that we can amplify the stretch of a PRG to an arbitrary polynomial within NC0 by applying the
original generator constant times based on the GGM construction [GGM86]. After applying the
original generator computable by a depth-d circuit c times, the depth of the generator increases up
to cd, whereas c affects the exponent of the stretch of the PRG. Intuitively, this observation leads
to the hardness of learning with FPT samples for a parameter involved in the depth.

To apply the dualization technique above in the parameterized setting, we extend the notion
of dualization to the parameterized setting as follows. For any parameterized concept class C , we
use a subscript and superscript to refer to an input size and a parameter, respectively.

Definition 6.4.1 (FPT dualizable). Let C k be a parameterized concept class. We say that C is
fixed-parameter tractably (FPT) dualizable if there exist a polynomial pdual : N → N, computable
functions f1, f2 : N→ N, and polynomial-time computable mappings g : N×{0, 1}∗ → C and h : N×
C → {0, 1}∗ such that for any k, n ∈ N, x ∈ {0, 1}n, and f ∈ C k

n , the following hold: (i) g(k, x) ∈
C
f2(k)
f1(k)·pdual(n), (ii) h(k, f) ∈ {0, 1}f1(k)·pdual(n), and (iii) (g(k, x))(h(k, f)) = f(x).

We use the notation x∗(k) or x∗ (resp. f∗(k) or f∗) to refer to g(k, x) (resp. h(k, f)) in the
definition above; e.g., the third condition above can be written as x∗(f∗) = f(x) for each f and x.

Junta-Sparse Condition

At a high level, the idea to overcome the second obstacle is applying the dualization of superclasses
of NC0 and focusing on its substructure, i.e., the correspondence between NC0 and a subset of
strings, particularly in our case, sparse strings. To formalize this idea, we introduce a key condition
of FPT dualization named the junta-sparse condition, which serves as dualization of NC0 partially
in the actual dualization of the superclass. Intuitively, the junta-sparse condition claims that (i)
any O(1)-junta function is contained in the concept class, and (ii) O(1)-junta functions and strings
of constant Hamming weight get interchanged by the FPT dualization. The condition is formally
stated as follows:

Definition 6.4.2 (Junta-sparse condition). Let C k be an FPT dualizable class. We say that C
satisfies the junta-sparse condition if the following hold:

1. There exist computable functions g, h : N→ N such that for any k ∈ N and any k-junta f , it
holds that f ∈ C g(k) and wt(f∗) ≤ h(k).

2. There exists a computable function g : N × N → N such that for any c, k ∈ N and any
x ∈ {0, 1}∗ with wt(x) ≤ c, it holds that x∗(k) is g(c, k)-junta.

Meta-Theorem

The proof of Theorem 6.2.1 consists of the following two parts. As the first step, we prove meta-
theorem which shows that if a parameterized concept class C is FPT dualizable by mappings
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computable in NC0 and it satisfies the junta-sparse condition, then the existence of a collection
of PPRGs in NC0 corresponds to the average-case hardness of learning C with FPT samples with
respect to (a samplable distribution of) sparse example distributions and an NC0-samplable target
distribution7. Note that verifying the condition in the meta-theorem (i.e., dualization with the
junta-sparse condition) is purely a puzzle-like problem involved in representation for Boolean func-
tions and directly related to neither learning theory nor cryptography (cf. Section 6.6.3). Namely,
if you can solve the puzzle for some concept class C , then it automatically implies the equivalence
between the existence of a collection of PPRGs in NC0 and the average-case hardness of learning C
with sparse data based on our meta-theorem. As the second step to show Theorem 6.2.1, we solve
this puzzle, i.e., demonstrate that concept classes in Theorem 6.2.1 (i.e., c-sparse F2-polynomials,
c-Fourier-sparse functions, and depth-d {OR,Modm}-decision trees) are FPT dualizable by NC0-
computable mappings and satisfy the junta-sparse condition.

We show the outline of the proof of the meta-theorem based on the argument mentioned at the
beginning of this subsection.

A collection of PPRGs in NC0 ⇒ hardness of learning : Suppose that there exists a collection G
of PPRGs. For contradiction, we assume that there exists an efficient learner L for C that requires
only FPT samples. We amplify the stretch of G by the GGM construction [GGM86] within NC0,
let G′ be the amplified generator, and construct the sample set S from the duals of G′ and a
pseudorandom string y = G′(x). Since G′ is computable in NC0, each function computing each bit
of G′ is O(1)-junta. Thus, by the junta-sparse condition, the Hamming weight of each example is
bounded above by a constant (depending on the depth of G′). In addition, since the mappings in
FPT dualization are computable in NC0, the target distribution of the dual of the random seed x
is NC0-samplable. Thus, the learning problem on the uniform distribution over the samples in S is
a valid setting for L. Let c be the number of applications of G to construct G′. Then, the sample
complexity of L increases in the sense of FPT for c, whereas c affects the exponent of the stretch of
G′. Therefore, for a sufficiently large c ∈ N, the learner L cannot read a large fraction of S. Thus,
L can predict some bit in G′(x) from other bits, and this contradicts that G is PRG.

Hardness of learning ⇒ a collection of PPRGs in NC0: Suppose that learning C is hard on
average with FPT samples. Since the target distribution is NC0-samplable, each bit of the repre-
sentation of C depends on only constant bits of a random seed. By the technical assumption (in
footnote 7) on the FPT upper bound on the length of the representation of C , we can assume that
the length of the seed for the target distribution is bounded above by some FPT function. Using
the hardness assumption for a sample complexity m(n) polynomially larger than the upper bound
on the length of the seed, we construct the collection G of PRGs by taking duals of examples.
Remember that the input size of G is the length of the seed for the target distribution, and the
output size is m(n). Thus, G has polynomial-stretch. In addition, the Hamming weight of the
examples is constant except with negligible probability by the hardness assumption. Thus, by the
sparse-junta condition, each bit of G is O(1)-junta, and G is implemented in NC0. Technically,
when we consider the advantage in learning, this argument only yields a collection of PPRGs with
a fixed indistinguishable parameter. We can convert such a collection of weak PPRGs into a collec-
tion of standard PPRGs (with a negligible indistinguishable parameter) by applying the technique
by Applebaum and Kachlon [AK19].

Theorem 6.2.2 is shown based on the following observation: If a concept class C is FPT dualiz-

7Strictly speaking, we also need a technical assumption that the length of the binary representation for C is
bounded above by some FPT function.
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able and closed under the composition (where the junta-sparse condition is no longer needed), the
above argument yields the equivalence between a collection of PPRGs in C and the average-case
hardness of learning C with FPT samples. See Section 6.6.4 for the formal argument.

6.4.2 Proof Techniques for Theorem 6.2.3

Theorem 6.2.3 shows the equivalence between the existence of a (single) PPRG in ⊕-NC0 and
the average-case hardness of learning constant-degree F2-polynomials with FPT samples with re-
spect to a uniform example distribution and a target distribution samplable by a constant-degree
F2-polynomial. In fact, ⊕-NC0 is equivalent to the class of constant-degree F2-polynomials be-
cause (i) any constant-degree F2-polynomial is implemented by a ⊕-NC0 circuit that first computes
monomials in parallel and takes the summation of them by the top-most XOR gate, and (ii) any
⊕-NC0 circuit is implemented by a constant-degree F2-polynomial by expressing each sub-circuit
connected to the top-most XOR-gate as a constant-degree F2-polynomial (note that the top-most
XOR-gate does not increase the degree of the resulting F2-polynomial). Therefore, we only need
to establish the relationship between a PPRG and learnability within the class of constant-degree
F2-polynomials.

Before presenting the idea, we briefly explain why we cannot apply the dualization techniques
in Section 6.4.1 directly to show Theorem 6.2.3. In fact, the class of degree-d F2-polynomials is
simply dualizable as follows: for any degree-d F2-polynomial f(x) =

∑
S:|S|≤d fS

∏
i∈S xi, where fS

represents the coefficient of f on
∏
i∈S xi, we regard the coefficients of f as the input and the value

of
∏
i∈S xi as a coefficient on the monomial fS for each subset S, i.e., the dual of x is a degree-1

F2-polynomial taking the coefficients of f as the input. An issue is that this dualization is no
longer FPT in the sense that each n-input degree-d polynomial is converted into a string of length∑d

i=1

(
n
i

)
= Θ(nd). If we apply this dualization in the argument in Section 6.4.1, then a parameter

affects the exponent of the sample complexity of learners, and this causes several problems: e.g.,
in the direction from PPRG to the hardness of learning, we cannot prepare a sufficient number
of samples using the GGM construction so that the learner cannot read the entire sample set. In
addition, the argument in Section 6.4.1 yields only a collection of PPRGs.

An alternative to show the direction from a PPRG to hardness of learning is to construct an F2-
polynomial pseudorandomly. As a preliminary observation, if we select a polynomial f uniformly at
random from all n-input F2-polynomials of degree d, then form = 1

2

∑d
i=1

(
n
i

)
inputs x(1), . . . , x(m) ∈

{0, 1}n selected uniformly at random, we can show that the distribution of f(x(1)), . . . , f(x(m)) is
statistically close to an m-tuple of random bits even when x(1), . . . , x(m) are given. In the formal
proof, we verify this by applying the results obtained by Ben-Eliezer, Hod, and Lovett [BHL12].
For now, we assume this. Then, we observe that even if we select a degree-d F2-polynomial f by a
pseudorandom string generated by a PPRG, the labels of the sample set {(x(i), f(x(i)))} must be
computationally indistinguishable from random labels. By the equivalence of pseudorandomness
and unpredictability [Yao82], such a pseudorandom F2-polynomial f must be unpredictable.

Based on the argument above, we can create a hard learning problem with FPT samples based
on a PPRG G, as follows. For contradiction, we assume that there exists an efficient learner L
that requires only FPT samples. Then, we use the GGM construction to amplify the stretch of G,
let G′ denote the amplified PRG, and select a pseudorandom F2-polynomial using G′. Remember
that the number c of applications of G affects the exponent of the stretch of G′. Thus, for each
d ∈ N, we can select a sufficiently large c such that a degree-d pseudorandom F2-polynomial can
be selected by G′. Note that G′ is still computable by an F2-polynomial of degree dc. We regard
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this G′ as a sampling algorithm for selecting a target function in degree-d F2-polynomials. For the
degree-d pseudorandom F2-polynomial, we can retrieve 1

2

∑d
i=1

(
n
i

)
= Θ(nd) samples that are hard

to predict. By contrast, each d determines c and the degree of the sampling algorithm for the target
distribution; thus, d affects the required number of samples only in the FPT sense. Therefore, by
taking a sufficiently large d, we can prepare a sufficient number of samples for L, and L yields an
efficient adversary for G′ and G. This is a contradiction.

To show the opposite direction from the average-case hardness of learning to a PPRG, we apply
the idea presented by Naor and Reingold [NR99]. First, we observe that for each constant-degree
F2-polynomial f and input x, the value of f(x) is evaluated by a constant-degree F2-polynomial
taking x and the binary representation of f as the input (where we naturally assume that each f is
represented by the coefficients of f). Then, the construction of a PPRG G is outlined as follows. We
use the hardness assumption for a sample complexity m(n) sufficiently larger than (n+r(n))2, where
r(n) is the upper bound on the seed length for the target distribution in Theorem 6.2.3. Let R = n+
r(n). Then, G selects R2 examples x(1), . . . , x(R2) and R2 target functions f (1), . . . , f (R2) according
to the hard example distribution and target distribution by using its own random seed. Then, G
outputs R4 bits f (i)(x(j)) for each i, j ∈ {1, . . . , R2} as a pseudorandom string. We can prove the
pseudorandomness of G using the hybrid argument and the equivalence between unpredictability
and pseudorandomness [Yao82]. Since G requires only a R2(n+ r(n))-bit random seed to select the
examples and the target functions, G stretches an R3-bit random seed into an R4-bit pseudorandom
string. Thus, G has polynomial-stretch. Note that we apply the standard padding technique to
obtain a PPRG defined on all input lengths. Since the sampling algorithm for the target distribution
and the evaluation algorithm are computable by constant-degree F2-polynomials, this generator is
implemented by a constant-degree F2-polynomial by taking composition. Thus, we obtain a PPRG
computable by a constant-degree F2-polynomial. Note that the construction in the formal proof
is more complicated because we apply the XOR lemma to amplify the success probability of the
adversary to the desired advantage of a learner. For details, see Section 6.7.1.

6.4.3 Proof Ideas for Theorem 6.2.4

Theorem 6.2.4 shows the equivalence of a collection of PPRGs in ⊕-NC0 and the average-case
hardness of learning constant-degree F2-polynomials with FPT samples with respect to (a samplable
distribution of) example distributions and a target distribution samplable by a constant-degree F2-
polynomial. One direction from the average-case hardness of learning to a collection of PPRGs
is shown in the same way as in Section 6.4.2 except that the sampling algorithm for the example
distributions is simulated during preprocessing, where the examples are hardwired in the generator.

We present a rough idea to show the other direction from a collection of PPRGs to the hardness
of learning. Note that we cannot apply the technique in Section 6.4.2 because the sampler of
generators cannot be implemented in constant-degree F2-polynomials in general, and the sampling
algorithm for selecting a pseudorandom F2-polynomial is not always implemented in constant-
degree F2-polynomials. Thus, we take the strategy based on FPT dualization again. As discussed
in Section 6.4.2, it is unclear whether FPT dualization of constant-degree F2-polynomials is feasible.
However, to show the direction from a PPRG to hardness of learning based on the argument in
Section 6.4.1, the type of functions we need to dualize is restrictive, i.e., composite functions of
the original pseudorandom generator G (in the GGM construction). We apply this observation to
avoid the obstacle involved in the dualization of general constant-degree F2-polynomials.

The outline follows the argument in Section 6.4.1. Let G′ be the collection of PPRGs obtained
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by applying G c times to amplify the stretch. We create the sample set from G′ and a pseudorandom
string y = G′(x), where each example corresponds to the dual of the function computing each bit
of G′. Intuitively, for each position i, we define the dual of the i-th bit of G′ as c concatenated
descriptions of G that are relevant for computing the i-th bit of G′. Then, we consider a target
function as a constant-degree F2-polynomial that computes the description of G′ by taking the
composition of the given descriptions of G and then applies the random seed x, where we regard
this x to be hardwired by another constant-degree F2-polynomial given x as the input. We regard
the latter F2-polynomial as the sampling algorithm for the target distribution. Consequently, we
can prevent the dependence of c and the degree d of G′ on the exponent of the input size and the
sample complexity in learning. By contrast, c affects the exponent of the stretch of G′. Thus, based
on the similar argument as in Section 6.4.1, we can show the average-case hardness of learning by
selecting sufficiently large c. We will present the details in Section 6.7.2.

6.5 Additional Preliminaries

For any m ∈ N, we define a symmetric function Modm : {0, 1}∗ → {0, 1} as Modm(x) = 1 iff x ≡ 0
mod m. For any n, d ∈ N with d ≤ n, let

(
n
≤d
)

=
∑d

i=0

(
n
i

)
= O(nd).

We use the following lemma.

Lemma 6.5.1 ([BHL12, Claim 2.4]). For any β ∈ (0, 1), there exists a constant γ ∈ (0, 1) such
that for any m, d ∈ N and for any sufficiently large n ∈ N,

(
m
≤d
)
≤ β ·

(
n
≤d
)

implies m ≤ n(1− γ/d).

Let C = {Cn}n∈N be an arbitrary class of functions (i.e., a complexity class), where Cn ⊆
{f : {0, 1}n → {0, 1}} for each n ∈ N. When we discuss the computability in C in this chapter, we
implicitly assume its uniformity, i.e., we say that a family of multi-output functions f = {fn}n∈N,
where f : {0, 1}n → {0, 1}m(n), is computable in C if there exists a polynomial-time algorithm A
such that for any n ∈ N and i ∈ [m(n)], the algorithm A(1n, i) outputs the description of a function
gi ∈ Cn such that gi(x) is the i-th bit of fn(x) for any input x ∈ {0, 1}n. Let NC0 (resp. ⊕-NC0) be
the complexity class of constant-depth circuits (resp. constant-depth circuits in which the top-most
gate can be a ⊕-gate with unbounded fan-in).

6.5.1 Boolean Functions and Representations

In this chapter, we consider a distribution on functions samplable in low complexity. In such
cases, the choice of binary encodings of the functions may affect the results because the translation
between two different representations may be infeasible in low complexity. Thus, we specify the
binary representations for concept classes in a natural manner as follows.

F2-polynomials

Any Boolean-valued function f : {0, 1}n → {0, 1} has a unique representation as a polynomial in
F2 obtained by expanding f(x) =

∑
a∈Fn2

f(a)1l(x = a) =
∑

a∈Fn2
f(a)

∏
i∈[n](xi + ai + 1) under

operations of F2.
For each S ⊆ [n] and x ∈ Fn2 , let xS =

∏
i∈S xi. For each F2-polynomial p : Fn2 → Fn and

S ⊆ [n], we use the notation pS to refer to the coefficient of p on S, i.e., p(x) =
∑

S pSx
S . We

define the degree of an F2-polynomial p as the maximum number d such that there exists a subset S
of coordinates such that |S| = d and pS = 1. Then, we specify the binary representation of degree-d
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F2-polynomials naturally by a string of length
(
n
≤d
)

concatenating all coefficients on S with |S| ≤ d
in some canonical order.

The following lemma plays a key role in the proof of Theorem 6.2.3.

Lemma 6.5.2 ([BHL12, Lemma 1.4]). For any n,m ∈ N and any 2m distinct points x1, . . . , x2m ∈
Fn2 , the following set is a linear subspace of F2m

2 and the dimension is at least
(
m
≤d
)
:{

vp ∈ F2m

2 : p is a degree-d F2-polynomial and vpi = p(xi) for each i ∈ [2m]
}
.

Fourier Representations

When we consider the Fourier representation of Boolean functions, we regard any Boolean-valued
function f : {0, 1}n → {0, 1} as a function mapping from {0, 1}n to {−1, 1} by considering (−1)f(x).
For each α ∈ {0, 1}n, we define a function χα : {0, 1}n → {−1, 1} as χα(x) = (−1)〈x,α〉, where 〈·, ·〉
denotes the inner product in Fn2 . Then, any Boolean function f : {0, 1}n → {−1, 1} has a unique

representation of the form f(x) =
∑

S⊆[n] f̂(α)χα(x), where f̂(α) = Ex∼{0,1}n [f(x)χα(x)] and is
called a Fourier coefficient of f on α. For further background on Fourier analysis, refer to the
textbook by O’Donnell [ODo14].

For any function f : {0, 1}n → {−1, 1}, the Fourier sparsity of f is defined as |{S ⊆ [n] : f̂(S) 6=
0}|. For any s ∈ N and any function f of Fourier sparsity s, each Fourier coefficient f̂(α) takes
the form of Mα/2

dlog se, where Mα ∈ {−2dlog se, . . . , 0, . . . , 2dlog se} [GOSSW11; ODo14, Exercise
3.32]. Thus, we assume that each n-input function f of Fourier sparsity s is represented by an
O(ns log s)-bit string, where each term in f is represented by a tuple of dlog se+ 1 bits indicating
the coefficient (i.e., Mα above) and n bits indicating the coordinates that are contained in the term
(i.e., α above). For instance, f(x1, . . . , xn) = x1 ∨ x2 is 4 Fourier-sparse function and represented
in this form as ((−2, 0n), (2, 10n−1), (2, 010n−2), (2, 110n−2)).

Decision Trees and Extensions

A decision tree (DT) is a representation of Boolean functions and is defined as a rooted binary tree
in which the internal nodes are labeled by a variable xi, and the leaves are labeled by {0, 1}. For
an n-input DT T and input x ∈ {0, 1}n, the value of T (x) is determined as follows: T queries the
value in x according to the label at the root, and if the answer is true (resp. false), then T looks
at the right (resp. left) subtree and repeats the same process for the subtree. T repeats this until
it reaches some leaf and then outputs the binary label of the reached leaf. We define the depth of
DT as the maximum length of a path from the root to the leaves.

For any (family of) symmetric function f (e.g., OR and Modm), we define an f -decision tree
(f -DT) in the same manner as above except that each internal node is labeled by the query of the
form f(xi1 , . . . , xik) for some k ∈ [n] and {i1, . . . , ik} ⊆ [n] (instead of xi).

Without loss of generality, we can assume that the number of internal nodes of any depth-d
f -DT is exactly 2d − 1 by adding dummy nodes, where nothing is queried, and a configuration
automatically proceeds to the false subtree. We also assume a standard canonical ordering in
2d − 1 nodes (root to leaves) and 2d leaves (left to right). Then, for any (family of) symmetric
function f , we naturally specify the binary representation of n-input f -decision trees of depth f as
a (2d− 1) ·n+ 2d-bit string consisting of 2d− 1 strings in {0, 1}n that represent the sets of relevant
coordinates in [n] for 2d − 1 internal nodes and 2d binary labels on leaves.
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6.5.2 Learning Models

We define a parameterized concept class C = {C k}k∈N as a family of concept classes such that
C k ⊆ C k+1 for each k ∈ N. Note that we often use a subscript and a superscript to refer to input
size and a parameter, respectively.

In this chapter, we discuss the prediction model in the BFKL model [BFKL93] in a more fine-
grained way than Chapter 2, which is stated as follows. For convenience, we regard the time bound
of a learning algorithm as a function in the input length of a target function (i.e., the example size)
instead of a function in the input length of learning algorithms.

Definition 6.5.3 (Prediction in BFKL model). Let C be a concept class. Let D = {Dn}n∈N
and F = {Fn}n∈N be families of distributions, where Dn is a distribution on {0, 1}n and Fn is a
distribution on Cn. For any functions t,m : N→ N and γ : N→ (0, 1/2), we say that C is (t,m, γ)-
learnable on average with respect to D and F if there exists a randomized algorithm L such that for
all sufficiently large n ∈ N,

Pr
L,f,x(1),...,x(m(n)),xc

[
L((x(1), f(x(1))), . . . , (x(m(n)), f(x(m(n)))), xc) outputs f(xc) in time t(n)

]
≥ 1

2
+γ(n),

where x(1), . . . , x(m(n)), xc ∼ Dn and f ∼ Fn.
We refer to D (resp. F) as an example (resp. a target) distribution. We also refer to f , xc, and

γ above as a target function, a challenge, and an advantage, respectively.

Without loss of generality, we ignore the cases in which m(n) > t(n). Next, we define the key
notion of this work, i.e., FPT sample complexity.

Definition 6.5.4 (FPT samples). For c ∈ N, let k1, . . . , kc be parameters on a concept class C
and classes of example distributions and target distributions. For any functions t : N → N and
γ : N→ (0, 1/2), we say that C is (t, γ)-learnable on average with (k1, . . . , kc)-FPT samples if there
exists a function m(n, k1, . . . , kc) = f(k1, . . . , kc) · nO(1) for some f : Nc → N such that for any
choice of k1, . . . , kc ∈ N and any choice of an example distribution D and target distribution F that
satisfy the settings of the parameters, C is (t,mk1,...,kc , γ)-learnable on average with respect to D
and F , where mk1,...,kc(n) := m(n, k1, . . . , kc).

We define distributions on example distributions as example distributions samplable with shared
randomness to introduce the average-case variant of distribution specific learning.

Definition 6.5.5 (Samplable with shared randomness). We say that an example distribution is
samplable with shared randomness if there exists a polynomial-time sampling algorithm S such
that for any example size n ∈ N, examples in {0, 1}n are selected identically and independently
according to S(Upoly(n); r), where r is an auxiliary random string selected uniformly at random

from {0, 1}poly(n) at the initiation and shared through sampling processes.

Note that learning on example distribution samplable with shared randomness is the notion
sandwiched between distribution-free learning and distribution-specific learning in the following
sense. Any distribution-free learner that succeeds on all (unknown) example distributions also
succeeds on any example distribution samplable with shared randomness regardless of the choice
of shared randomness. In addition, if there exists a learner that succeeds on D for each example
distribution D samplable with shared randomness, then there exists a distribution-specific learner
that succeeds on D′ for each samplable example distribution D′.

We also discuss RRHS-refutation in the BFKL model.
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Definition 6.5.6 (RRHS-refutation in BFKL model). Let C be a concept class, D be an example
distribution, and F be a target distribution on C . For functions t,m : {0, 1}n → N and γ : N →
(0, 1/2), we say that C is (t,m, γ)-random-right-hand-side-refutable (RRHS-refutable) on average
with respect to D and F if there exists a randomized t(n)-time algorithm A such that for any n ∈ N,

Pr
A,x,f

[
A((x(1), f(x(1))), . . . , (x(m(n)), f(x(m(n))))) = 1

]
− Pr
A,x,b

[
A((x(1), b(1)), . . . , (x(m(n)), b(m(n)))) = 1

]
≥ γ(n),

where f ∼ Fn, x(i) ∼ Dn, and b(i) ∼ {0, 1} for each i ∈ [m(n)].

We use one direction from the hardness of learning to the hardness of RRHS-refuting, which
follows from Yao’s next-bit generator [Yao82].

Theorem 6.5.7 ([Yao82; Vad17]). Let m : N → N and γ : N → (0, 1/2) be any polynomial-time
computable functions. Let D be an arbitrary example distribution and F be an arbitrary target
distribution on a concept class C . Then, there exists a polynomial q such that for any time-bound
function t(n), if C is not (t(n),m(n), γ(n))-learnable on average with respect to D and F , then C
is not (t(n)/q(n),m(n),m(n)γ(n))-RRHS-refutable on average with respect to D and F .

We introduce the following useful fact, which follows from the XOR lemma (cf. [Nan21a;
GNW11, Sections 2 and 3]).

Fact 6.5.8. For any polynomial m⊕, p, there exist polynomials m, `, q and a randomized algorithm
Boost such that for any example distribution Dex and any samplable target distribution Dtarg on
a concept class C , the following hold.

• ` is determined by only p (i.e., independent of m⊕).

• Boost is given m(n) samples and a challenge according to Dex and Dtarg with a description
of a randomized algorithm L⊕ and outputs a prediction for the challenge.

• We define a concept class C⊕ by C⊕n = C⊕n′`(n′), where n′ is the maximum integer satisfying

n′`(n′) ≤ n and

C⊕n`(n) =

f(x(1) ◦ · · · ◦ x(`(n))) :=
⊕

i,j∈[`(n)]

f (i)(x(j))

∣∣∣∣∣∣f (i) ∈ Cn, x
(j) ∈ {0, 1}n

 .

Let D⊕ex and D⊕targ be families of distributions, where (D⊕ex)n and (D⊕targ)n are the distributions

of x⊕ := x(1) ◦ · · · ◦ x(`(n′)) and f⊕(x⊕) :=
⊕

i,j f
(i)(x(j)) for x(1), . . . , x(`(n′)) ∼ (Dex)n′

and f (1), . . . , f (`(n′)) ∼ (Dtarg)n′, respectively (where n′ is the maximum integer satisfying
n′`(n′) ≤ n). If L⊕ (t(n),m⊕(n), 1/p⊕(n))-learns C⊕ on average with respect D⊕ex and D⊕targ
for some polynomial p⊕, then Boost (t(n`(n))q(n),m(n), 1/2− 1/p(n))-learns C on average
with respect to Dex and Dtarg for any sufficiently large n.
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6.5.3 Pseudorandom Generator

Remember that, for convenience, we regard the time-bound of adversaries as a function in the input
length of a generator (i.e., the length of the hidden random seed) instead of a function in the input
length of adversaries.

Definition 6.5.9 (Polynomial-stretch PRG and weak PRG). Let t : N → N be any time-bound
function. We say that a family G = {Gn}n∈N, where Gn : {0, 1}n → {0, 1}`(n) for some function
` : N→ N, is an (infinitely often) pseudorandom generator (PRG) against t(n)-time adversaries if
`(n) > n and for any randomized t(n)-time algorithm A, there exist infinitely many n ∈ N such
that ∣∣∣∣ Pr

A,Un
[A(1n, Gn(Un)) = 1]− Pr

A,U`(n)

[A(1n, U`(n)) = 1]

∣∣∣∣ ≤ negl(n).

In addition, we say that a PRG G is a polynomial-stretch PRG (PPRG) if `(n) > n1+ε holds for
some constant ε > 0.

For any polynomial p(n), we say that G is a weak PRG with indistinguishable parameter 1/p(n)
against t(n)-time adversaries if `(n) > n and for any randomized t(n)-time algorithm A, there exist
infinitely many n ∈ N such that∣∣Pr[A(1n, Gn(Un)) = 1]− Pr[A(1n, U`(n)) = 1]

∣∣ ≤ 1/p(n).

We usually omit the subscript n from the notation above. Instead, we use the notation Gi for
i ∈ [n] to refer to the function computing the i-th bit of G. We also often omit 1n from the input
to adversaries.

Note that any generator in NC0 has a constant locality because any depth-d circuit only depends
on at most 2d coordinates of the input.

We also extend the definition above to a collection of pseudorandom generators.

Definition 6.5.10 (A collection of PRGs). We say that a family G = {Gn,z}n∈N,z∈{0,1}poly(n), where

Gn,z : {0, 1}n → {0, 1}`(n) for some function ` : N → N, is a collection of PRGs against t(n)-time
adversaries if (i) `(n) > n, (ii) for any (n, z), the binary representation8 of Gn,z is computable from
(1n, z) in time poly(n), and (iii) for any randomized t(n)-time algorithm A, there exist infinitely
many n ∈ N such that∣∣∣∣∣ Pr

z∼{0,1}poly(n),A,Un
[A(Gn,z, Gn,z(Un)) = 1]− Pr

z∼{0,1}poly(n),A,U`(n)

[A(Gn,z, U`(n)) = 1]

∣∣∣∣∣ ≤ negl(n),

where the input Gn,z refers to the binary representation of Gn,z. Moreover, if `(n) > n1+ε holds for
some constant ε > 0, then we say that G is a collection of PPRGs.

We also define a collection of weak PRGs in the same manner as Definition 6.5.9.

We often omit the subscripts n and z from the notation above and refer to a choice of z as a
choice of G.

We introduce two useful theorems shown in earlier studies. The first theorem shows the way to
amplify the stretch of PPRG by applying the original PPRG repeatedly constant time.

8Specifically, when we discuss a collection of PPRGs in a class C of Boolean functions, this is the binary represen-
tation for C.
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Theorem 6.5.11 ([GGM86]). For any function G = {Gn}n∈N, where G : {0, 1}n → {0, 1}n1+ε

for some constant ε > 0, and for any constants c ∈ [dε−1e] and d ∈ N, we define functions

G(0,c) = {G(0,c)
n }n∈N and G(d) = {G(d)

n }n∈N, where G(0,c) : {0, 1}n → {0, 1}n1+cε
and G(d) : {0, 1}n →

{0, 1}nd+1
, inductively as follows:

G(0,1)(x) = G(x)

G(0,c)
n (x) = Gn(G(0,c−1)

n (x)[1:n]) ◦Gn(G(0,c−1)
n (x)[n+1:2n]) ◦ · · · ◦Gn(G(0,c−1)

n (x)[n1+(c−1)ε−n+1:n1+(c−1)ε])

G(1)(x) = G(0,dε−1e)
n (x)[1:n2]

G(d)
n (x) = G(1)

n (G(d−1)
n (x)[1:n]) ◦G(1)

n (G(d−1)
n (x)[n+1:2n]) ◦ · · · ◦G(1)

n (G(d−1)
n (x)[nd−n+1:nd]).

For each d ∈ N, there exists a polynomial q such that for any time-bound function t, if G is a
PPRG against t(n)-time adversaries, then G(d) is also a PPRG against t(n)/q(n)-time adversaries.
Furthermore, this also holds for a collection of PRGs.

The second theorem shows that any weak PPRG with indistinguishable parameter n−Θ(1) can
be converted into a PPRG (with negligible indistinguishable parameter) without loss of constant
locality.

Theorem 6.5.12 ([AK19]). For any constant d ∈ N, a > 0, and ε, ε′ > 0, there exist d′ ∈
N, a polynomial q, and δ ∈ (0, 1) such that any collection of weak PPRGs of stretch n1+ε and
indistinguishable parameter 1/na computable in depth-d NC0 against t(n)-time adversaries can be
converted into a collection of PPRGs of stretch n1+ε′ in depth-d′ NC0 against t(nδ)/q(n)-time
adversaries.

6.6 Learning vs. PPRGs in Constant-Parallel Time

In this section, we show Theorems 6.2.1 and 6.2.2, which are formally stated as follows.

Theorem 6.6.1. For any a > 1, the following are equivalent:

1. There exists a collection of PPRGs in NC0.

2. c-sparse F2-polynomials are not polynomial-time learnable on average with advantage n−a

with respect to a c′-sparse example distribution samplable with shared randomness a target
distribution samplable by a depth-d NC0 circuit with (c, c′, d)-FPT samples.

3. c-Fourier-sparse functions are not polynomial-time learnable on average with advantage n−a

with respect to a c′-sparse example distribution samplable with shared randomness and a target
distribution samplable by a depth-d NC0 circuit with (c, c′, d)-FPT samples.

4. For any f ∈ {OR} ∪ {MODm : m ∈ N \ {1}}, depth-d f-decision trees are not polynomial-
time learnable on average with advantage n−a with respect to a c-sparse example distribution
samplable with shared randomness and a target distribution samplable by a depth-d′ NC0

circuit with (d, c, d′)-FPT samples.

Theorem 6.6.2. For any a > 1, the following hold:
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1. There exists a collection of PPRGs in O(1)-sparse F2-polynomials iff c-sparse F2-polynomials
are not polynomial-time learnable on average with advantage n−a with respect to an example
distribution samplable with shared randomness and a target distribution samplable by a c′-
sparse F2-polynomial with (c, c′)-FPT samples.

2. There exists a collection of PPRGs in O(1)-Fourier-sparse functions iff c-Fourier sparse func-
tions are not polynomial-time learnable on average with advantage n−a with respect to an
example distribution samplable with shared randomness and a target distribution samplable
by a c′-Fourier sparse functions with (c, c′)-FPT samples.

6.6.1 FPT Dualization and Junta-Sparse Condition

First, we review the key notions for showing Theorem 6.6.1.

Definition (FPT dualizable). Let C k be a parameterized concept class. We say that C is FPT
dualizable if there exist a polynomial pdual : N → N, computable functions f1, f2 : N → N, and
polynomial-time computable mappings g : N × {0, 1}∗ → C and h : N × C → {0, 1}∗ such that

for any k, n ∈ N, x ∈ {0, 1}n, and f ∈ C k
n , the following hold: (i) g(k, x) ∈ C

f2(k)
f1(k)·pdual(n), (ii)

h(k, f) ∈ {0, 1}f1(k)·pdual(n), and (iii) (g(k, x))(h(k, f)) = f(x).

Moreover, for parameterized classes C k and D`, we say that C is FPT dualizable in D if (i) C
is FPT dualizable and (ii) there exists a computable function l : N→ N such that for any k ∈ N, it
holds that g(k, ·) and h(k, ·) are computable in D l(k).

We use the notation x∗(k) or x∗ (resp. f∗(k) or f∗) to refer to g(k, x) (resp. h(k, f)) in the
definition above. For example, the third condition above can be rewritten as x∗(f∗) = f(x) for any
f ∈ C and x ∈ {0, 1}∗.

Definition (Junta-sparse condition). Let C k be an FPT dualizable class. We say that C satisfies
the junta-sparse condition if the following hold:

1. There exist computable functions g, h : N→ N such that for any k ∈ N and any k-junta f , it
holds that f ∈ C g(k) and wt(f∗) ≤ h(k).

2. There exists a computable function g : N × N → N such that for any c, k ∈ N and any
x ∈ {0, 1}∗ with wt(x) ≤ c, it holds that x∗(k) is g(c, k)-junta.

6.6.2 Meta-Theorems

We present the meta-theorems for Theorem 6.6.1.

Theorem 6.6.3 (PPRG in NC0 ⇒ hardness of learning). Let p(n) be an arbitrary polynomial and
C k be a parameterized class that is FPT dualizable in NC0 (parameterized by depth) and satisfies the
junta-sparse condition. There exist a polynomial q(n) and a constant ε > 0 such that for any time-
bound function t(n), if there exists a collection of PPRGs in NC0 against t(n)-time adversaries, then
C is not (t(nε)/q(n), 1/p(n))-learnable on average with respect to a c-sparse example distribution
samplable with shared randomness and a target distribution samplable by a depth-d NC0 circuit with
(k, c, d)-FPT samples.

132



Proof. Let G be a collection of PPRGs with locality d0, and let G be its generator, i.e., G(1n; r)
outputs a description of G in polynomial time for a random seed r ∈ {0, 1}poly(n). Let f1, f2, pdual be
the functions in Definition 6.4.1 for the FPT dualization of C . Then, we select a constant ε ∈ (0, 1]
such that (log n · pdual(n))ε ≤ n, i.e., log n · pdual(n) ≤ n1/ε.

We fix an FPT sample-complexity function mk,c,d(n) = fm(k, c, d) · pm(n) arbitrarily, where
fm : N × N × N → N, and pm is a polynomial. Then, we select a sufficiently large D ∈ N such
that nD ≥ p(log n · pdual(n)) · pm(log n · pdual(n)). We construct a collection of PPRGs G(D) in
Theorem 6.5.11 based on G. It is easily verified that the locality of G(D) is at most some constant
D′, i.e., each output of G(D) is computable by a D′-junta function. By the junta-sparse condition,

any D′-junta function is contained in C k for some k ∈ N. The description of G
(D)
i for each i ∈ [nD+1]

as a function in C k is computable in polynomial time by using G.
Now, we introduce the hard problem for learning C . We specify the example distribution Dex by

the following sampling algorithm S using shared randomness. On input 1n and shared randomness
r ∈ {0, 1}poly(n), the sampling algorithm S generates the description of G by executing G(1n; r).
Then, S selects i ∼ [nD+1] by an (unshared) random seed, and computes f ∈ C k corresponding to

the D′-junta function G
(D)
i . Finally, S outputs the dual f∗ ∈ {0, 1}f1(k)·pdual(n) of f as an example.

We also define the target distribution Dtarg as the distribution of x∗ ∈ C
f2(k)
f1(k)·pdual(n) for randomly

selected x ∼ {0, 1}n.
By the junta-sparse condition, Dex is c-sparse for some constant c ∈ N. Since C is FPT dualiz-

able in NC0, the target distributionDtarg is samplable by a depth-d NC0 circuit for some constant d ∈
N. Therefore, if we assume that C is (t(nε)/q(n), 1/p(n))-learnable on average with sample complex-
itymk,c,d for contradiction, there exists an algorithm that succeeds in (t(nε)/q(n),mk,c,d(n), 1/p(n))-
learning C k on average with respect to Dex and Dtarg.

By selecting sufficiently large q(n), we will show that for any time-bound function T , any
learner L that (T (n),mk,c,d(n), 1/p(n))-learns C k (on average with respect to Dex and Dtarg) can be
converted into a T (n1/ε) ·q(n1/ε)-time adversary that breaks G. Since (t((n1/ε)ε)/q(n1/ε)) ·q(n1/ε) =
t(n), any algorithm that succeeds in (t(nε)/q(n),mk,c,d(n), 1/p(n))-learning C k yields a t(n)-time
adversary G. This contradicts that G is a PRG against t(n)-time adversaries.

First, we construct an adversary A for G(D) as follows: On input w ∈ {0, 1}nD+1
and the

description of G(D) (note that w is a pseudorandom string generated by G(D) or a truly random
string), A simulates the example distribution Dex by selecting a random index i ∼ [nD+1], com-

puting the D′-junta function corresponding to G
(D)
i and its dual (for simplicity, we let G∗i denote

this dual string of length N := f1(k) ·pdual(n)), and generating a sample (G∗i , wi). After generating
mk,c,d(N) samples, A also generates a challenge G∗ic for ic ∼ [nD+1] and feeds it to L. If L outputs
some prediction b ∈ {0, 1}, then A checks whether b = wic . If so, A outputs 1; otherwise, it outputs
0. We remark that the running time of A is bounded above by poly(n) · T (N).

In the case in which w ∼ G(D)(x) for x ∼ {0, 1}n, we have wi = G
(D)
i (x) = x∗(G∗i ) for all i.

Therefore, the simulated samples are valid for the target function x∗. Furthermore, it is not hard
to verify that A executes L on the example distribution Dex and the target distribution Dtarg.
Therefore, we have

Pr
A,Un,G

[A(G(D), G(D)(Un)) = 1] = Pr
L,Dex,Dtarg

[L succeeds in learning] ≥ 1

2
+

1

p(N)
.

By contrast, in the case in which w ∼ {0, 1}nD+1
, the labels in the simulated samples are selected

truly at random. Because any learning algorithm cannot guess a random label not contained in the
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given samples better than a random guess, i.e., with success probability 1/2, we have

Pr
A,Un,G

[A(G(D), UnD+1)) = 1] = Pr
L,Dex

[L succeeds in learning]

≤ 1

2
·
(

1−
mk,c,d(N)

nD+1

)
+ 1 ·

mk,c,d(N)

nD+1

=
1

2
+
mk,c,d(N)

2nD+1

≤ 1

2
+

fm(k, c, d) · pm(N)

2n · p(log n · pdual(n)) · pm(log n · pdual(n))

Therefore, for sufficiently large n,

Pr
A,Un,G

[A(G(D), UnD+1)) = 1] ≤ 1

2
+
fm(k, c, d) · pm(N)

2n · p(N) · pm(N)

≤ 1

2
+

1

2p(N)

and the advantage of A is at least(
1

2
+

1

p(N)

)
−
(

1

2
+

1

2p(N)

)
≥ 1

2p(N)
≥ 1

2p(n · pdual(n))
.

Thus, A successfully breaks G(D).
By Theorem 6.5.11, the adversary A for G(D) can be converted into an adversary A′ for G such

that the running time of A is bounded above by poly(n) · T (N) ≤ q(n1/ε) · T (log n · pdual(n)) ≤
q(n1/ε) · T (n1/ε) for a sufficiently large polynomial q.

Next, we prove the opposite direction.

Theorem 6.6.4 (hardness of learning⇒ PPRG in NC0). Let p(n) = nΘ(1) be a polynomial, and let
C k be a parameterized class that is FPT dualizable in NC0 (parameterized by depth). Assume that
for any k ∈ N and sufficiently large n ∈ N, the length of the representation for C k is at most p(n)1−ε

for some constant ε ∈ (0, 1). Then, there exist a polynomial q(n) and a constant δ > 0 such that
for any time-bound function t(n), if C is not (t(n), 1/p(n))-learnable on average with respect to a
c-sparse example distribution samplable with shared randomness and a target distribution samplable
by a depth-d NC0 circuit with (k, c, d)-FPT samples, then there exists a collection of PPRGs in NC0

against t(nδ)/q(n)-time adversaries.

Proof. We use the hardness assumption for the sample complexity function mk,c,d(n) = m(n) :=
p(n)1−ε/2 (i.e., independent of parameters). Then, there exist constants k, c, d ∈ N, an example
distribution Dex, and a target distribution Dtarg for the hard problem of learning C k, where Dex is
c-sparse and samplable with shared randomness, and Dtarg is samplable by a depth-d NC0 circuit.
We remark that the length of the representation for C is at most p(n)1−ε. Since Dtarg is samplable
by a depth-d NC0 circuit, each bit of such a representation is determined by a constant number of
random seeds for Dtarg. Therefore, without loss of generality, we assume that the length of random
bits for Dtarg is at most `(n) = p(n)1−3ε/4(= nΘ(1)) for sufficiently large n ∈ N.

We construct a collection of weak PPRGs in NC0, where the indistinguishable parameter is
p(`−1(n))−ε/2 = n−Θ(1). Then, we apply Theorem 6.5.12 to obtain a collection of (standard)
PPRGs in NC0.
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By Theorem 6.5.7, the hardness assumption implies that C k is not RRHS-refutable on aver-
age with respect to Dex and Dtarg with m(n) samples and advantage p(n)−ε/2. Now, we intro-
duce the generator G of PPRGs. On input 1`(n), the generator G first generates m(n) examples
x(1), . . . , x(m(n)) ∼ Dex. Since Dex is samplable with shared randomness, G can perfectly simulate
Dex in polynomial time. Then, G computes their duals (x(1))∗, . . . , (x(m(n)))∗, where the input to
each (x(m(n)))∗ is the dual of the target function selected according to Dtarg. By the junta-sparse
condition, these duals (x(1))∗, . . . , (x(m(n)))∗ are O(1)-junta except with negligible probability when
the dual of a target function is given as input. Since Dtarg is samplable by a depth-d NC0 circuit
whose input is the random seed r ∈ {0, 1}`(n), and the dual of the target function is computable in
NC0, by considering the composition of (x(1))∗, . . . , (x(m(n)))∗, the NC0 circuit computing the dual,
and the NC0 circuit sampling the target function, we make m(n) NC0 circuits G1(r), . . . , Gm(n)(r),

where each Gi corresponds to (x(i))∗. Finally, G outputs G(r) := G1(r) ◦ · · · ◦ Gm(n)(r) as the

description of the NC0-computable generator.
We remark that the above-mentioned generator is only defined for input size `(n). This can be

converted into a generator defined for all input sizes n by the standard technique, i.e., for a given
n-bit random seed, the generator uses only `(n′) bits, where n′ is the maximum integer such that
`(n′) ≤ n (for details, refer to the textbook by Goldreich [Gol01]). Let G denote the generator.
Then, the length N of the output of G is at least

N = m(n′) = p(n′)1−ε/2 = `(n′)1+ ε
4−3ε > `(n′ + 1)1+ε′ > n1+ε′

for some ε′ ∈ (0, ε
4−3ε) and any sufficiently large n. Thus, G has polynomial-stretch.

Next, we show that G satisfies the security condition of a weak pseudorandom generator by
contradiction. We assume that there exists a T (n)-time adversary A such that∣∣∣∣ Pr

G,A,Un
[A(G,G(Un)) = 1]− Pr

G,A,UN
[A(G,UN ) = 1]

∣∣∣∣ > 1/p(`−1(n))ε/2. (6.1)

Now, we construct a refuting algorithmR for C k as follows. On input (x(1), b(1)), . . . , (x(m(n)), b(m(n))),
the algorithm R constructs the generator G in the same way as G, i.e., R computes (x(i))∗ and
the composed function Gi for each i ∈ [m(n)]. Then, R executes A(G, b(1) ◦ · · · ◦ b(m(n))) and
returns the same answer. We remark that each x(i) is selected according to Dex. Thus, R correctly
simulates the distribution of the generator G. In the case in which f ∼ Dtarg and b(i) = f(x(i))
for each i, we have b(i) = f(x(i)) = (x(i))∗(f∗) = Gi(r), where r is the seed for selecting f , and
the distribution of b(1) ◦ · · · ◦ b(m(n)) corresponds to G(U`(n)). By contrast, in the case in which

b(i) ∼ {0, 1} for each i, the distribution of b(1) ◦ · · · ◦ b(m(n)) corresponds to a uniform distribution.
Therefore, by (6.1), R refutes C k on Dex and Dtarg with m(n) samples and advantage grater than
1/p(`−1(`(n)))ε/2 = p(n)−ε/2.

By Theorem 6.5.7, the refuter R can be converted to a learner with advantage 1/p(n). By
selecting a sufficiently large polynomial q(n) and a sufficiently large constant a > 1, the running
time of the learner is bounded above by q(n) · T (`(n)) ≤ q(n) · T (na). Thus, by letting δ = 1/a,
any t(nδ)/q(n)-time adversary for G is converted into a learning algorithm that works in time
q(n) · t(nδ·a)/q(na) ≤ t(n) with advantage 1/p(n), which is a contradiction.

6.6.3 FPT Dualizable Classes with Junta-Sparse Condition

In this section, we present FPT dualization in NC0 with the junta-sparse condition for c-sparse
F2-polynomials, c-Fourier-sparse functions, and depth-d {OR,Modm}-decision trees. Then, we can
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show Theorem 6.6.1 by applying Theorems 6.6.3 and 6.6.4 for all polynomial time-bounds t(n). To
apply Theorem 6.6.4, we leverage the fact that for any a > 0 and the parameter of the class, the
length of the binary representations of target functions is at most n1+a for sufficiently large input
size n ∈ N.

c-Sparse F2-Polynomials

For each c-sparse F2-polynomial f = M1 + · · · + Mc, where each Mi represents a monomial, and
for each input x ∈ {0, 1}n, we define their duals as a binary string f∗ ∈ {0, 1}cn+c and a 2c-sparse
F2-polynomial x∗. For simplicity, we assume that f∗ is indexed by {0, · · · , n}×[c] instead of [cn+c].
Then, f∗ and x∗ is determined as follows.

f∗(i,j) =

{
1l(xi ∈Mj) if i ∈ [n]

1l(Mj ≡ 1) if i = 0

x∗(f∗) =
∑
j∈[c]

∏
i:xi=1

f∗(i,j) +
∑
j∈[c]

f∗(0,j).

The dualization above is trivially computable in NC0. The correctness is verified as follows:

x∗(f∗) =
∑
j∈[c]

∏
i:xi=1

f∗(i,j) +
∑
j∈[c]

f∗(0,j)

=
∑
j∈[c]

( ∏
i:xi=1

1l(xi ∈Mj) + 1l(Mj ≡ 1)

)

=
∑
j∈[c]

Mj(x)

= f(x).

In addition, the junta-sparse condition is verified as follows:

Lemma 6.6.5. c-sparse F2-polynomials satisfy the junta-sparse condition by the FPT dualization
in NC0 above.

Proof. (1.) Any n-input k-junta function is represented as an n-input F2-polynomial of degree k
and sparsity 2k. It is not hard to verify that for any degree-k 2k-sparse F2-polynomial, the Hamming
weight of its dual f∗ is at most 2k · k.

(2.) For any n, c, c′ ∈ N and x ∈ {0, 1}n with wt(x) ≤ c′, the dual x∗c depends on only
c · wt(x) + c ≤ cc′ + c coordinates.

c-Fourier-Sparse Functions

For each x ∈ {0, 1}n and each c-Fourier-sparse function f = M12−dlog ceχα1 + · · ·+Mc2
−dlog ceχαc ,

where Mi ∈ {−2dlog ce, . . . , 2dlog ce} and αi ∈ {0, 1}n for each i ∈ [c], we define their duals as a binary
string f∗ ∈ {0, 1}(dlog ce+n+1)c and a function x∗ of Fourier sparsity c′ := 2cdlog ce.

For each i ∈ [c], let bi ∈ {0, 1}dlog ce be the binary representation of the absolute value of
Mi. Then, f∗ consists of c triples of bi, αi, and bineg ∈ {0, 1}, where bineg = 1 iff Mi < 0.
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We also specify x∗ as x∗ =
∑

(i,j)∈[c]×[dlog ce]Ni,j2
−dlog c′eχi,j + N ′i,j2

−dlog c′eχ′i,j , where Ni,j , N
′
i,j ∈

{−2dlog c′e, . . . , 2dlog c′e} and χ′i,j , χ
′
i,j : {0, 1}(dlog cen+1)c → {−1, 1} are determined as follows:

Ni,j = 2dlog c′e+j−1−dlog ce (≤ 2dlog c′e−1)

N ′i,j = −Ni,j = −2dlog c′e+j−1−dlog ce

χi,j(f
∗) = (−1)

bineg+
∑
k:xk=1(αi)k

χ′i,j(f
∗) = (−1)b

i
jχi,j(f

∗) = (−1)
bij+b

i
neg+

∑
k:xk=1(αi)k .

It is not hard to verify that the dualization above is computable in NC0. The correctness is verified
as follows:

x∗(f∗) =
∑

(i,j)∈[c]×[dlog ce]

Ni,j2
−dlog c′eχi,j(f

∗) +N ′i,j2
−dlog c′eχ′i,j(f

∗)

=
∑
i∈[c]

∑
j∈[dlog ce]

2j−1−dlog ce(−1)
bineg+

∑
k:xk=1(αi)k − 2j−1−dlog ce(−1)

bij+b
i
neg+

∑
k:xk=1(αi)k

=
∑
i∈[c]

(−1)
∑
k:xk=1(αi)k2−dlog ce(−1)b

i
neg

∑
j∈[dlog ce]

2j · (1− (−1)b
i
j )/2

=
∑
i∈[c]

(−1)〈x,αi〉2−dlog ce · (−1)b
i
neg

∑
j∈[dlog ce]

2j · bij

=
∑
i∈[c]

χαi(x) · 2−dlog ceMi

= f(x).

In addition, the junta-sparse condition is verified as follows:

Lemma 6.6.6. c-Fourier-sparse functions satisfy the junta-sparse condition by the FPT dualization
in NC0 above.

Proof. (1.) Based on the unique Fourier representation, any n-input k-junta function is represented
as a degree-k function of Fourier sparsity at most 2k. It is not hard to verify that for any degree-k
2k-Fourier sparse function, the Hamming weight of its dual f∗ is at most 2k · (dlog 2ke + k + 1) =
2k · (2k + 1).

(2.) For any n, c, c′ ∈ N and x ∈ {0, 1}n with wt(x) ≤ c′, the dual x∗c depends on only
2cdlog ce · (2 + wt(x)) ≤ 2cdlog ce(2 + c′) coordinates.

Depth-d Modm-Decision Trees and OR-Decision Trees

In this subsection, we present the FPT dualization for Modm-DT that satisfies the junta-sparse
condition. Note that the case of OR-DT follows in the same way.

For each x ∈ {0, 1}n and depth-d Modm-DT T , we define their duals as a binary string T ∗ ∈
{0, 1}(2d−1)n+2d and a depth-(d+ 1) Modm-DT x∗. For simplicity, we assume that T ∗ consists of a

tuple t ∈ {0, 1}(2d−1)n and ` ∈ {0, 1}2d , and t is indexed by [2d− 1]× [n] instead of [(2d− 1)n]. Let
{j1, . . . , jc} = {j ∈ [n] : xj = 1}, where c := wt(x). Then, T ∗ (i.e., t and `) and x∗ are defined as
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follows:

ti,j = 1l(xj is relevant to the query at node i)

`i = (the label at leaf i),

and for any i ∈ [2d+1 − 1] and j ∈ [2d+1],

(the query at node i in x∗) =

{
Modm(ti,j1 , . . . , ti,jc) i ≤ 2d − 1

Modm(`i−(2d−1)) i ≥ 2d

(the label at leaf j in x∗) = 1l(leaf j is the false subtree of its parent node).

The dualization above is computable in NC0. We also verify the correctness. On evaluating x∗(T ∗),
any answer to the query at node i ∈ [2d − 1] is consistent with the answer to the query at node i
in T (x) because

Modm(ti,j1 , . . . , ti,jc) = Modm(x1 ∧ ti,1, . . . , xn ∧ ti,n) = Modm(xki1
, . . . , xki· ),

where
{ki1, . . . , ki·} = {k ∈ [n] : xk is relevant to the query at node i in T}.

For any i ∈ [2d+1−1]\[2d−1], the answer to the query at node i is Modm(`i−(2d−1)) = ¬`i−(2d−1)

for any m ≥ 2. Note that x∗ outputs 1 (i.e., true) iff the answer to the query at depth d+ 1 is false.
Thus, x∗(T ∗) is consistent with T (x).

Furthermore, the junta-sparse condition is verified as follows:

Lemma 6.6.7. For any m ≥ 2, depth-d Modm-DT satisfies the junta-sparse condition by the FPT
dualization in NC0 above.

Proof. (1.) Any n-input k-junta function is represented as a depth-k Modm-DT, where each query
is represented as Modm(xi) = ¬xi for some i ∈ [n]. It is not hard to verify that the Hamming
weight of the dual of such a Modm-DT is at most (2d − 1) + 2d.

(2.) For any n, d, c ∈ N and x ∈ {0, 1}n with wt(x) ≤ c, the dual x∗d depends on only
(2d − 1) · wt(x) + 2d ≤ (2d − 1)c+ 2d coordinates.

6.6.4 Relaxed Hardness Assumption

In this section, we present the meta-theorem for Theorem 6.6.2. First, we introduce a natural
condition of parameterized concept classes.

Definition 6.6.8 (junta-composition condition). Let C k be a parameterized class. We say that C
satisfies the junta-composition condition if the following hold:

1. For any k, n′, n ∈ N with n′ ≤ n, it holds that C k
n′ ⊆ C k

n (i.e., paddable with dummy inputs).

2. There exists a computable g : N→ N such that any k-junta function is contained in C g(k) for
each k ∈ N.

3. There exists a computable g : N×N→ N such that for any k, k′, n, n′ ∈ N, f (1), . . . , f (n) ∈ C k
n′,

and f ′ ∈ C k′
n , the composite function f ′′ : {0, 1}n′ → {0, 1} defined as f ′′(x) = f ′(f (1)(x), . . . , f (n)(x))

is contained in C g(k,k′). In addition, the representation of f ′′ is computable from f (1), . . . , f (n),
and f ′ in polynomial time.
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It is easily verified that c-sparse F2-polynomials and c-Fourier-sparse functions satisfy the junta-
composition condition.

Suppose that G is a weak PPRG of output length n1+ε, where each bit is computable in C k

satisfying the junta-composition condition. For the translation to a (standard) PPRG of output
length n1+ε′ in Theorem 6.5.12, we only need the following operations (for details, refer to [App13;
AK19]): Let f (1), . . . , f (n1+ε) be the functions computing each bit of G. Then, the operations are
either of

• f (i)(x) := f (i0)(f (i1)(x), . . . , f (in)(x)) for some i0 ∈ [n1+ε] and i1, . . . , in < i (for amplifying
the stretch);

• f (i)(x(1), . . . , x(t)) := f (i1)(x(1)) ⊕ · · · ⊕ f (it)(x(t)) for some t ∈ N and i1, . . . , it < i (for
amplifying the unpredictability); or

• f (i)(x(1), . . . , x(poly(n)), r) := g(f (i1)(x(1)), . . . , f (ipoly(n))(x(poly(n))), r) for some i1, . . . , ipoly(n) <

i, r ∈ {0, 1}poly(n), and some O(1)-junta function g (for applying the extractor presented
in [AK19]),

and the resulting PPRG is computable by f (i1), . . . , f (i
n1+ε′ ) for some indices i1, . . . , in1+ε′ .

If the f (1), . . . , f (n1+ε) ∈ C k and C k satisfies the junta-composition condition, it is not hard to
verify that each f (i) is contained in C k′ for some k′ by induction. Therefore, we have the following
analog of Theorem 6.5.12.

Theorem 6.6.9 ([AK19]). Let C k be a parameterized class satisfying the junta-composition condi-
tion. For any k ∈ N, a > 0, and ε, ε′ > 0, there exist k′ ∈ N (computable from k), a polynomial q,
and δ ∈ (0, 1) such that any collection of weak PPRGs in C k of stretch n1+ε and indistinguishable
parameter 1/na against t(n)-time adversaries can be converted into a collection of PPRGs in C k′

of stretch n1+ε′ against t(nδ)/q(n)-time adversaries.

Now, we present the meta-theorem for Theorem 6.6.2, where we only assume the FPT dualiza-
tion and the junta-composition condition.

Theorem 6.6.10 (PPRG in C ⇒ hardness of learning C ). Let p(n) be an arbitrary polynomial, and
let C k be a parameterized class that is FPT dualizable in a parameterized class F ` and satisfies
the junta-composition condition. There exist a polynomial q(n) and a constant ε > 0 such that
for any time-bound function t(n), if there exist k ∈ N and a collection of PPRGs in C k against
t(n)-time adversaries, then C k is not (t(nε)/q(n), 1/p(n))-learnable on average with respect to an
example distribution samplable with shared randomness and an F `-samplable target distribution
with (k, `)-FPT samples.

Proof. (sketch.) The theorem follows in the same way as Theorem 6.6.3. The proof is outlined as
follows:

We assume the existence of a collection of PPRGs in C k for some k ∈ N. Then, for each
FPT sample complexity m, we amplify the stretch sufficiently by applying Theorem 6.6.9 so that
any learning algorithm with sample complexity m cannot read all the output bits of the generator
(where we use the junta-composition condition to apply Theorem 6.6.9). We remark that each bit
of the generator is computable in C k′ for some k′. Next, we specify the hard learning problem where
the example distribution Dex is the uniform distribution over the duals of the functions computing
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the generator, and the target distribution Dtarg is the distribution of x∗k
′

for x ∼ {0, 1}n. It is
not hard to verify that Dex is samplable with shared randomness. By FPT dualization in F `, the
target distribution Dtarg is over C k′′ for some k′′ ∈ N and F `-samplable for some ` ∈ N. Therefore,
this is a valid case for learning, and any learner succeeds in learning on average with respect to
Dex and Dtarg with sample complexity m can be converted into the adversary for the collection of
PPRGs, as in the proof of Theorem 6.6.3. This is a contradiction.

Next, we show the opposite direction.

Theorem 6.6.11 (hardness of learning C ⇒ PPRG in C ). Let p(n) = nΘ(1) be a polynomial
and C k be a parameterized class that is FPT dualizable in C k and satisfies the junta-composition
condition. Assume that for any k ∈ N and sufficiently large n ∈ N, the length of the representation
for C k is at most p(n)1−ε for some constant ε ∈ (0, 1). Then, there exists a polynomial q(n) and
a constant δ > 0 such that for any time-bound function t(n), if C k is not (t(n), 1/p(n))-learnable
on average with respect to an example distribution samplable with shared randomness and a C k′-
samplable target distribution with (k, k′)-FPT samples, then there exists a collection of PPRGs in
C against t(nδ)/q(n)-time adversaries.

Proof. (sketch.) The theorem follows in the same manner as Theorem 6.6.4. The proof is outlined
as follows:

First, we construct a collection of weak PPRGs in C k (for some k ∈ N) based on the hardness
assumption of learning. Then, we apply Theorem 6.6.9 to convert the weak PPRG into a standard
PPRG in C , where we use the junta-composition condition to apply Theorem 6.6.9. For the
collection of weak PPRGs, we apply the same construction as Theorem 6.6.4, i.e., each bit of the
generator takes the form of x∗ for some x ∈ {0, 1}∗, where x is an example selected according to the
example distribution in the hard learning problem (note that the difference with Theorem 6.6.4 is
that x is not always sparse in this case). By the FPT dualization in C k, each bit of the generator is
computable in C k for some k ∈ N when the description of the dual of a target function is given as the
input. Remember that a target function in the hard learning problem is samplable in C k′ for some
k′ ∈ N, and the dual of the target function is computable in C k′′ for some k′′ ∈ N. Therefore, by
considering the composite functions of these three types of functions, we can construct a generator
whose input is the random seed for selecting a target function. By the junta-composition condition,
each bit of the generator is computable in C k′′′ for some k′′′ ∈ N.

Theorem 6.6.2 holds by applying Theorems 6.6.10 and 6.6.11 for all polynomial time-bounds
t(n).

6.7 Learning vs. PPRG in Constant-Degree Polynomials

We show Theorem 6.2.3 in Section 6.7.1 and Theorem 6.2.4 in Section 6.7.2, which are formally
stated as follows.

Theorem 6.7.1. For any polynomial p(n), r(n), the following are equivalent:

1. There exists a PPRG in ⊕-NC0.

2. Degree-d F2-polynomials are not polynomial-time learnable on average with advantage 1/2−
1/p(n) with respect to a uniform example distribution and a target distribution samplable by
a degree-d′ F2-polynomial using r(n)-bit random seeds with (d, d′)-FPT samples.
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Theorem 6.7.2. For any polynomial p(n), r(n), the following are equivalent:

1. There exists a collection of PPRGs in ⊕-NC0.

2. Degree-d F2-polynomials are not polynomial-time learnable on average with advantage 1/2−
1/p(n) with respect to an example distribution samplable with shared randomness and a target
distribution samplable by a degree-d′ F2-polynomial using r(n)-bit random seeds with (d, d′)-
FPT samples.

6.7.1 PPRG vs. Learning on Uniform Example Distribution

In this section, we show the equivalence between a PPRG in constant-degree F2-polynomials (i.e., ⊕-
NC0) and average-case hardness of learning constant-degree F2-polynomials with respect to the uni-
form example distribution and a target distribution samplable by constant-degree F2-polynomials.
First, we show the following key lemma.

Lemma 6.7.3. For any d ∈ N, let p : Fn2 → F2 denote a random degree-d F2-polynomial, i.e., each
coefficient of p is selected uniformly at random from {0, 1}. Let m(n) = 1/2 ·

(
n
≤d
)
. Then,(

(U (1)
n , p(U (1)

n )), . . . , (U (m(n))
n , p(U (m(n))

n ))
)
≡s
(

(U (1)
n , U

(1)
1 ), . . . , (U (m(n))

n , U
(m(n))
1 )

)
.

Proof. We identify
[(

n
≤d
)]

with {S ⊆ [n] : |S| ≤ d} in some canonical ordering. For ` ∈ N and

x(1), . . . , x(`) ∈ Fn2 , we define a matrix A[x(1), . . . , x(`)] ∈ F
`×( n≤d)
2 as A[x(1), . . . , x(`)]i,S =

∏
j∈S x

(i)
j

for each i ∈ [`] and S ⊆ [n] with |S| ≤ d.

We identify a degree-d F2-polynomial p with a string in F
( n≤d)
2 consisting of coefficients. Then, for

each x(1), . . . , x(m) ∈ Fn2 and each n-input degree-d F2 polynomial p, the vector [p(x(1)), . . . , p(x(m))]T

is represented as A[x(1), . . . , x(m)] · p.
Now, we assume that x(1), . . . , x(m) satisfy that A[x(1), . . . , x(m)] has full rank. Then, there

exists a full-rank matrix B ∈ Fm×m2 such that

I := [e1, . . . , em, ∗, . . . , ∗] = B ·A[x(1), . . . , x(m)],

where e1, . . . , em ∈ Fm2 , and each ei is the unit vector (i.e., eij = 1 iff i = j). In this case, we have

A[x(1), . . . , x(m)]·p = B−1I·p = B−1·
[
p1 + f1

(
pm+1, . . . , p( n≤d)

)
, . . . , pm + fm

(
pm+1, . . . , p( n≤d)

)]T
,

for some functions f1, . . . , fm. Since B−1 has full rank, if p is selected uniformly at random, then
[p(x(1)), . . . , p(x(m))]T is also distributed uniformly at random over the choice of p. Thus, it is
sufficient to show that the probability that A[x(1), . . . , x(m)] does not have full rank is negligible
over the choices of x(1), . . . , x(m).

Fix i ∈ [m] arbitrarily. Suppose that we have selected x(1), . . . , x(i−1) such thatA[x(1), . . . , x(i−1)]
has full rank, and we select a new x(i) ∈ Fn2 uniformly at random. Then, we show that the con-
ditional probability that A[x(1), . . . , x(i)] also has full rank with probability at least 1 − 2−Ω(n). If
this is correct, then by the union bound, the probability that A[x(1), . . . , x(m)] does not have full
rank is bounded above by m · 2−Ω(n) = O(nd) · 2−Ω(n) = negl(n) because there must exist i ∈ [m]
such that A[x(1), . . . , x(i)] does not have full rank in such a case.
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Let V ≤ F
( n≤d)
2 be the linear subspace spanned by the rows in A[x(1), . . . , x(i−1)]. Note that

dimV ≤ i − 1. For each x ∈ Fn2 , we define x̃ ∈ F
( n≤d)
2 , where x̃S =

∏
j∈S xj for each S ⊆ [n] with

|S| ≤ d. Let U = {x̃ : x ∈ Fn2}. Then, it is not hard to verify that

Pr
x(i)

[
A[x(1), . . . , x(i)] does not have full rank

∣∣∣x(1), . . . , x(i−1)
]

=
|V ∩ U |
|U |

.

Let k = blog |V ∩ U |c. Then, we have 2k ≤ |V ∩ U | ≤ 2k+1. We fix 2k distinct elements

y(1), . . . , y(2k) ∈ Fn2 such that ỹ(1), . . . , ỹ(2k) ∈ V ∩ U . Let V ′ = span{y(1), . . . , y(2k)}. Then, V ′

is a linear subspace of V . By Lemma 6.5.2, we have(
k

≤ d

)
≤ dimV ′ ≤ dimV ≤ i− 1 ≤ m =

1

2

(
n

≤ d

)
.

By Lemma 6.5.1, there exists a constant γ ∈ (0, 1) such that k ≤ n(1 − γ/d) for any sufficiently
large n ∈ N. Therefore, we conclude that

Pr
x(i)

[
A[x(1), . . . , x(i)] does not have full rank

∣∣∣x(1), . . . , x(i−1)
]

=
|V ∩ U |
|U |

≤ 2k+1

2n

≤ 2 · 2n(1−γ/d)

2n

= 2−
γ
d
n+1

= 2−Ω(n)

We remark that Lemma 6.7.3 implies that learning degree-d F2-polynomials is infeasible with
2−1 ·

(
n
≤d
)

= Ω(nd) samples and non-negligible advantage even for time-unbounded learners with
respect to the uniform example distribution and the uniform target distribution over degree-d F2-
polynomials. In this sense, the upper bound on the seed length for a target distribution is essential
in Theorems 6.7.1 and 6.7.2.

We now show one direction from PPRGs to the average-case hardness of learning.

Theorem 6.7.4. For any polynomial p(n), there exists a polynomial q such that for any time-bound
function t(n), if there exists a PPRG computable by constant-degree F2-polynomials against t(n)-
time adversaries, then degree-d F2-polynomials are not (t(n)/q(n), 1/p(n))-learnable on average
with respect to a uniform example distribution and a target distribution samplable by a degree-d′

F2-polynomial using an n-bit random seed with (d, d′)-FPT samples.

Proof. We assume that G is a PPRG computable by degree-d0 polynomials for some d0 ∈ N.
Fix an FPT sample-complexity function md,d′(n) = f(d, d′) · pm(n) arbitrarily, where pm(n) is a
polynomial. We select d ∈ N such that 1/2 ·

(
n
≤d
)
> log n · pm(n).

We consider a pseudorandom degree-d F2 polynomial pPR : Fn2 → F2, where each coefficient is
selected by a pseudorandom string G(d)(Un), where G(d) is the PPRG in Theorem 6.5.11. Then,
we specify a target distribution Dtarg for the hard problem as the distribution of pPR. Since each
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pseudorandom bit of G(d)(Un) is computable by a degree-d′ F2-polynomial for some d′ ∈ N, the
target distribution Dtarg is samplable by the degree-d′ F2-polynomial using an n-bit random seed.

We prove the theorem by contradiction. Suppose that there exists a t(n)-time algorithm L
that learns degree-d F2-polynomial with respect to the uniform example distribution and Dtarg
with md,d′(n) samples. Because no learning algorithm can guess a random function non-negligibly
better than a random guess, L is converted into a distinguisher D with advantage 1/p(n)− negl(n)

for the following two distributions: (1) (U
(1)
n , pPR(U

(1)
n )), . . . , (U

(md,d′ (n))
n , pPR(U

(md,d′ (n))
n )) and (2)

(U
(1)
n , U

(1)
1 ), . . . , (U

(md,d′ (n))
n , U

(md,d′ (n))

1 ). Since f(d, d′) · pm(n) < log n · pm(n) < 1/2 ·
(
n
≤d
)

for suffi-

ciently large n ∈ N, by Lemma 6.7.3, D distinguishes (1) (U
(1)
n , pPR(U

(1)
n )), . . . , (U

(md,d′ (n))
n , pPR(U

(md,d′ (n))
n ))

and (2’) (U
(1)
n , pR(U

(1)
n )), . . . , (U

(md,d′ (n))
n , pR(U

(md,d′ (n))
n )), where pR is a truly random degree-d F2-

polynomial. Then, we can construct an O(md,d′(n) + t(n))-time adversary A for G(d) that is given
a pseudorandom or random string r, selects a degree-d polynomial pr by using r, makes md,d′(n)
samples for pr for random inputs, and feeds them to D. By Theorem 6.5.11, A is converted into
an adversary A′ breaking G. It is not hard to verify that the running time is bounded above by
poly(n) ·O(md,d′(n) + t(n)) ≤ q(n) · t(n) for some polynomial q.

Next, we show the opposite direction, i.e., from the average-case hardness of learning to PPRGs.
Theorem 6.7.1 is obtained by applying Theorems 6.7.4 and 6.7.5 for all polynomial time-bounds
t(n).

Theorem 6.7.5. For any polynomial p(n), r(n), there exist a polynomial q and a constant ε > 0
such that for any time-bound function t(n), if degree-d polynomials are not (t(n), 1/2 − 1/p(n))-
learnable on average with respect to a uniform example distribution and a target distribution sam-
plable by a degree-d′ F2-polynomial using an r(n)-bit random seed with (d, d′)-FPT samples, then
there exists a PPRG computable by a constant-degree F2-polynomial against t(nε)/q(n)-time adver-
saries.

Proof. Let m(n) and `(n) be the polynomials obtained by applying Fact 6.5.8 for p(n) and m⊕(n) =
`(n)2(n+ r(n))2 (note that these are well-defined because `(n) is determined by only p(n)). Then,
based on the hardness assumption, there exist constants d, d′ ∈ N and a target distribution Dtarg
on degree-d F2-polynomials for the hard learning problem with m(n) samples and advantage 1/2−
1/p(n), where Dtarg is samplable by a degree-d′ F2-polynomial using an r(n)-bit random seed. Let

ptarg : {0, 1}r(n) → {0, 1}(
n
≤d) be the degree-d′ F2-polynomials that select a target function according

to Dtarg.
For R(n) = `(n)(n + r(n)), we construct a PPRG G : {0, 1}R(n)3 → {0, 1}R(n)4

. We remark
that G is defined on only the input length R(n)3. For a PPRG on any input length, we apply the
following simple technique. For a given n-bit random seed, we find the maximum integer n′ such
that R(n′)3 ≤ n, separate the seed into blocks of size n′, and apply the original PRG to each block
(where the remaining seed of length n − n′ · bn/n′c is outputted directly). For the security proof,
we apply the standard hybrid argument (for details, refer to [Gol01]). Since R(n)3 is a polynomial
in n, it is not hard to verify that the resulting PRG still preserves polynomial-stretch.

Now, we present the construction of G for input length R(n)3. For convenience, we assume
that the random seed R(n)3 is separated into `(n)R(n)2 strings xi,j ∈ {0, 1}n and yi,j ∈ {0, 1}r(n)

indexed by (i, j) ∈ [R2(n)] × [`(n)]. First, G(x, y) generates target functions f i,j = ptarg(y
i,j) for

each i, j. Then, G computes bi1,i2 :=
⊕

j1,j2∈[`(n)] f
i1,j1(xi2,j2) for all i1, i2 ∈ [R(n)2] and outputs

them as a pseudorandom string of length R(n)2 ·R(n)2 = R(n)4.

143



In the following, we show that (i) each bi1,i2 is computed by a constant-degree F2-polynomial,
and (ii) the above-mentioned G is a pseudorandom generator, which implies the theorem.

For statement (i), we remark that for any depth-d F2-polynomial f i1,j1 and the input xi2,j2 ,
the value of f i1,j1(xi2,j2) is computable by depth-(d + 1) F2-polynomial given f i1,j1 and xi2,j2 as
input because f i1,j1(xi2,j2) =

∑
S:|S|≤d f

i1,j1
S xi2,j2S . Furthermore, each bit of f i1,j1 is computable by

degree-d′ F2-polynomials in yi1,j1 . Therefore, each f i1,j1(xi2,j2) is computable by an F2-polynomial
of degree d′(d+ 1), and so is bi1,i2 :=

⊕
j1,j2∈[n] f

i1,j1(xi2,j2).
Next, we show statement (ii) by contradiction. The outline of the proof is as follows. First,

by assuming that there exists an adversary A that breaks G with non-negligible advantage, we
show that degree-d F2-polynomials are learnable on D⊕ex and D⊕targ with R(n)2 − 1 samples and

non-negligible advantage, where D⊕ex and D⊕targ are the distributions of x⊕ = x(1) ◦ · · · ◦ x(`(n))

and f⊕(x⊕) :=
⊕

i,j f
(i)(x(j)) for x(1), . . . , x(`(n)) ∼ Un and f (1), . . . , f (`(n)) ∼ Dtarg, respectively.

Then, by applying the XOR lemma (i.e., Fact 6.5.8), we show that degree-d F2-polynomials are
learnable with respect to Un and Dtarg with m(n) samples and an advantage of 1/2−1/p(n), which
contradicts the hardness assumption of learning.

For sufficiently large n ∈ N, we assume that9

Pr
[
A(G(UR(n)3)) = 1

]
− Pr

[
A(UR(n)4) = 1

]
≥ 1/poly(n). (6.2)

We construct a learner L⊕ on D⊕ex and D⊕targ as follows. On input (x(1), b(1)), . . . , (x(R(n)2), b(R(n)2))

and a challenge xc, where each x(i) consists of xi,1, . . . , xi,`(n) ∼ Un, the learner L⊕ randomly selects
I1, I2 ∼ [R(n)2] and f i,j ∼ Dtarg for each i < I1 and j ∈ [`(n)]. For simplicity, L⊕ changes the
indices as x(I2) := xc and (x(i), b(i)) := (x(i+1), b(i+1)) for each i > I2, i.e., L⊕ inserts the challenge
in the I2-th position in samples. Then, L⊕ executes A(b1,1, . . . , bR(n)2,R(n)2

), where each bi1,i2 is
defined by

bi1,i2 =



⊕
j1,j2∈[`(n)] f

i1,j1(xi2,j2) if i1 < I1

b(i) if (i1 = I1) ∧ (i2 < I2)

ri1,i2 if (i1 = I1) ∧ (i2 ≥ I2)

ri1,i2 if i1 > I1,

where ri1,i2 ∼ {0, 1}. If A outputs 1, then L⊕ outputs rI1,I2 as a prediction; otherwise, 1− rI1,I2 .
We show the correctness of L⊕. For each I1 and I2, we define the hybrid distribution HI1,I2 as

the distribution of b1,1, . . . , bR(n)2,R(n)2
selected as

bi1,i2 =



⊕
j1,j2∈[n] f

i1,j1(xi2,j2) if i1 < I1⊕
j1,j2∈[n] f

i1,j1(xi2,j2) if (i1 = I1) ∧ (i2 ≤ I2)

ri1,i2 if (i1 = I1) ∧ (i2 > I2)

ri1,i2 if i1 > I1,

where f i1,j1 ∼ Dtarg, xi2,j2 ∼ Dex, and ri1,i2 ∼ {0, 1}. Then, it is easily verified that H1,0 ≡ UR(n)4 ,
HR(n)2,R(n)2 ≡ G(UR(n)3), and HI1,0 ≡ HI1−1,R(n)2 for each I1 ∈ [R(n)2]. Therefore, by Eq. (6.2),
we have

Pr[A(HR(n)2,R(n)2) = 1]− Pr[A(H1,0) = 1] ≥ 1/poly(n).

9Strictly speaking, we test the behavior of the adversary first, then take a negation according to the result to
remove the vertical bars for an absolute value.
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For each I1, I2 selected by L⊕, the probability that L⊕ outputs the correct prediction bc is

Pr[rI1,I2 = bc] Pr[A(HI1,I2) = 1] + Pr[rI1,I2 = 1− bc] Pr[A(H̄I1,I2) = 0]

=
1

2
+

1

2
Pr[A(HI1,I2) = 1]− 1

2
Pr[A(H̄I1,I2) = 1],

where H̄I1,I2 is the same distribution as HI1,I2 except that the (I1, I2)-th bit is flipped.

We remark that

Pr[A(HI1,I2−1) = 1] =
1

2
Pr[A(HI1,I2) = 1] +

1

2
Pr[A(H̄I1,I2) = 1].

Thus, the probability that L⊕ succeeds in predicting bc conditioned on I1, I2 is

1

2
+

1

2
Pr[A(HI1,I2) = 1]− 1

2
Pr[A(H̄I1,I2) = 1]

=
1

2
+

1

2
Pr[A(HI1,I2) = 1]−

(
Pr[A(HI1,I2−1) = 1]− 1

2
Pr[A(HI1,I2) = 1]

)
=

1

2
+ Pr[A(HI1,I2) = 1]− Pr[A(HI1,I2−1) = 1].

Therefore, the success probability of L⊕ is at least

∑
I1,I2∈[R(n)2]

1

R(n)4

(
1

2
+ Pr[A(HI1,I2) = 1]− Pr[A(HI1,I2−1) = 1]

)
=

1

2
+

1

R(n)4
(Pr[A(HR(n)2,R(n)2) = 1]− Pr[A(H1,0) = 1])

≥ 1

2
+

1

poly(n)R(n)4

≥ 1

2
+

1

poly(n)
,

where the first equality holds because HI1,0 ≡ HI1−1,R(n)2 for each I1 ∈ [R(n)2].

Since L⊕ succeeds in learning on D⊕ex and D⊕targ with R(n)2−1 < R(n)2 = m⊕(n) (< m⊕(n`(n)))
samples, Boost in Lemma 6.5.8 succeeds in learning on Un and Dtarg with m(n) samples and
advantage 1/2−1/p(n) (for sufficiently large n). It is not hard to verify that if the running time of A
is bounded by T (n), then the running time of the learner is at most poly(n)·T (R3(n)) ≤ q(n)·T (na)
for a sufficiently large polynomial q and a sufficiently large constant a ≥ 1. By letting ε = 1/a, the
theorem follows.

6.7.2 A Collection of PPRGs vs. Learning on Example Distribution Samplable
with Shared Randomness

In this section, we show the equivalence between a collection of PPRGs in constant-degree F2-
polynomials and average-case hardness of learning constant-degree F2-polynomials with respect to
an example distribution samplable with shared randomness and a target distribution samplable by
constant-degree F2-polynomials. First, we introduce a useful lemma.
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Lemma 6.7.6. For n, d, d′ ∈ N, let p1, . . . , pn : {0, 1}n → {0, 1} be degree-d F2-polynomials,
and let p′ : {0, 1}n → {0, 1} be a degree-d′ F2-polynomial. We define a degree-dd′ F2-polynomial
q : {0, 1}n → {0, 1} as q(x) := p′(p1(x), . . . , pn(x)). Then, the representation of q is computed by
degree-(d′ + 1) F2-polynomials given p1, . . . , pn, p

′ as the input.

Proof. For each S ⊆ [n] with |S| ≤ dd′, we show that qS is computed by a degree-(d′ + 1) F2-
polynomial given p1, . . . , pn, p

′ as the input.
We consider the expansion of the following formula:

q(x) =
∑

I⊆[n]:|I|≤d′
p′I
∏
i∈I

pi(x) =
∑

I⊆[n]:|I|≤d′
p′I
∏
i∈I

∑
J⊆[n]:|J |≤d

(pi)Jx
J .

For convenience, let rI(x) := p′I
∏
i∈I
∑

J⊆[n](pi)Jx
J for each I, i.e., q(x) =

∑
I:|I|≤d′ p

′
I · rI(x).

Fix I ⊆ [n] with k := |I| ≤ d′ arbitrarily, and let I = {i1, . . . , ik}. Since x2
i = xi for each i ∈ [n],

by expanding rI , it is not hard to verify that

(rI)S =
∑

J1,...,Jk⊆[n]:
J1∪···∪Jk=S

(pi1)J1 · (pi2)J2 · · · · · (pik)Jk .

Therefore, the degree of (rI)S as an F2-polynomial in p1, . . . , pn, p
′ is at most k = |I|. Since

qS =
∑

I:|I|≤d′ p
′
I · (rI)S , the degree of qS is at most d′+ 1 as an F2-polynomial in p1, . . . , pn, p

′.

Now, we show one direction from a collection of PPRGs to the average-case hardness of learning.

Theorem 6.7.7. For any polynomial p(n), there exist a polynomial q and a constant ε ∈ (0, 1) such
that for any time-bound function t(n), if there exists a collection of PPRGs in constant-degree F2-
polynomials against t(n)-time adversaries, then degree-d F2-polynomials are not (t(n)/q(n), 1/p(n))-
learnable on average with respect to an example distribution samplable with shared randomness and
a target distribution samplable by a degree-d′ F2-polynomial using an n-bit random seed with (d, d′)-
FPT samples.

Proof. We assume that G is a collection of PPRGs in degree-d0 polynomials for some d0 ∈ N.
Without loss of generality, we can assume that the output length of G is n2; otherwise, we regard
G(1) in Theorem 6.5.11 as G. Fix an FPT sample-complexity function md,d′(n) = f(d, d′) · pm(n)
arbitrarily, where pm(n) is a polynomial. We select d ∈ N such that nd+1 > log n ·pm(nd0+1 · log n) ·
p(nd0+1 · log n).

Now, we specify an example distribution Dex and a target distribution Dtarg for the hardness of
learning with sample complexity md,d′ . We define Dex as the distribution of the concatenation of
binary representations Gi1·n+1, . . . , Gi1·n+n, . . . , Gid−1·n+1, . . . , Gid−1·n+n, Gid , where i1, . . . , id−1 ∼
[n− 1]∪ {0} and id ∼ [n2] (where the choice of G is simulated by shared randomness). We remark
that the following composition of the selected polynomials

Gi1,...,id(x) := Gid(Gid−1+1(· · ·Gi2·n+1(Gi1·n+1(x), . . . , Gi1·n+n(x)), . . . , ), . . . , Gid−1+n(. . .))

is distributed according to the uniform distribution over G
(d)
1 , . . . , G

(d)

nd+1 .
The outline of the remaining proof is as follows. First, we show that (i) for any x ∈ {0, 1}n,

there exists a constant-degree F2-polynomial x∗ such that x∗(Gi1·n+1, . . . , Gid) = Gi1,...,id(x) for any
choice of i1, . . . , id. Then, we define the distribution Dtarg as the distribution of x∗ for x ∼ {0, 1}n
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and show that (ii) Dtarg is samplable by constant-degree F2-polynomials that takes x as the input
(i.e., a random seed). Finally, by a similar proof as Theorem 6.6.3, we show that (iii) learning
constant-degree F2-polynomials is hard with respect to Dex and Dtarg.

By induction in d, we show that for any x ∈ {0, 1}n, there exists a degree-(d0 + 1)d−1 F2-
polynomial that is given Gi1·n+1, . . . , Gid and outputs Gi1,...,id . The base step (i.e., d = 1) is trivial.
For the inductive step, we assume that the claim holds in the case of d− 1. Then, for any i ∈ [n],
there exists a degree-(d0 +1)d−2 F2-polynomial qi that is given Gi1·n+1, . . . , Gid−2·n+n, Gid−1·n+i and
outputsGi1,...,id−1+i for each i1, . . . , id−1. Now, we apply Lemma 6.7.6 for p1 = Gi1,...,id−1+1, . . . , pn =
Gi1,...,id−1+n, and p′ = Gid . Then, the degree-(d0 +1) polynomial q in Lemma 6.7.6 outputs Gi1,...,id
for given Gi1,...,id−1+1, . . . , Gid . Since each bit of Gi1,...,id−1+i is computed by qi, this q is imple-
mented by an F2-polynomial in Gi1·n+1, . . . , Gid , where the degree is at most (d0 +1)d−2 · (d0 +1) =
(d0 + 1)d−1.

This claim implies statement (i) for the following reason. Since the degree of Gi1,...,id(x) is at
most dd0, it is written as

Gi1,...,id(x) =
∑

S:|S|≤dd0

(Gi1,...,id)Sx
S .

We can regard this expression as a degree-1
(
n
≤dd0

)
-input F2-polynomial in Gi1,...,id . By the claim

above, each bit of the representation of Gi1,...,id is computed by degree-(d0+1)d−1 F2-polynomials in
Gi1·n+1, . . . , Gid . Thus, Gi1,...,id(x) is computed by a degree-(d0+1)d−1 F2-polynomial x∗(Gi1·n+1, . . . , Gid),
which is determined only by x. We remark that, by the argument above, we reduce the input size
from O(nd

d
0) to O(d · nd0) ≤ nd0 · log n at the expense of the degree of the target function.

Next, we show statement (ii), i.e., the target distribution Dtarg of x∗ for x ∼ {0, 1}n is samplable
by degree-dd0 F2-polynomials. Based on the argument above, the polynomial x∗ is represented as

x∗(Gi1·n+1, . . . , Gid) =
∑

S:|S|≤dd0

pS(Gi1·n+1, . . . , Gid)x
S ,

where pS is some polynomial of degree (d0 + 1)d−1 for each S ⊆ [n] with |S| ≤ dd0. Thus, for each

T ⊆
[
((d− 1)n+ 1)

(
n
≤d0

)]
(note that ((d− 1)n+ 1)

(
n
≤d0

)
is the input length of x∗), the coefficient

(x∗)T is written as

(x∗)T =
∑

S:|S|≤dd0

(pS)T · xS .

Therefore, x∗ is computed by an F2-polynomial (given x as the input) of degree dd0, and Dtarg is
samplable by F2-polynomials of degree dd0, where the seed length is |x| = n.

Finally, we prove statement (iii) by contradiction. Suppose that there exists an algorithm L that
succeeds in (t(n), 1/p(n))-learning F2-polynomials with sample complexitym(n) := m(d0+1)d−1,dd0

(n).

Then, we construct an adversary A for G(d) based on L, which also yields an adversary for G.
On input w ∈ {0, 1}nd+1

and a description of G, where w is a pseudorandom string generated by
G(d) or a truly random string, A simulates the example distribution Dex by selectingGi1·n+1, . . . , Gid
for i1, . . . , id−1 ∼ [n − 1] ∪ {0} and id ∼ [n2]. For convenience, we let N denote the size of each
example, i.e., N := ((d − 1)n + 1)

(
n
≤d0

)
= O(d · nd0+1). After generating m(N) samples, A also

generates a challenge according to Dex and feeds them to L. Let ic ∈ [nd+1] be the position in G(d)

that corresponds to the challenge. If L outputs some prediction b ∈ {0, 1}, then L′ checks whether
b = wic . If so, L′ outputs 1; otherwise, it outputs 0.
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In the case in which w ∼ G(d)(x) for x ∼ {0, 1}n, we have x∗(Gi1·n+1, . . . , Gid) = G
(d)
i (x) = wi

for each (i1, . . . , id) and the corresponding position i ∈ [nd+1]. Therefore, the simulated samples
are valid for the target function x∗. Since A executes L on the example distribution Dex and target
distribution Dtarg, we have

Pr
A,G,Un

[A(G(d)(Un)) = 1] = Pr
L,Dex,Dtarg

[L succeeds in learning] ≥ 1

2
+

1

p(N)
.

By contrast, in the case in which w ∼ {0, 1}nd+1
, the labels in the simulated samples are selected

truly at random. Because no learning algorithm can guess a random label not contained in the
given samples better than a random guess, i.e., with a success probability of 1/2, we have

Pr
A,U

nd+1

[A(Und+1) = 1] = Pr
L,Dex

[L succeeds in learning]

≤ 1

2
·
(

1− m(N)

nd+1

)
+ 1 · m(N)

nd+1

≤ 1

2
+
m(nd0+1 log n)

2nd+1

≤ 1

2
+
f((d0 + 1)d−1, dd0) · pm(nd0+1 log n)

2nd+1

≤ 1

2
+

nd+1 · f((d0 + 1)d−1, dd0)

2 log n · nd+1 · p(nd0+1 · log n)

≤ 1

2
+

1

2p(nd0+1 · log n)

≤ 1

2
+

1

2p(N)
,

for sufficiently large n. Therefore, the advantage of A is at least(
1

2
+

1

p(N)

)
−
(

1

2
+

1

2p(N)

)
=

1

2p(N)
,

and A succeeds in breaking G(d).
By Theorem 6.5.11, we can construct an adversary for G. It is not hard to verify that the

running time is bounded above by t(N) · q(n) ≤ t(na) · q(n) for a sufficiently large polynomial q
and a sufficiently large constant a ≥ 1. For the theorem, we let ε = 1/a. We remark that for input
size N = ((d− 1)n+ 1)

(
n
≤d0

)
, the length of the random seeds for Dtarg is at most n ≤ N .

Next, we show the opposite direction from the average-case hardness of learning to a collection
of PPRGs. We obtain Theorem 6.7.2 by applying Theorems 6.7.7 and 6.7.8 for all polynomial
time-bounds t(n).

Theorem 6.7.8. For any polynomial p(n), r(n), there exists a polynomial q and a constant ε > 0
such that for any time-bound function t(n), if degree-d F2-polynomials are not (t(n), 1/2− 1/p(n))-
learnable on average with respect to an example distribution samplable with shared randomness
and a target distribution samplable by degree-d′ F2-polynomials using an r(n)-bit random seed with
(d, d′)-FPT samples, then there exists a collection of PPRGs computable by a constant-degree F2-
polynomial against t(nε)/q(n)-time adversaries.
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Proof. (sketch.) The construction of a collection of PPRGs mainly follows the construction of the
PPRG in the proof of Theorem 6.7.5.

Let m(n) and `(n) be the polynomials obtained by applying Fact 6.5.8 for p(n) and m⊕(n) =
(`(n)r(n))1+δ, where δ > 0 is an arbitrary constant. Then, based on the hardness assumption, there
exist constants d, d′ ∈ N, an example distribution Dex, and a target distribution Dtarg on degree-d
F2-polynomial for the hard learning problem with m(n) samples and advantage 1/2−1/p(n), where
Dex is samplable with shared randomness, andDtarg is samplable by a degree-d′ F2-polynomial using

r(n)-bit random seeds. Let ptarg : {0, 1}r(n) → {0, 1}(
n
≤d) be the degree-d′ F2-polynomial selecting

a target function according to Dtarg.
For R(n) = `(n)r(n), we construct a collection of PPRGs G : {0, 1}R(n) → {0, 1}R(n)1+δ

. For
convenience, we assume that the random seed of length R(n) is separated into `(n) strings yj ∈
{0, 1}r(n) indexed by j ∈ [`(n)]. Our generator G is specified with m(n)`(n) strings xi,j ∈ {0, 1}n in-
dexed by (i, j) ∈ [m(n)]×[`(n)], which are selected according toDex in the selection ofG. First, G(y)
generates target functions f j = ptarg(y

j) for each j. Then, G computes bi :=
⊕

j1,j2∈[`(n)] f
j1(xi,j2)

for each i ∈ [m(n)] and outputs them as a pseudorandom string of length m(n) = R(n)1+δ.

The security proof for G is almost the same as Theorem 6.7.5. Next, we verify that the generator
is implemented as a collection of generators in constant-degree F2-polynomials. For each i ∈ [m(n)],
the i-th output bit of G is

bi :=
⊕

j1,j2∈[`(n)]

f j1(xi,j2) =
∑
j1,j2

∑
S:|S|≤d

f j1S (xi,j2)S . =
∑
j1,j2

∑
S:|S|≤d

pStarg(y
j1)(xi,j2)S ,

where pStarg represents the degree-d′ polynomial computing the coefficient of f on S. Since the
selector of G can select a shared randomness, G can simulate the example distribution perfectly.
By hardwiring the values of xi,j2 in the expression above (as a part of G), each output bit of G
is computable by a degree-d′ F2-polynomial given y as the input. Thus, we conclude that G is a
collection of PPRGs in constant-degree F2-polynomials.

6.8 PPRGs based on Hardness of d-LRPDT

In this section, we verify Corollary 6.2.6 based on the proofs of Theorems 6.6.4, 6.7.5, and 6.7.8.
For each d ∈ N, we use the notation `d to refer to the length of the binary representation of degree-d
parity decision trees, i.e., `d(n) = (2d − 1) · n+ 2d.

Corollary 6.8.1 (The first item of Corollary 6.2.6). For any ε ∈ (0, 1), if d-LRPDT is (n1+ε, n−(1+ε))-
hard on an O(1)-sparse example distribution samplable with shared randomness for some d ∈ N,
then a collection of PPRGs in NC0 exists.

Proof. Let p(n) = n1+ε. Then, for each d ∈ N, it holds that `d(n) ≤ n1+ε(1−ε)/2 = p(n)1−ε/2 for
sufficiently large n ∈ N. In the proof of Theorem 6.6.4, we use the hardness assumption of learning

for the sample complexity m(n) = p(n)1− (ε/2)
2 = n(1+ε)(1− ε

4
) = n1+ 3ε

4
− ε

2

4 ≤ n1+ε. Thus, by the FPT
dualization of parity decision trees (i.e., Mod2-DTs), the corollary holds.

Corollary 6.8.2 (The second item of Corollary 6.2.6). For any ε ∈ (0, 1), if d-LRPDT is (n1+ε, n−(2+ε))-
hard on the uniform example distribution for some d ∈ N, then a PPRG in ⊕-NC0 exists.
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Proof. First, we observe that any depth-d parity decision tree is represented by a degree-d F2-
polynomial as follows: Let T be an arbitrary depth-d parity decision tree. For each path p ∈ {0, 1}d
in T , let χp1, . . . , χ

p
d be the queried linear functions at the internal nodes on the path p, and let bp

the binary label at the leaf corresponding to p. Then, it is not hard to verify that for each input x,

T (x) =
∑

p∈{0,1}d
bp

d∏
i=1

1l{χpi (x) = pi} =
∑

p∈{0,1}d
bp

d∏
i=1

(χpi (x) + 1 + pi).

Since the degree of χpi is at most 1, the depth-d parity decision tree T is expressed as a degree-d
F2-polynomial. Furthermore, a random degree-d F2-polynomial corresponding to a random depth-
d parity decision tree is selected by a degree-(d + 1) F2-polynomial according to the expanded
expression of the above by using a `d(n)-bit random seed. Let r(n) = n1+ε/16 + n. Then, for any
sufficiently large n ∈ N, we can bound the seed length above by `d(n) ≤ n1+ε/16 = r(n)− n.

Let p(n) = n2+ε. Now, we apply the proof of Theorem 6.7.5, where we slightly change the
construction of the PPRG G and do not use Fact 6.5.8 (i.e., the XOR lemma). Specifically, we let

G select r(n)1+ε/4 examples x1, . . . , xr(n)1+ε/4 ∈ {0, 1}n uniformly at random and r(n)1+ε/4 random

degree-d parity decision trees f1, . . . , f r(n)1+ε/4
as degree-d F2-polynomials, and output bi1,i2 :=

f i1(xi2) for each i1, i2 ∈ [r(n)1+ε/4]. We remark that by the hybrid argument in the proof of Theo-
rem 6.7.5, we can convert the hardness of d-LRPDT with advantage 1/p(n) and sample complexity
r(n) into a weak PPRG G that stretches an r(n)2+ε/4-bit random seed to an r(n)2+ε/2-bit pseudo-
random string, and the indistinguishable parameter is r(r−1(n1/(2+ε/4)))2+ε/2/p(r−1(n1/(2+ε/4))) =
n(2+ε/2)/(2+ε/4)/p(r−1(n1/(2+ε/4))), where we interpret the upper bound on the advantage r(n)2+ε/2/p(n)
of distinguishers as a function in the seed length r(n)2+ε/4. For sufficiently large n ∈ N, we have
r(n) ≤ n1+ε/8 ≤ n1+ε. Thus, the hardness assumption of learning satisfies the requirement on the
sample complexity in Corollary 6.8.2. In addition, we have r−1(n) ≥ n1/(1+ε/8), and the indistin-
guishable parameter is at most

n
2+ ε

2
2+ ε

4

p(r−1(n
1

2+ ε
4 ))
≤ n

8+2ε
8+ε

n
32(2+ε)

(8+ε)2

= n
− 32(2+ε)−(8+2ε)(8+ε)

(8+ε)2 = n
− 8ε−2ε2

(8+ε)2 = n−Ω(1).

Thus, we can translate the weak PPRG G into a standard PPRG by Theorem 6.6.9, where we use
the junta-composition condition of degree-d F2-polynomials.

Corollary 6.8.3 (The third item of Corollary 6.2.6). For any ε ∈ (0, 1), if d-LRPDT is (n1+ε, n−(1+ε))-
hard on an example distribution samplable with shared randomness for some d ∈ N, then a collection
of PPRGs in ⊕-NC0 exists.

Proof. Let r(n) = n1+ε/4 and p(n) = n1+ε. Again, we use the observation that d-LRPDT is regarded
as learning degree-d F2-polynomials selected by a degree-(d+1) F2-polynomial by using an r(n)-bit
random seed. Thus, we can apply the proof of Theorem 6.7.8 (without the XOR lemma) and
convert the hardness of d-LRPDT with advantage 1/p(n) and sample complexity r(n)1+ε/4 into a
collection of weak PPRGs that stretches an r(n)-bit random seed to an r(n)1+ε/4-bit pseudorandom
string, and the indistinguishable parameter is r(r−1(n))1+ε/4/p(r−1(n)) = n1+ε/4/p(r−1(n)), where
we interpret the upper bound on the advantage r(n)1+ε/4/p(n) of distinguishers as a function in the
seed length r(n). For sufficiently large n ∈ N, we have r(n)1+ε/4 = n(1+ε/4)2 ≤ n1+ε/2+(ε/2)2 ≤ n1+ε.
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Thus, the hardness assumption of learning satisfies the requirement on the sample complexity in
Corollary 6.8.3. Furthermore, the indistinguishable parameter is at most

n1+ ε
4

p(r−1(n))
=
n1+ ε

4

n
1+ε
1+ ε

4

=
n1+ ε

4

n1+ 3ε
4+ε

= n
− 8ε−ε2

4(4+ε) = n−Ω(1).

Thus, we can translate the collection of weak PPRGs into a collection of PPRGs by Theorem 6.6.9,
where we use the junta-composition condition of degree-d F2-polynomials.

6.9 Impossibility of Dualization of NC0

In this section, we show that dualization of O(1)-junta (i.e., Boolean-valued functions in NC0) is
impossible even in the statistical setting. The formal statement is the following.

Theorem 6.9.1. O(1)-junta is not dualizable, i.e., for every k, k′ ∈ N, there is no pair of functions
g and h satisfying that for every n ∈ N, x ∈ {0, 1}n, and every k-junta function f : {0, 1}n → {0, 1},

1. x∗ := g(x) is a k′-junta function of input size n′ = poly(n);

2. f∗ := h(f) ∈ {0, 1}n′; and

3. f(x) = x∗(f∗).

To show Theorem 6.9.1, we recall the notion of 2-round communication protocols.

Definition 6.9.2 (2-round communication protocol). Let C be a concept class. A 2-round commu-
nication protocol for evaluating C is a pair of deterministic algorithms (Input,Function) (they are
possibly not efficiently computable) satisfying that there exist functions minput(n) and mfunction(n)
such that for every n ∈ N, every x ∈ {0, 1}n, and every f ∈ Cn,

1. Input takes x as input and sends a message a ∈ {0, 1}mInput(n) to Function.

2. Function takes f and the message a as input and sends a message b ∈ {0, 1}mfunction(n) to Input.

3. Input obtains the message b additionally and outputs f(x).

For convenience, we call a 2-round communication protocol for evaluating C with the message-length
functions minput(n) and mfunction(n) an (minput(n),mfunction(n))-protocol for evaluating C .

Any concept class C has a trivial (n, 1)-protocol (for evaluating C ), where Input sends x ∈
{0, 1}n, and Function sends back f(x) ∈ {0, 1}. Thus, nontrivial cases are when Input does not send
the whole input x.

Now, we show Theorem 6.9.1 by observing that any dualization of NC0 yields a 2-round com-
munication protocol for evaluating O(1)-junta with short messages, but such a protocol does not
exist information theoretically.

Proof of Theorem 6.9.1. Fix k, k′ ∈ N arbitrarily. Theorem 6.9.1 follows from Claims 6.9.3 and 6.9.4.

Claim 6.9.3. If there exist the functions g and h for dualization as in Theorem 6.9.1, then there
exists an (O(log n), O(1))-protocol for evaluating k-junta.
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Claim 6.9.4. For any ε > 0, there is no ((1− ε)n, o(log n))-protocol for evaluating k-junta.

Proof of Claim 6.9.3. We can construct an (O(log n), O(1))-protocol for evaluating k-junta based
on g and h as follows: for any n ∈ N, x ∈ {0, 1}n, and any k-junta function f : {0, 1}n → {0, 1},

1. Input(x) computes the dual x∗ = g(x) and sends all indices i1, . . . , ik′ ∈ [n′] of the relevant
variables of x∗ to Function, where the message length is at most O(k′ log n′) = O(log n).

2. Function(f ; i1, . . . , ik′) computes the dual f∗ ∈ {0, 1}n′ and sends f∗i1 , . . . , f
∗
ik′
∈ {0, 1} that

are relevant to computing x∗(f∗) to Input, where the message length is at most O(k′) = O(1).

3. Input, given f∗i1 , . . . , f
∗
ik′

, computes and outputs x∗(f∗) = f(x).

�

Proof of Claim 6.9.4. Suppose that there exists a ((1 − ε)n,m(n))-protocol (Input,Function) for
evaluating k-junta, where ε > 0 and m(n) = o(log n). We derive a contradiction.

Fix a sufficiently large n ∈ N with εn− 1 ≥ 2m(n) = o(n) arbitrarily. We can classify each input
string x ∈ {0, 1}n according to the massage sent by Input(x). Since the length of the message is
(1 − ε)n, the number of possible messages is at most 2(1−ε)n. Thus, there exists a message a ∈
{0, 1}(1−ε)n such that Sa = {x ∈ {0, 1}n : Input(x) sends a} has cardinality at least 2n/2(1−ε)n = 2εn.

We focus on the case in which the given input x is contained in Sa. By the definition of Sa, the
first message sent by Input is fixed to a. Thus, the second message sent by Function is determined
only by a given k-junta function f . Again, we classify k-junta functions according to the second
message as follows: for every b ∈ {0, 1}m(n),

Tb = {f : {0, 1}n → {0, 1}|f is k-junta and Function(f ; a) sends b}.

We show that there exist x ∈ Sa and f, f ′ ∈ Tb such that f(x) 6= f ′(x) holds. This contradicts
the correctness of (Input,Function) because, in the both cases of {(x, f), (x, f ′)}, the transcript is
the same (i.e., the first message is a, and the second message is b); thus, Input cannot distinguish
between f and f ′ and outputs the same value y ∈ {0, 1}, and f(x) = f ′(x) = y must hold for the
correctness. Thus, our goal is to find such x ∈ Sa and f, f ′ ∈ Tb.

Let d = |Sa| ≥ 2εn. For each j ∈ [n], we define vj ∈ {0, 1}d as vj = vj1 · · · v
j
d, where vji is the j-th

bit of the i-th string x in Sa (in lexicographic order) for each i ∈ [d]. If there are at most c distinct
vectors in v1, . . . , vn (say, vj1 , . . . , vjc), then the cardinality of Sa is at most 2c because each x ∈ Sa
is determined only by the patterns of (vj1i , . . . , v

jc
i ) ∈ {0, 1}c, where i is the lexicographic order of

x in Sa. Since |Sa| ≥ 2εn, there are at least c ≥ εn distinct vectors vj1 , . . . , vjc in v1, . . . , vn.
We consider 1-junta functions (i.e., k-junta functions) χj1 , . . . , χjc , where χj`(x) = xj` for each

` ∈ [c]. Remember that the number of the separation {Tb}b∈{0,1}m(n) of k-junta functions is at most

2m(n) ≤ εn− 1 ≤ c− 1. Thus, by the pigeonhole principle, there exist `, `′ ∈ [c] and b ∈ {0, 1}m(n)

such that χj` , χj`′ ∈ Tb. Since vj` and vj`′ are distinct vectors, there exists i ∈ [n] such that

vj`i 6= v
j`′
i . Let x ∈ Sa be the i-th string in Sa.

We verify that x ∈ Sa and χj` , χj`′ ∈ Tb satisfy the condition that χj`(x) 6= χj`′ (x) for contra-
diction as follows:

χj`(x) = xj` = vj`i 6= v
j`′
i = xj`′ = χj`′ (x).

�
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Chapter 7

PACland: A World Where PAC
Learning is Easy

In previous chapters, we investigated learning theoretic implications in Heuristica and Pessiland,
which are the possible worlds involved in the core concepts (i.e., average-case hardness of NP and
one-way functions) in computational complexity theory and cryptography. However, one natural
and important question was not addressed there, i.e., what is the exact capability of the statement
that “PAC learning all efficiently computable concepts is easy” particularly when there is no re-
striction on hypotheses? We name the possible world where PAC learning all efficiently computable
concepts (particularly, P/poly) is easy as PACland for familiarity and investigate its complexity-
theoretic and cryptographic aspects.

The concept class P/poly of polynomial-size circuits is complete in efficient PAC learning for
efficiently computable concepts in the sense that (i) P/poly is efficiently computable; and (ii) if a
class C is efficiently PAC learning, then C ⊆ P/poly [Sch90]. Furthermore, by a simple padding
argument, we can assume that the size is restricted to n2 without loss of generality (see Proposi-
tion 7.1.3). Therefore, in this chapter, we mainly consider the PAC learnability of the class SIZE[n2]
to discuss PACland.

7.1 Additional Preliminaries

We introduce additional preliminaries required only in this chapter.

Universal Circuit and Circuit Translator

We fix a proper encoding for Boolean circuits. For any circuit C, we use 〈C〉 to explicitly denote
the binary encoding of C. Otherwise, we may abuse the same notation C for the encoding.

For convenience, we assume the following: (1) every binary string u ∈ {0, 1}∗ represents some
circuit Cu, which is done by assigning invalid encodings u to the trivial circuit Cu(x) = 0; (2)
zero-padding is available, specifically, the minimum valid encoding u for any circuit C ends with 1,
and we regard u ◦ 0∗ is also valid encoding of the circuit C. For any s ∈ N, let e(s) = O(s log s) be
the size of minimum encoding for s-size circuits satisfying the assumptions above.

The following language C-Eval is known as a P-complete problem.

C-Eval = {〈C, x〉 : C is an n-input circuit and x ∈ {0, 1}n satisfying C(x) = 1} .
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In addition, the class P is equivalent to the class recognized by uniformly generated polynomial-size
circuits [cf. AB09]. These results lead to the following facts.

Lemma 7.1.1 (Universal circuits). There exists a polynomial-size circuit family UC = {UCN}N∈N
satisfying that for any u, x ∈ {0, 1}∗,

UCN (〈u, x〉) =

{
Cu(x) (if u represents an n-input circuit Cu and |x| = n)

0 (otherwise),

where N = |〈u, x〉|. Moreover, UC is uniformly generated, that is, there exists a polynomial-time
Turing machine UCM such that 〈UCN 〉 ← UCM(1N ) for any N ∈ N.

Lemma 7.1.2 (Circuit translator). There exists a polynomial-time Turing machine CT such that
for the input 〈M, 1n〉 where M is a description of a T (n)-time Turing machine and n ∈ N, CT
outputs 〈C〉 ∈ {0, 1}e(s(n)) where C is an n-input circuit of size s(n) = O(T (n) log T (n)) satisfying
C(x) = M(x) for any x ∈ {0, 1}n. We call the above-mentioned CT a circuit translator.

In the second argument of CT , we may use the notation 1n1×···×nk to denote the length of
binary encoding for a k-tuple of binary strings (x1, . . . , xk) where xi ∈ {0, 1}ni for each i ∈ [k].

We also define a size-bounded universal circuit

UCs(n) = {UCs(n)
n : {0, 1}e(s(n)) × {0, 1}n → {0, 1}}n∈N

by

UCs(n)
n (u, x) =

{
UC(〈u, x〉) if u = 〈C〉 and C ∈ SIZE[s(n)]

0 otherwise.

Note that, by the standard construction of universal circuits [cf. AB09],

(the size of UCs(n)
n ) = Õ(s(n) + (s(n)− n)2).

In addition, SIZE[s(n)] is evaluated by UCs(n) as

SIZE[s(n)]n =
{
C(x) := UCs(n)

n (u, x) : u ∈ {0, 1}e(s(n))
}

for each n ∈ N.

Therefore, we fix UCs(n) for the evaluation function for SIZE[s(n)], which determines the dual
SIZE[s(n)]∗ of SIZE[s(n)].

Padding Argument

Proposition 7.1.3. For any polynomial s(n) > n, SIZE[s(n)] is PAC learnable iff SIZE[n2] is PAC
learnable.

Proof. We only need to consider the case in which s(n) ≥ n2. We construct a PAC learner Ls for

SIZE[s(n)] from another PAC learner L for SIZE[n2]. Suppose that L(1n, 1ε
−1,1δ

−1

) needs m(n, ε, δ)
samples for learning, where m is a polynomial.

Let n be the size of examples for Ls. First, Ls(1
n, 1ε

−1
, 1δ
−1

) calculates the minimum value
n′ ∈ N satisfying s(n)− n ≤ n′2 − n′. Obviously, n′ is polynomially related to n. Second, Ls takes
m(n′, ε, δ) examples and executes L(1n

′
, 1ε
−1
, 1δ
−1

), where Ls pads each example x ∈ {0, 1}n with
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0 as x ◦ 0n
′−n ∈ {0, 1}n′ . Finally, if L returns a hypothesis h : {0, 1}n′ → {0, 1}, then Ls outputs a

hypothesis h′ : {0, 1}n → {0, 1} defined as h′(x) = h(x ◦ 0n
′−n).

Let C be a circuit of size s(n) which computes the target function Ls tries to learn, and let D be
an example distribution on {0, 1}n. Then it is easily verified that Ls executes L with a valid setting
where the target function is computed by C (discarding a suffix of length n′ − n) and the example
distribution D ◦ 0n

′−n. Although the target circuit for L needs additional n′ − n input-gates, the
size is bounded above by s(n) + n′ − n ≤ n′2. Therefore, L succeeds in learning with the accuracy
parameter ε and the confidence parameter δ, and so does Ls.

7.2 Auxiliary-Input Primitive Corresponding to Hardness of PAC
Learning

First, we consider which type of cryptographic primitives corresponds to the hardness of PAC
learning. Our approach is to apply the idea outlined in Section 5.2.1 to obtain the cryptographic
characterization of the hardness of PAC learning. As a result, we characterize the hardness of PAC
learning by the existence of the auxiliary-input variant of a hitting-set generator (HSG) with an
additional locality condition.

HSG is a variant of PRG that has a weaker (one-sided-error) security condition, which was
originally introduced by Andreev, Clementi, and Rolim [ACR98] to develop a general derandom-
ization method (see also [GVW11; Gol11b]). For the original purpose of the derandomization, we
require HSG in computational complexity regime, i.e., an exponential-stretch HSG secure against
super-polynomial-time adversaries. By contrast, we consider an HSG in cryptographic regime,
i.e., a polynomial-stretch HSG secure against polynomial-time adversaries, which was also get an
attention independently in context of meta-complexity [San20].

To characterize the PAC learnability, we first weaken the condition of HSG by introducing the
auxiliary-input variant. At this point, the existence of the auxiliary-input HSG becomes weaker
than the hardness of PAC learning. It is worthy of note that this is the first (weakened) pseu-
dorandom generator whose existence is weaker than the hardness of PAC learning, as far as we
know.

Definition 7.2.1 (Auxiliary-input hitting set generator). A polynomial-time-computable auxiliary-
input function G = {Gz : {0, 1}n(|z|) → {0, 1}`(n(|z|))}z∈{0,1}∗ is an auxiliary-input hitting set gen-
erator (AIHSG) if `(n) > n and for any polynomial-time probabilistic algorithms A, there exists a
non-empty set ZA ⊆ {0, 1}∗ such that for every z ∈ ZA, Gz hits the language recognized by of A,
that is, A satisfies either

∃x ∈ {0, 1}|z| s.t. Pr
A

[A(z,Gz(x)) = 1] ≥ 2/3 or Pr
y∼{0,1}`(n(|z|))

[
Pr
A

[A(z, y) = 1] ≥ 2/3

]
≤ 1/2.

We call the function `(·) in n(|z|) the stretch of G.

Indeed, it is not so difficult to see that if we regard auxiliary-input of AIHSG as input, then the
resulting generator becomes a secure HSG. However, the stretch (i.e., how long the hidden input is
stretched) decreases drastically because the input length is stretched from n(|z|) to |z|+ n(|z|).

Next, we add two conditions to AIHSG. Then the existence of such modified HSGs will exactly
coincide with the hardness of PAC learning. The first condition is arbitrary polynomial stretch. In
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the case of PRGs, we can easily construct any polynomial stretch PRG from any PRG even if the
original stretch is n+1. In the case of AIHSGs, however, such construction is quite non-trivial. The
second condition is locality, i.e., that condition that each bit of the output is locally computable
from the input and a small part of auxiliary-input, and the way to compute does not depend on
the values of input and auxiliary-input. To sum up, the modified AIHSG is formulated as follows.

Definition 7.2.2 (Local AIHSG). A polynomial-time computable auxiliary-input function G =
{Gτ}τ∈N is a local AIHSG if G satisfies the following two conditions:

• (Arbitrary polynomial stretch) for any τ , Gτ = {Gτz}z∈{0,1}∗ is an AIHSG with the stretch
n(|z|)τ ;

• (Locally computable) there exists a non-adaptive polynomial-time oracle machine localG? such
that localGz(τ, |z|, i, x) returns the i-th bit of Gτz(x) and the positions of queries determined
by τ, |z|, i (not depending on input x and auxiliary-input z).

Then, the existence of a local AIHSG exactly characterizes the hardness of the standard PAC
learning.

Theorem 7.2.3 (Hardness of PAC learning⇔ local AIHSG). P/poly (particularly SIZE[n2]) is not
PAC learnable if and only if there exists a local AIHSG.

The reader may ask a candidate for local AIHSG. We also give the explicit generator which is
complete in the sense that it must be local AIHSG if there exists some local AIHSG. Namely, the
explicit generator must be local AIHSG if PAC learning SIZE[n2] is hard.

Theorem 7.2.4 (Complete local AIHSG). There exists an explicit generator {UCτ}τ∈N satisfying
that {UCτ}τ∈N is a local AIHSG iff there exists a local AIHSG.

Intuition: Duality between PAC Learning and Local AIHSG

We give an intuition of the correspondence between the hardness of PAC learning and local AIHSG.
The argument mainly follows the ideas in Section 5.2.1; thus, we strongly recommend the reader
to refer to Section 5.2.1 first.

Remember that we applied the Occam’s algorithm (i.e., finding a consistent hypothesis) to see
the correspondence between the hardness of PAC learning (in the BFKL model) and AIOWF.
In this section, we apply another formulation of PAC learning, i.e., RRHS-refutation introduced
by Vadhan [Vad17]. We remark that the task of RRHS-refutation for a concept class C is, for
a given sample set (x1, b1), . . . , (xm, bm), to distinguish between (i) the “realizable” case in which
there exists a function f ∈ C such that f(xi) = bi for any i and (ii) the “random” case in which
the labels b1, . . . , bm are selected uniformly at random. Particularly, we consider the case in which
C = SIZE[n2].

To see the correspondence between the hardness of PAC learning and local AIHSG, we regard the
examples x1, . . . , xm as auxiliary-input and the hidden function f as the random seed for AIHSG.
Then, it is not hard to verify that the task of RRHS-refutation exactly corresponds to the task
of distinguishing pseudorandom strings in the image of AIHSG from random strings. Technically,
as seen in Section 6.4.1, this argument only yields the correspondence between a fixed sample
complexity and a fixed stretch of a generator. To extend this to the case of PAC learnability with
arbitrarily large polynomial sample complexity, we use the polynomial-stretch condition of local
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AIHSG. In addition, we require the local condition to preserve the property of learning that each
bit is computed locally by a target function, even in a generator. Without the locality condition, in
the implication from the existence of AIHSG to the hardness of PAC learning, there is no guarantee
on the upper bound on the complexity of computing each label (i.e., pseudorandom bit) because
some output bit can heavily depend on computations of other output bits in general AIHSGs.

7.2.1 Proof of Theorems 7.2.3 and 7.2.4

We again use the notion of dualization (especially for P/poly). Let E = {En}n∈N be a family of
function En : {0, 1}s(n) × {0, 1}n → {0, 1}. We say that a class C = {Cn}n∈N is evaluated by E if
Cn = {f(x) := En(u, x) : u ∈ {0, 1}s(n)} for any n ∈ N. Remember that we define the dual-class
C ∗ = {C ∗n}n∈N as C ∗n = {g(u) := En(u, x) : x ∈ {0, 1}n}. Now, we introduce the following lemma,
which was first used by [Vad17].

Lemma 7.2.5 ([PW90; Vad17]). Let C and C ′ be concept classes evaluated by {En : {0, 1}s(n) ×
{0, 1}n → {0, 1}}n∈N and {E′n : {0, 1}t(n)×{0, 1}n → {0, 1}}n∈N, respectively. Suppose that for any
n ∈ N, there exist n′ ∈ N, and polynomial-time computable functions frep : {0, 1}n → {0, 1}t(n′) and
fex : {0, 1}s(n) → {0, 1}n′ satisfying that

E′n′(frep(x), fex(u)) = En(u, x).

Then the following holds:

• if C ′ is RRHS-refutable, then C ∗ is also RRHS-refutable;

• if C ′∗ is RRHS-refutable, then C is also RRHS-refutable.

We apply Lemma 7.2.5 to polynomial-size circuits. For any polynomial s, we use the notation
s† to denote the polynomial such that the size of UCsn is at most s†(e(s(n))) for any n ∈ N. Then
we have the following lemma.

Lemma 7.2.6. For any polynomial s(n),

• SIZE[s(n)]∗ is RRHS-refutable if SIZE[s†(n)] is RRHS-refutable;

• SIZE[s(n)] is RRHS-refutable if SIZE[s†(n)]∗ is RRHS-refutable.

Proof. We give functions fex : {0, 1}e(s(n)) → {0, 1}e(s(n)) and frep : {0, 1}n → {0, 1}e(s†(e(s(n)))) in
Lemma 7.2.5 by

fex(u) = u, and frep(x) = 〈Cx〉, where Cx(u) = UCs(n)
n (u, x).

Note that the input size of Cx is e(s(n)) and the size is at most s†(e(s(n))) by the definition of s†.
Since UCs(n) is generated in polynomial time, fex and frep are polynomial-time computable. In
addition, these functions satisfy the conditions in Lemma 7.2.5 as follows:

UC
s†(n)
e(s(n))(frep(x), fex(u)) = UC

s†(n)
e(s(n))(〈Cx〉, u) = Cx(u) = UCs(n)

n (u, x).
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First, we introduce candidates for the complete local AIHSG in Theorem 7.2.4, which is simply
composed of concatenated universal circuits. Remember that e(s) = O(s log s) is the size of the
binary encoding for s-size circuits satisfying the assumptions in Section 7.1.

Definition 7.2.7. For any polynomial s(n) and `(n), we define a polynomial-time computable

auxiliary-input functon UCs,` = {UCs,`z : {0, 1}n(|z|) → {0, 1}`(n(|z|))}z∈{0,1}∗, where n(|z|) = maxn ∈
N : e(s(n)) · `(n) ≤ |z|, as

UCs,`z (x) = UCs(z1, x) ◦ · · · ◦ UCs(z`(n), x),

where zi ∈ {0, 1}e(s(n)) for each i ∈ [`(n)], z = z1 ◦ · · · ◦ z`(n) ◦ zleft, and zleft ∈ {0, 1}|z|−e(s(n))·`(n).

Now we show the following main theorem. Note that Theorem 7.2.3 follows from Item 1
⇔ Item 2.

Theorem 7.2.8. The following are equivalent:

1. SIZE[n2] is not PAC learnable.

2. There exists a local AIHSG.

3. There exists a polynomial s(n) such that {UCs(n),nτ }τ∈N is a local AIHSG.

Proof. (1 ⇒ 2) For any τ ∈ N, we construct an AIHSG Gτ = {Gτz}z∈N for each τ ∈ N. Define
functions m and n as

m := m(|z|) = maxm ∈ N : e(m2)τ ·m ≤ |z|, and n := n(|z|) = e(m2).

Then m and n are polynomially related to |z| and any binary string z ∈ {0, 1}∗ is divided as

z = z1 ◦ · · · ◦ ze(m2)τ ◦ zlast,

where |zi| = m for each i ∈ [e(m2)τ ] and |zlast| = |z| − e(m2)τ ·m.
Now we define Gτz : {0, 1}n → {0, 1}nτ as

Gτz(x) = UCn
2

m (x, z1) ◦ . . . UCn2

m (x, ze(m2)τ ).

The generator above satisfies the conditions in Definition 7.2.1 because we can calculate the
i-th bit of Gτz(x) in polynomial-time in n by executing UCn

2

m (x, zi), and the location of zi in z is
determined only by τ, |z| and i.

Suppose for contradiction that there exists τ such that Gτ is not an AIHSG, and let A be the
adversary. By Theorem 2.3.7, it is enough to construct a refuter for SIZE[n2] from A.

Now we define the refuterR for SIZE[n2] with e(n2)τ samples as follows: R(x1, . . . , xnτ , b1, . . . , bnτ )
executes A(x1 ◦ · · · ◦xe(n2)τ , b1 ◦ · · · ◦ be(n2)τ ) and if A outputs 1 (resp. 0), then R outputs “random”
(resp. “realizable”).

It is easy to verify that R outputs “random” with probability at least 2/3 for greater than half
of random labels. For “realizable” cases, we assume that there exists y ∈ {0, 1}e(n2) such that
UCn

2

n (y, xi) = bi for any i ∈ [e(n2)τ ]. Let z = x1 ◦ · · · ◦xe(n2)τ . Then m(|z|) = n and n(|z|) = e(n2),
and we have

Gτz(y) = UCn
2

n (y, x1) ◦ · · · ◦ UCn2

n (y, xe(n2)τ ) = b1 ◦ · · · ◦ be(n2)τ .
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Since b1 ◦ · · · ◦ be(n2)τ is contained in the image of Gτz , the adversary A outputs 0 with probability
at least 2/3. In this case, R outputs “realizable” with probability at least 2/3.

(2 ⇒ 3) Let {Gτ}τ∈N be a local AIHSG and localG? be the polynomial-time oracle machine in
the condition of Definition 7.2.2. Since the length of input (τ, |z|, i, x) is at most log τ + log |z| +
τ log(n(|z|)) + n(|z|) ≤ poly(n(|z|)), localG halts in polynomial time in n := n(|z|). Thus, we
can assume that localG? queries q(n) points for some polynomial q. Since the queries are non-
adaptive and determined by only τ, |z|, i, we can divide localG? into two Turing machines Pos and
M satisfying that for any (sufficiently long) string z,

Pos(τ, |z|, i) = (j1, . . . , jq(n));

M(zj1 , . . . , zjq(n)
, τ, |z|, i, x) = localGz(τ, |z|, i, x) = Gτz,i(x),

where Pos and M halt in t(n)-time for some polynomial t.

Now we show that {UCt(n)2,nτ }τ∈N is a local AIHSG. The conditions about locality are easily
verified as in the proof of (1 ⇒ 2). For contradiction, we assume that there exists τ such that
UCt(n)2,nτ is not an AIHSG by the adversary A, and construct the adversary A′ which breaks the
security of Gτ by using A.

Algorithm 1: A′

Input : z ∈ {0, 1}∗ and y ∈ {0, 1}n(|z|)τ

1 execute C(, , , , )← CT (M, 1q(n)×log τ×log |z|×τ log(n(|z|))×n);
2 for i := 1 to nτ do
3 execute (ji1, . . . , j

i
q(n))← Pos(τ, |z|, i);

4 hardwire the indices as Ci(x) = C(zji1
◦ . . . ◦ zji

q(n)
, τ, |z|, i, x), and ui = 〈Ci(x)〉;

5 truncate/zero-pad ui to the length e(t(n)2);

6 output the same value to A(u1 ◦ · · · ◦ unτ , y);

We analyze the adversary A′. For sufficiently large |z|, the size of C in line 1 is at most t(n(|z|))2.
In this case, each Ci(x) is properly encoded to the length e(t(n)2) in line 5.

For any auxiliary-input z to Gτ and i ∈ [nτ ], let ui be the binary encoding given in line 5 and
uz := u1 ◦ · · · ◦ unτ be auxiliary-input in line 6. Then we have that

Pr
y

[
Pr
A′

[A′(z, y) = 1] ≥ 2/3

]
= Pr

y

[
Pr
A

[A(uz, y) = 1] ≥ 2/3

]
≥ 1/2.

If there exists x ∈ {0, 1}n satisfying that Gτz(x) = y, then

y = Gτz(x) = M(zj11 , . . . , zj1q(n)
, τ, |z|, 1, x) ◦ · · · ◦M(zjnτ1

, . . . , zjnτ
q(n)

, τ, |z|, nτ , x)

= C1(x) ◦ · · · ◦ Cnτ (x)

= UCt(n)2

n (u1, x) ◦ · · · ◦ UCt(n)2

n (unτ , x)

= UCt(n)2,nτ

uz (x).
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Thus, y is also contained in the image of UC
t(n)2,nτ

uz . Therefore, the adversary A outputs 0 with
probability at least 2/3, and so does A′. By the observations above, A′ breaks the security of Gτ ,
which contradicts the assumption that {Gτ}τ∈N is a local AIHSG.

(3⇒ 1) For a polynomial s(n), suppose that {UCs(n),nτ }τ∈N is a local AIHSG. First, we show that
SIZE[n2]∗ is not RRHS-refutable.

For contradiction, we assume that there exists a refuter R for SIZE[s(n)]∗ with nc samples. Now
we construct an adversary A for UCs(n),nc by

A(z, y) = 1l{R(z1, . . . , znc , y1, . . . , ync) = “random”}

where z = z1 ◦ · · · ◦ znτ ◦ zlast, |zi| = e(n(|z|)2), and |zlast| = |z| − nc · e(n2).
For any z, if y is randomly selected, then we have

Pr
y

[
Pr
A

[A(z, y) = 1] ≥ 2/3

]
= Pr

y

[
Pr
R

[R(z1, . . . , znc , y1, . . . , ync) = “random”] ≥ 2/3

]
≥ 1/2.

On the other hand, if there exists x ∈ {0, 1}n such that UC
s(n),nτ

z (x) = y, then for each i ∈ [nc],
yi = UCs(n)(zi, x). Therefore, the given sample is a “realizable” case for SIZE[s(n)]∗, and A outputs
1 with probability at least 2/3 by the correctness of R. Thus, A breaks the security of UCs(n),nc .

Now we have that SIZE[s(n)]∗ is not RRHS-refutable. By taking a sufficiently large polynomial
t(n) such that s(n) ≤ t†(n), we conclude that

SIZE[s(n)]∗ is not RRHS-refutable

=⇒ SIZE[t†(n)]∗ is not RRHS-refutable (∵ SIZE[s(n)]∗ ⊆ SIZE[t†(n)]∗)

=⇒ SIZE[t(n)] is not RRHS-refutable (∵ Lemma 7.2.6)

=⇒ SIZE[t(n)] is not PAC learnable. (∵ Theorem 2.3.7)

By Proposition 7.1.3, SIZE[n2] is not PAC learnable.

To show Theorem 7.2.4, the implication 2 ⇒ 3 in Theorem 7.2.8 is not sufficient because the
function s(n) in the statement 3 depends on the size of local AIHSGs in the statement 2. However,
this problem is easily resolved by applying Theorem 7.2.8 twice. The existence of local AIHSG
implies hardness of PAC learning SIZE[n2] (2 ⇒ 1), and the hardness implies the existence of
specific generator {UCs(n),nτ }τ∈N (1⇒ 3). In this case, the function s(n) is determined depending
on the size of concept class, that is n2, thus we can fix s(n) beforehand.

7.3 Meta-PAC Learning is as Hard as PAC Learning

Next, we study a decision problem whose worst-case hardness exactly corresponds to the hardness of
PAC learning. Previously, Blumer, Ehrenfeucht, Haussler, and Warmuth [BEHW87] and Schapire
[Sch90] characterized PAC learning by the NP-search problem of finding a consistent hypothesis.
However, since the latter problem is not known to be NP-complete, it is unclear whether the
feasibility of general PAC learning for P/poly can be characterized by the computational complexity
of a decision problem. Particularly, the characterization of PAC learning by RRHS-refutation
(Theorem 2.3.7) seems to show that PAC learnability is a notion that corresponds to a variant of
a decision problem that has a weaker requirement than determining the answer exactly.
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In this section, we present a characterization of PAC learnability by the computational hardness
of a decision problem. The problem we consider is involved with a natural question in computational
learning theory: why is proving efficient learnability difficult? First, we hypothesize about this
question and formulate it as a decision problem.

Our observation is the following: to prove learnability for a certain concept class, we must
determine at least whether the concept class is polynomially learnable or not. We hypothesize that
such a task of determining learnable classes and not-learnable classes is indeed computationally
difficult. In the following, we focus on how to discuss the validity of this hypothesis.

Our idea is to formulate determining the polynomial learnability of a given concept class as
a computational problem and analyze the computational complexity. However, we cannot get a
straightforward formulation for such a computational task due to the following reasons. First,
a concept class does not have a reasonable binary representation in general. Second, more cru-
cially, polynomial learnability concerns with the asymptotic behavior when sufficiently abundant
polynomial-size resources (i.e., samples and running-time) are available. Thus, we need to reflect
the notion of “sufficiently abundant but polynomial-size resources” in our formulation.

To resolve the first problem, we focus on an evaluation function for a concept class. Usually, a
concept class which we are interested in has an efficiently computable evaluation rule: for example,
from input x and a simple disjunctive normal form formula φ, we can easily evaluate the value of
φ(x) . Therefore, we regard a polynomial-size evaluation circuit for a concept class as the definition
of the concept class. Since Boolean circuits have binary encoding, this formulation enables us to
encode concept classes and to define a language composed of concept classes.

We define a language Learnable representing efficiently learnable classes as follows. Note that
the third condition in the following definition captures the notion of “PAC learnable”, which is
motivated by the formulation of PAC learnability by RRHS-refutation [Vad17] (where we consider
non-uniform learners).

Definition 7.3.1 (Learnableτ,m). For any polynomial τ := τ(n) and m := m(n), we define a
language Learnableτ,m as a collection of circuits C satisfying that:

• C computes an evaluation function E : {0, 1}s(n) × {0, 1}n → {0, 1} for some n ∈ N,

• the size of C is at most τ(n),

• there exists a circuit1 L ∈ SIZE[n2] which learns the concept class determined by C with m
samples in the following sense: for any x1, . . . , xm ∈ {0, 1}n, L satisfies that

– For any u ∈ {0, 1}s(n), L(x1, . . . , xm, E(u, x1), . . . , E(u, xm)) = 0;

– Prb1,...,bm∼{0,1}[L(x1, . . . , xm, b1, . . . , bm) = 1] ≥ 1/2.

Note that the third condition in Definition 7.3.1 captures the notion of “PAC learnable”, which is
motivated by the formulation of PAC learnability by RRHS-refutation [Vad17] (where we consider
non-uniform learners). Formally, we can verify that the language Learnableτ,m represents PAC
learnability in the following sense.

Theorem 7.3.2. Let C be a concept class whose evaluation function is computed by a circuit
Cn : {0, 1}s(n)×{0, 1}n → {0, 1} of size τ(n), that is, Cn = {f(x) := Cn(u, x) : u ∈ {0, 1}s(n)}. The
class C is non-uniformly PAC learnable iff for sufficiently large c, Cn ∈ Learnableτ,nc for each n.

1In fact, any exponent factor of the bound on the size of L will not change the asymptotic complexity of Learnable
(formally, the proof of Theorem 7.3.2 in Section 7.3.1).
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In addition, Learnableτ,m is contained in the polynomial hierarchy. This is immediately derived
from the definition of Learnableτ,m and the well-known result that BPP ⊆ Σp

2 ∩ Πp
2 [Lau83]. We

prove Theorems 7.3.2 and 7.3.3 in Section 7.3.1.

Theorem 7.3.3. For any polynomials τ and m, Learnableτ,m ∈ Σp
3. Moreover, if P = BPP, then

indeed Learnableτ,m ∈ Σp
2.

By Theorem 7.3.2, if we can efficiently recognize Learnableτ,nc for sufficiently large c, then we can
also efficiently determine the learnability of concept classes evaluated by τ(n)-size circuits. In the
opposite direction, if we can efficiently determine the learnability of such concept classes, then we
can also efficiently recognize Learnableτ,nc for sufficiently large c because Learnableτ,nc corresponds to
the set of learnable classes for sufficiently large c. Therefore, determining the learnability of concept
classes evaluated by τ(n)-size circuits corresponds to recognizing Learnableτ,nc for sufficiently large
c. This observation is central to resolve the second problem for the formulation. In addition,
for sufficiently large c, the polynomial τ(n) does not affect the asymptotic complexity (formally,
Theorem 7.3.10). Therefore, without loss of generality, we can fix τ as τ(n) = n2. These arguments
lead to the following formulation of the hardness of determining polynomial PAC learnability. We
name the task meta-PAC learning.

Definition 7.3.4 (Meta-PAC learning is hard). We say that meta-PAC learning is hard if there
exists infinitely many c ∈ N satisfying that Learnablen2,nc /∈ P.

The third result is the equivalence between the hardness of meta-PAC learning and the hardness
of non-uniform PAC learning for polynomial-sized circuits. This result insists that a hard-to-learn
class itself yields the hardness of determining which concept classes are indeed hard-to-learn.

Theorem 7.3.5 (Meta-PAC learning is as hard as learning). Meta-PAC learning is hard if and
only if polynomial-size circuits are not non-uniformly PAC learnable.

To the best of our knowledge, our meta-PAC learning problem is the first formulation of deter-
mining polynomial PAC learnability. There are several related work which has the same purpose
of determining some notions related to learnability: e.g., deciding VC dimension [Sch99], and the
several consistency problems proposed by [KT91]. However, their formulations do not capture
the notion of polynomially PAC learnable. Indeed, the complexity of their problems is exactly
characterized by the polynomial hierarchy (e.g., deciding VC dimension is Σp

3-complete, and the
consistency problems are Σp

2-complete). These facts show the differences from our meta-PAC learn-
ing because PAC learnability is not characterized by such classes at present. A related problem in
computational complexity is the minimum circuit-size problem (MCSP) [KC00]. MCSP informally
asks whether the given language, equivalently a truth-table of a boolean function, is recognized by
small size circuits. There are several differences from our meta-PAC learning, which arise from the
difference between settings of computing and learning; for example, the term “efficient” represents
exponentially different running-time because a truth-table of Boolean function has exponential-size
representation in general.

Theorem 7.3.5 shows the possibility that a hard-to-learn class itself can be a cause of the
hardness of proving efficient learnability. Although our proof is quite simple and follows from only
fundamental knowledge in complexity theory (see below), to the best of our knowledge, no one has
not insisted on this possibility. In this sense, the notion of hard-to-learn can be much harder to
handle than we expected.
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Proof Sketch of Theorem 7.3.5

We give an outline of proof of Theorem 7.3.5, which is very simple and intuitive. For simplicity,
we omit the argument about the upper bound τ(n) on the size of evaluation circuits. Note that we
consider the non-uniform model (i.e., circuits) as a standard computational model for learners.

From PAC Learning to Meta-PAC Learning. This direction is trivial from Theorem 7.3.2.
Suppose that all polynomial-size circuits are PAC learnable. Notice that if a concept class is
evaluated by a τ(n)-size circuit, then the class consists only of τ(n)-size circuits. Therefore, for
sufficiently large c, Learnableτ(n),nc exactly corresponds to the set of τ(n)-size circuits. We can easily
verify whether the size of a given circuit is at most τ(n) by a polynomial-time Turing machine.

From Meta-PAC Learning to PAC Learning. We show that if PAC learning polynomial-
size circuits is hard, then meta-PAC learning is also hard. Suppose for contradiction that PAC
learning polynomial-size circuits is hard, but meta-PAC learning is not hard.

By the assumption, there exist a polynomial-time Turing machine (a meta-PAC learner) de-
termining PAC learnability and a circuit C evaluating a hard-to-learn concept class. Then we
can construct a polynomial-time Turing machine A for solving the circuit-SAT problem. For any
given circuit C ′, the algorithm A constructs a new concept class C evaluated by C ′′(u1 ◦ u2, x) :=
C(u1, x) ∧C ′(u2) and feeds C ′′ to the meta-PAC learner. Note that the input to C ′ is regarded as
a part of the representation of target functions.

If the given C ′ is unsatisfiable, then the concept class C consists only of the constant function 0,
which is trivially PAC learnable. On the other hand, if the given C ′ is satisfiable, then C contains
the original concept class evaluated by C. Therefore, C must be hard-to-learn, and the meta-PAC
learner can distinguish these two cases in polynomial-time. Thus, A can solve the circuit-SAT
problem efficiently, which yields P = NP.

As seen in Chapter 2.6, if P = NP, then we can construct an efficient PAC learning algorithm
for polynomial-size circuits [BEHW87]. This contradicts the hardness of PAC learning.

7.3.1 Formal Proofs

In this section, we consider the non-uniform model (circuits) as a computational model for learners.
First, we formally define RRHS-refutation in the non-uniform model as follows.

Definition 7.3.6 (RRHS-refutation: non-uniform). Let C be a concept class. We say a family of
polynomial-size circuits {Rn}n∈N, called a refuter, RRHS-refutes C with m := m(n) samples if for
any n ∈ N, f ∈ Cn, and x1, . . . , xm ∈ {0, 1}n, Rn satisfies that

1. Rn(x1, . . . , xm, f(x1), . . . , f(xm)) = 0;

2. Prb∼{0,1}m [Rn(u1, . . . , um, b) = 1] ≥ 1/2.

We say that C is non-uniformly RRHS-refutable if there exist a polynomial m and a polynomial-size
refuter for C with m samples.

Then the equivalence between learning and refutation also holds in the non-uniform model. It
is easily shown by combining the original proof for the uniform model with Adleman’s trick [Adl78]
to remove randomness from a refuter.

Theorem 7.3.7 (PAC learning ⇔ RRHS-refutation: non-uniform). A concept class C is non-
uniformly PAC learnable if and only if C is non-uniformly RRHS-refutable.
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Proof of Theorem 7.3.2

Proof of Theorem 7.3.2. This theorem follows from Theorem 7.3.7 and a simple padding argument.
As in the statement, let C be a concept class evaluated by a circuit family {Cn}n∈N, where Cn :
{0, 1}s(n) × {0, 1}n → {0, 1} is a circuit of size at most τ(n).

For one direction, we assume that there exists c0 such that Cn ∈Learnableτ,nc for any c ≥ c0 and
n. Then for any n ∈ N, there exists a circuit Ln ∈ SIZE[n2] satisfying completeness and soundness
in Definition 7.3.1 with m = nc0 samples. Notice that the family {Ln}n∈N is a RRHS-refuter for C
with m examples. Therefore, by Theorem 7.3.7, C is non-uniformly PAC learnable.

For the opposite direction, we assume that C is non-uniformly PAC learnable. By Theo-
rem 7.3.7, C is also non-uniformly RRHS-refutable. Let {Rn}n∈N be the polynomial-size refuter
for C with m samples. Note that, if each Rn is contained in SIZE[n2], then Cn ∈Learnableτ,m. In
general, however, we can only assure that each Rn is contained in SIZE[na] for some a ∈ N. We
resolve this problem by the simple padding argument.

We only consider the case of a > 2, otherwise, Rn ∈ SIZE[n2]. For the size of example n and
the sample size m, the length of input to the refuter is nm + m = (n + 1)m. Therefore, the size
of Rn is at most N := ((n + 1)m)a. Since m and N are polynomials in n, we can select c0 ∈ N
satisfying that for any c ≥ c0, m ≤ nc and N ≤ ((n+ 1)nc)2 − (n+ 1)(nc −m).

For any c ≥ c0, let R′n be a refuter which takes nc samples, executes Rn by using only m
samples, and discards remaining nc −m samples. Since {Rn}n∈N RRHS-refutes C , {R′n}n∈N also
RRHS-refutes C . In addition, R′n can be constructed from Rn and (n + 1)(nc − m) additional
input-gates, thus the size of R′ is bounded above by N + (n + 1)(nc − m) ≤ ((n + 1)nc)2 and
R′n ∈ SIZE[n2]. This implies that Cn ∈Learnableτ,nc for any c ≥ c0.

Proof of Theorem 7.3.3

Proof of Theorem 7.3.3. Fix polynomials τ and m arbitrary. The theorem follows from the defini-
tion of Learnableτ,m and the result by Lautemann [Lau83].

Let C be a circuit of size N computing an evaluation E : {0, 1}s(n) × {0, 1}n → {0, 1}. If
N > τ(n), then C /∈Learnableτ,m. This trivial case is easily detected in polynomial-time. Therefore,
we can assume that N ≤ τ(n).

If C ∈ Learnableτ,m, then there must exist a learner L ∈ SIZE[n2] with m samples. We con-
sider the description 〈L〉 as a witness and verify the following conditions in Πp

2: for any examples
x1, . . . , xm ∈ {0, 1}n,

(1) for any u ∈ {0, 1}s(n), L(x1, . . . , xm, E(u, x1), . . . , E(u, xm)) = 0;

(2) Prb1,...,bm [L(x1, . . . , xm, b1, . . . , bm) = 1] ≥ 1/2.

The condition (1) is obviously checked in Πp
1. For the condition (2), if we fix a learner L and

examples x1, . . . , xm, then it is easily checked in BPP by estimating the accepting probability of L.
Since BPP ⊆ Σp

2 ∩ Πp
2 [Lau83], we can replace the probabilistic part with Πp

2. This concludes that
Learnableτ,m ∈ Σp

3.

In the above argument, if we can replace the probabilistic part with a deterministic polynomial-
time verifier instead of Πp

2, then we can also verify the condition (2) in Πp
1. Therefore, P = BPP

implies Learnableτ,m ∈ Σp
2.
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Proof of Theorem 7.3.5

In fact, we can show stronger statements than Theorem 7.3.5 as follows:

Lemma 7.3.8. Let τ(n) be a polynomial satisfying τ(n) > n. If SIZE[n2] is non-uniformly PAC
learnable, then Learnableτ,nc ∈ P for sufficiently large c ∈ N.

Proof. Suppose that SIZE[n2] is non-uniformly PAC learnable. By Theorem 7.1.3 (for the non-
uniform model) and Theorem 7.3.7, SIZE[τ(n)] is non-uniformly RRHS-refutable. Let R be the
refuter with nc0 samples for some c0 ∈ N. By the same padding argument as the proof of Theo-
rem 7.3.2, we can also assume that R ∈ SIZE[n2].

For a given circuit C : {0, 1}s(n) × {0, 1}n → {0, 1}, if the size of C is at most τ(n), then any
target function is computed by a circuit of the size τ(n). Therefore, R satisfies the third condition
in Definition 7.3.1. Thus, C ∈ Learnableτ,nc holds for any c ≥ c0.

On the other hand, if the size of C is larger than τ(n), then C must not satisfy the second
condition for Learnableτ(n),nc for any c. In other words, for any c ≥ c0, C ∈ Learnableτ(n),nc iff
the size of C is at most τ(n). The latter condition is easily checked in polynomial-time from the
description of C. Therefore, Learnableτ,nc ∈ P for any c ≥ c0.

Lemma 7.3.9. Let τ(n) be a polynomial satisfying τ(n) ≥ n1+ε for some ε > 0. If SIZE[n2] is not
non-uniformly PAC learnable, then Learnableτ,nc /∈ P for any c.

Proof. Let s(n) = n +
√
n and t(n) = (the size of UC

s(n)
n ) = Õ(n +

√
n + n) = Õ(n). We assume

that n is sufficiently large to satisfy that t(n) + n+ 1 ≤ n1+ε ≤ τ(n).
Suppose that SIZE[n2] is not non-uniformly PAC learnable. By Theorem 7.1.3 (for the non-

uniform model), SIZE[s(n)] is also not non-uniformly PAC learnable. By Definition 7.3.1, if u ∈
Learnableτ,nc , then u ∈ Learnableτ,nc+1 for any c ∈ N and u ∈ {0, 1}∗. Therefore, by Theorem 7.3.2,
we have that

UCs(n)
n /∈ Learnableτ,nc for any c ∈ N.

Suppose for contradiction that there exists c ∈ N such that Learnableτ,nc ∈ P and M be the
polynomial-time algorithm for Learnableτ,nc .

Now we construct an algorithm A solving the circuit-SAT problem as follows: on input 〈C〉 ∈
{0, 1}n (assume that the size of C is at most n and the input length is ` ≤ n), (1) A constructs

another circuit C ′ : {0, 1}`+e(s(n)) × {0, 1}n → {0, 1} as C ′(u ◦ u′, x) = C(u) ∧ UCs(n)
n (u′, x) where

u ∈ {0, 1}`, u′ ∈ {0, 1}e(s(n)), and x ∈ {0, 1}n, and (2) A outputs the value of ¬M(C ′).
Note that the size of C ′ is at most n+ t(n) + 1 ≤ τ(n). If the given C is satisfiable, then there

exists an assignment u∗ ∈ {0, 1}` such that C(u∗) = 1. By applying the partial assignment u∗, C ′

boils down to UC
s(n)
n . Remember that UC

s(n)
n /∈ Learnableτ,nc . Therefore, C ′ /∈ Learnableτ,nc , and

A(C) outputs ¬M(C ′) = 1 for any satisfiable circuit C.
On the other hand, if C is not satisfiable, then C ′(u ◦ u′, x) ≡ (0 ∧ UCn2

n (u′, x)) ≡ 0. Since we
can easily RRHS-refute the class {0} (with 2 samples by calculating negation of OR of two labels),
C ′ ∈ Learnableτ,nc . Therefore, A(C) outputs ¬M(C ′) = 0 for any unsatisfiable circuit C.

Therefore, A correctly solves the circuit-SAT problem, and P = NP. This implies SIZE[n2] is
(even uniformly) PAC learnable by Corollary 2.6.3. This contradicts the assumption.

Lemmas 7.3.8 and 7.3.9 immediately derive Theorem 7.3.5 (by setting τ(n) = n2) and the
following theorem. Theorem 7.3.10 shows that the specific setting of τ(n) in Definition 7.3.4 does
not affect the asymptotic complexity of our meta-PAC learning problem.
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Theorem 7.3.10. Let τ(n) be a polynomial satisfying τ(n) ≥ n1+ε for some ε > 0. Meta-PAC
learning is hard iff Learnableτ,nc /∈ P for infinitely many c ∈ N.
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Chapter 8

On Basing Auxiliary-Input
Cryptography on NP-Hardness

In this chapter, we consider whether auxiliary-input cryptographic primitives can be based on NP-
hardness in a common framework of proofs. In the previous chapters, we discussed several types
of auxiliary-input cryptographic primitives, which are natural intermediate notions between the
worst-case hardness and the standard cryptographic primitives and also have deep connections to
the hardness of PAC learning. Therefore, basing auxiliary-input cryptographic primitives on NP-
hardness is a natural intermediate step towards basing the standard cryptographic primitives or the
hardness of learning on NP-hardness. Particularly, in Section 7.2, we introduced an auxiliary-input
hitting set generator (AIHSG) and proved that the existence is implied by the hardness of PAC
learning. Thus, basing AIHSG on NP-hardness is valuable as a good test case for NP-hardness of
PAC learning, which is a longstanding open question in computational learning theory.

8.1 Background

A central tool for basing cryptographic primitives on hardness of a language L is a reduction1,
i.e., the way to translate recognizing L into breaking a cryptographic primitive. A reduction is
a powerful proof technique even if it is restricted to a simple form, and in fact, a nonadaptive
black-box (BB) reduction is sufficient to show many brilliant results and has played a crucial role
in theoretical computer science. Furthermore, in general, a nonadaptive BB reduction is more
accessible than adaptive or non-black-box ones. Therefore, it is a natural attempt to apply such a
familiar proof technique even for constructing secure cryptographic primitives.

Unfortunately, Bogdanov and Trevisan [BT06b] gave strong evidence that such a simple re-
duction is insufficient for cryptography based on NP-hardness. In general, breaking security of
cryptographic primitives is formulated as an NP problem on an efficiently samplable distribution
fixed in advance. They showed that there is no nonadaptive BB reduction from an NP-hard problem
to such a distributional NP problem unless the polynomial hierarchy collapses. Therefore, as a corol-
lary, their work excluded the attempt to apply nonadaptive BB reductions for basing cryptography
under the reasonable assumption on the polynomial hierarchy. Moreover, subsequent work gave

1It is often called a security reduction to distinguish it from another type of reduction from computing some
primitive P to another primitive Q (see [RTV04]).
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stronger consequences in more specific cases of basing several cryptographic primitives [AGGM06;
GV08; ABX08; HMX10; BL13; BB15; LV16; HW20].

Along this line of research, we investigate whether nonadaptive BB reduction is sufficient to
base auxiliary-input cryptographic primitive on NP-hardness. The importance of this work is to
extend our current knowledge on the central proof technique of nonadaptive BB reductions out
of the previous worst-case-to-average-case framework and to identify the inherent difficulty on
constructing cryptographic primitives on NP-hardness more finely. Remember that an auxiliary-
input cryptographic primitive is defined as a family of primitives indexed by the auxiliary-input
and has a relaxed security requirement: at least one primitive in the family is required to be secure
depending on each adversary (instead of one fixed primitive secure against all adversaries). Namely,
adversaries must break all primitives in the worst-case sense on auxiliary-input, and the task is
not directly formulated as a distributional NP-problem because the distribution is not uniquely
determined beforehand due to the auxiliary-input. Thus the previous work on distributional NP
problem cannot be directly applied to auxiliary-input cryptography.

Now let us mention previous studies related to nonadaptive BB reductions to auxiliary-input
cryptography. Applebaum, Barak, and Xiao [ABX08] observed that we cannot apply a nonadaptive
fixed-auxiliary-input BB reduction, which is a restricted nonadaptive BB reduction given access
to only one auxiliary-input, unless the polynomial hierarchy collapses. However, the restricted
access to auxiliary-input seems to be too strict and it implicitly yields a reduction from an NP-hard
language to some fixed cryptographic primitive (depending on the instance). In fact, the above
result was shown in almost the same way to the previous result by Akavia, Goldreich, Goldwasser,
and Moshkovitz [AGGM06] for standard cryptographic primitives. The same work and later Xiao
[Xia09a] observed that generalizing their result to nonadaptive BB reductions seems hard by giving
the explicit technical issue. To the best of our knowledge, we have no negative result on general
nonadaptive BB reductions to base auxiliary-input cryptography on NP-hardness before this work.

8.2 Our Results

Our main theorem is informally stated as follows.

Theorem (informal). If there is a nonadaptive BB reduction from an NP-hard language L to
breaking an auxiliary-input cryptographic primitive P , then according to the type of P we have that:

• If P is an auxiliary-input pseudorandom generator, then the polynomial hierarchy collapses;

• If P is an auxiliary-input one-way function or an auxiliary-input hitting set generator, then
there is also an adaptive reduction from L to inverting an infinitely-often one-way function.

The first result shows strong evidence that auxiliary-input pseudorandom generators (AIPRG)
cannot be based on NP-hardness via nonadaptive BB reductions as standard cryptography. The
second result shows that a nonadaptive BB reduction for basing the other auxiliary-input primitives
on NP-hardness yields another surprising consequence that one-way function whose security is based
on NP-hardness. Again, we remark that an auxiliary-input hitting set generator (AIHSG) is much
weaker primitive than standard cryptographic primitives whose existence is even weaker than the
hardness of PAC learning. What is surprising is that even a nonadaptive BB reduction for such a
weak primitive is indeed sufficient for excluding both Heuristica and Pessiland! Note that this does
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not contradict the previous barrier result against nonadaptive BB reductions for basing OWF on
NP-hardness [AGGM06] because the resulting reduction in our theorem is adaptive.

The second result is not sufficient to exclude nonadaptive BB reductions for basing auxiliary-
input primitives on NP-hardness, and it has two opposite interpretations. However, let us stress
that both interpretations are quite nontrivial and yield new knowledge about nonadaptive BB
reductions. One interpretation is a pessimistic (or realistic) one. As mentioned in the introduction,
no one has not come up with the construction of a one-way function based on NP-hardness for
several decades despite its importance. Thus, this result is still strong evidence of difficulty finding
such a simple reduction. The other interpretation is an optimistic one as a new approach to
constructing a one-way function. We will further discuss this optimistic perspective and its novelty
in Section 8.2.2.

A reader who is familiar with cryptography may wonder why the consequences are different
between an auxiliary-input one-way function (AIOWF) and AIPRG. In fact, AIPRG is constructed
from any AIOWF by applying the known BB construction of a pseudorandom generator from
a one-way function. However, if such construction requires an adaptive security proof, then the
property on nonadaptive is lost in translating reductions for AIOWF into reductions for AIPRG via
the adaptive security reduction. To the best of our knowledge, all currently known constructions of
pseudorandom generators [HILL99; Hol06; VZ12; HRV13] use adaptive techniques in the security
proof; e,g, construction of false entropy generators [HILL99], the uniform hardcore lemma [Hol05],
and the uniform min-max theorem [VZ13]. This technical issue prevents us from applying the first
result for AIPRG to AIOWF. For a similar reason, our second result on AIOWF is incomparable
with the previous work on basing hardness of learning by Applebaum, Barak, and Xiao [ABX08]2.

8.2.1 Formal Descriptions

Now, we formally state the main results. For each auxiliary-input cryptographic primitives (i.e.,
AIPRG, AIOWF, and AIHSG), we first define the BB security reduction and then present the formal
statement of the theorem. Note that, in this chapter, we implicitly assume that an auxiliary-input
function is polynomial-time computable.

A BB reduction for AIPRG is defined as follows. It is easily verified that the following BB
reduction from a language L to distinguishing an auxiliary-input function G shows that G is an
AIPRG if L /∈ BPP.

Definition 8.2.1 (Black-box reduction to distinguishing auxiliary-input function). Let L be a
language and G := {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ be an auxiliary-input function with `(n) > n.
We say that there exists a black-box (BB) reduction from L to distinguishing G if for any polynomial
p, there exists a randomized polynomial-time oracle machine R? such that for any oracle O that
(1/p)-distinguishes G, i.e., for every auxiliary-input z ∈ {0, 1}∗∣∣∣∣ Pr

O,Un
[O(z,Gz(Un)) = 1]− Pr

O,U`(n)

[O(z, U`(n)) = 1]

∣∣∣∣ ≥ 1/p(n),

and for any x ∈ {0, 1}∗, R satisfies that

Pr
R

[RO(x) = L(x)] ≥ 2/3.

2Although the hardness of learning is conceptually weaker than AIOWF, their work used the property of black-box
in the formulation of a reduction to learning and indeed yielded a reduction to inverting AIOWF in the end.
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Moreover, we say that there exists a nonadaptive BB reduction from L to distinguishing G if all R
make its queries independently of any answer by oracle for previous queries.

Now we present the first main result on AIPRG.

Theorem 8.2.2. For any auxiliary-input function G = {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ with
`(n) > n, there exists no nonadaptive BB reduction from an NP-hard language L to distinguishing
G unless the polynomial hierarchy collapses.

A BB reduction for AIOWF is defined as follows. It is easily verified that for any polynomial
p, the following BB reduction from a language L to (1− 1/p)-inverting an auxiliary-input function
f shows that f is an AIOWF if L /∈ BPP.

Definition 8.2.3 (Black-box reduction to inverting auxiliary-input function). Let L be a language,
p be a polynomial, and f := {fz : {0, 1}n → {0, 1}`}z∈{0,1}∗ be an auxiliary-input function. We

say that a randomized polynomial-time oracle machine R? is a black-box (BB) reduction from L to
(1− 1/p)-inverting f if for any oracle O that (1− 1/p)-inverts f , i.e., for every z ∈ {0, 1}∗,

Pr
O,Un

[O(z, fz(Un)) ∈ f−1
z (fz(Un))] ≥ 1− 1/p(n),

and for any x ∈ {0, 1}∗, R satisfies that

Pr
R

[RO(x) = L(x)] ≥ 2/3.

Moreover, we say that R is nonadaptive if all R’s queries are made independently of any answer
by oracle for previous queries.

Now we present the second main result on AIOWF.

Theorem 8.2.4. For any auxiliary-input function f = {fz : {0, 1}n → {0, 1}`}z∈{0,1}∗ and polyno-
mial p, if there exists a nonadaptive BB reduction from an NP-hard language L to (1−1/p)-inverting
f , then NP * BPP also implies that a one-way function exists (via an adaptive BB reduction).

We review the definition of AIHSG because we consider the general largeness function γ in this
chapter (it was fixed to 1/2 in Chapter 7).

Definition 8.2.5 (Auxiliary-input hitting set generator). Let G = {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗
be an auxiliary-input function. For a function γ : N→ (0, 1), we say that a randomized adversary
A γ-avoids G if for any (public) auxiliary-input z ∈ {0, 1}∗ and (private) input x ∈ {0, 1}n(|z|),

Pr
A

[A(z,Gz(x)) = 0] ≥ 2/3 and Pr
y∼{0,1}`(n(|z|))

[
Pr
A

[A(z, y) = 1] ≥ 2/3

]
≥ min(γ(n), τz),

where τz be a trivial limitation3 defined as τz = 1− |Gz({0,1}n)|
2`(n) .

We say that G is a γ-secure auxiliary-input hitting set generator (AIHSG) if `(n) > n and there
exists no polynomial-time randomized algorithm (1− γ)-avoiding G.

3In this paper, we consider general settings of γ and `. Thus, we adopted the trivial limitation in the definition
to avoid arguing about invalid settings where γ-avoiding the generator is impossible by definition.
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Although it is easily verified that AIPRG is also AIHSG (with any security γ(n) = 1/poly(n)),
the opposite direction is open at present. In fact, the hardness of learning implies the existence of
AIHSG; by contrast, we must overcome the barrier by oracle separation to show the existence of
AIPRG (equivalently, AIOWF) from the hardness of learning [Xia09b]. Thus, AIHSG seems to be
a much weaker notion than AIOWF and AIPRG under our current knowledge.

A BB reduction for AIHSG is defined as follows. It is easily verified that the following BB
reduction from a language L to (1 − γ)-avoiding an auxiliary-input function G shows that G is a
γ-secure AIHSG if L /∈ BPP.

Definition 8.2.6 (Black-box reduction to avoiding auxiliary-input function). Let L be a language,
γ be a function, and G := {Gz : {0, 1}n → {0, 1}`}z∈{0,1}∗ be an auxiliary-input function. We

say that a randomized polynomial-time oracle machine R? is a black-box (BB) reduction from L to
(1− γ)-avoiding G if for any oracle O that (1− γ)-avoids G and x ∈ {0, 1}∗, R satisfies that

Pr
R

[RO(x) = L(x)] ≥ 2/3.

Moreover, we say that R is nonadaptive if all R’s queries are made independently of any answer
by oracle for previous queries.

Now we present the third main result on AIHSG.

Theorem 8.2.7. Let p be a polynomial and G := {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ be an auxiliary-
input function where `(n) > (1 + ε) · n for some constant ε > 0. If there exists a nonadaptive BB
reduction from an NP-hard language L to (1− 1/p)-avoiding G, then NP * BPP also implies that
a one-way function exists (via an adaptive BB reduction).

8.2.2 Discussion and Future Directions

As mentioned in Section 8.1, Theorems 8.2.4 and 8.2.7 are also regarded as approaches to construct
one-way functions whose security is based on NP-hardness. In this section, we discuss the novelty of
this optimistic perspective and propose future directions, including the investigation of the validity.

Our results are rephrased as follows: If we could connect NP-hardness to some auxiliary-input
primitives (i.e., AIOWF or AIHSG) with a novel (nonadaptive BB) reduction, then we can au-
tomatically extend the connection to standard cryptographic primitives, particularly OWF. At
present, the latter task of removing auxiliary-input from primitives seems to be quite non-trivial.
Particularly, in Section 9.2, we give a strong oracle separation between AIOWF and OWF.

Theorem 8.2.8. There exists an oracle relative to which there is no one-way function but there
exists an auxiliary-input one-way function secure against nonuniform 2O(n/ logn)-time adversaries.

Thus, we cannot hope any relativizing proof to remove auxiliary-input from primitives. Ad-
ditionally, there are several barriers by other oracle separations at the intermediate levels to base
OWF on NP-hardness [e.g., Xia09b; Imp11]. Although such barriers on relativization are com-
mon throughout theoretical computer science [e.g. BGS75], there are only a few success stories
of overcoming such barriers at present. Unfortunately, Theorems 8.2.4 and 8.2.7 do not give any
solution to break these barriers, and a new non-relativized technique is still required. Specifically,
if a nonadaptive BB reduction to AIOWF or AIHSG is also relativized4, then our proof also yields
relativized reductions that contradict Theorem 8.2.8 or other oracle separations in Chapter 9.

4Note that oracle separations do not necessarily rule out BB reductions form particular languages, not as fully
BB reductions defined by Reingold, Trevisan, and Vadhan [RTV04].
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Nevertheless, we claim that our result gives one hopeful insight. Although there seems to be
several barriers towards cryptography based on NP-hardness, the essential barrier we must overcome
might be few. Theorems 8.2.4 to 8.2.8 certainly show that if we could find a non-relativized
breakthrough at an intermediate level toward cryptography (i.e., auxiliary-input primitives), then
it will solve other challenging open questions at the higher level, including a worst-case to average-
case reduction for NP, an errorless to error-prone reduction for DistNP, and a construction of OWF
whose security is based on the average-case hardness of NP. From this perspective, we conjecture
that the hardness of basing OWF on NP-hardness might heavily rely on a much smaller part
at an intermediate level. This conjecture seems to be somewhat controversial but enhances the
significance of further investigation on basing auxiliary-input or other intermediate cryptographic
primitives instead of standard ones.

The discussion above leads to the following two possible directions. The first direction is to find
other scenarios where a breakthrough at an intermediate level also brings benefits at the higher
level. This direction might reduce constructing standard cryptographic primitives to the task at
the low level and give new insights into complexity-based cryptography. The second direction is to
refute such an attempt on intermediate primitives with convincing evidence if it gives the wrong
direction. Particularly, in our case, there is a possibility that nonadaptive BB reductions to base
AIOWF and AIHSG on NP-hardness indeed yield the collapse of the polynomial-hierarchy as in the
case of AIPRG. For the second direction, we list two concrete ways: (1) finding a new construction
of AIPRG from AIOWF with nonadaptive security proof; and (2) generalizing the previous results
for OWF [AGGM06] or HSG [HW20] to each auxiliary-input analog for the stronger consequence.
At least the latter approach seems to require some new technique to simulate nonadaptive BB
reductions, as observed by Applebaum, Barak, and Xiao [ABX08] and Xiao [Xia09a].

8.3 Overview of Proof Ideas

In this section, we present proof ideas of Theorems 8.2.2 to 8.2.7. Note that Theorem 8.2.7 heavily
relies on Theorem 8.2.4, and Theorem 8.2.4 heavily relies on Theorem 8.2.2. Therefore, although
each proof idea may look pretty simple and intuitive, our construction of OWF for Theorem 8.2.7
becomes complicated and quite non-trivial as a whole.

8.3.1 On Basing AIPRG on NP Hardness: Proof Idea of Theorem 8.2.2

The crucial part of the proof is to give a construction of HSG from AIPRG with a nonadaptive
BB security reduction from distinguishing AIPRG to avoiding HSG. Note that such an implication
has been implicitly shown in [HS17]. For completeness, we will give an explicit and simpler con-
struction to show the same implication. Although the reader may think that our construction is
too fundamental and looks somewhat trivial, to the best of our knowledge, no one has mentioned
such a clear relationship between AIPRG and HSG.

First, we explain why a nonadaptive BB security reduction from distinguishing AIPRG to avoid-
ing HSG is crucial. We can easily observe that avoiding HSG is directly formulated as the following
distributional NP problem in the errorless setting: for uniformly random instance y, determine
whether y is contained in the image of HSG. Therefore, the nonadaptive BB reduction from dis-
tinguishing AIPRG to avoiding HSG also yields a nonadaptive BB reduction from distinguishing
AIPRG to the distributional NP problem. Thus, any nonadaptive BB reduction from an NP-hard
problem to distinguishing AIPRG in the assumption indeed yields a nonadaptive BB reduction from
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the same NP-hard problem to the distributional NP problem. By the previous result by Bogdanov
and Trevisan [BT06b], such a reduction implies the collapse of the polynomial-hierarchy.

Our construction of HSG from AIPRG is the following: just considering the both of auxiliary-
input and input to AIPRG as usual input to HSG. More specifically, let G = {Gz : {0, 1}n →
{0, 1}`(n)}z∈{0,1}∗ be an AIPRG. Then the construction of HSG G′ is given as G′(z ◦ x) = Gz(x).
Note that, when z + n(|z|) > `(n(|z|)) holds, G′ does not satisfy the syntax on stretching input.
In the formal proof, therefore, we first stretch the output of G by the standard technique in
cryptography. We can easily check that the security reduction for this stretching (shown by the
famous hybrid argument) is nonadaptive.

Let γ(n) be a reciprocal of polynomial. The security reduction from γ-avoiding G′ to distin-
guishing G is also simple: just considering an adversary A for G′ as an adversary for G. Obviously,
this reduction is nonadaptive. To see the correctness, assume that A γ-avoids G′. For simplicity,
we also assume that A is deterministic and γ(n) < τn. Whenever the input y is pseudorandom
string contained in the image of G′, A(y) does not output 1. On the other hand, when y is a truly
random string, then A(y) outputs 1 with probability at least γ(n). Thus, A can distinguish the
uniform distribution from all distributions on the image of G′ with an advantage at least γ(n). For
any auxiliary-input z, Gz(Un(|z|)) is distributed on the image of G′. Thus, A also γ-distinguishes
G.

8.3.2 On Basing AIOWF on NP Hardness: Proof Idea of Theorem 8.2.4

To focus on the idea, we omit all arguments about the success probabilities of adversaries in this
section. First, let us prepare several reductions. Let RL→f be the nonadaptive BB reduction from
L to inverting f in the assumption. By the construction of PRG from OWF [e.g., HILL99], there
exist an auxiliary-input generator G and an adaptive BB reduction Rf→G from inverting f to
distinguishing G. By the result in Section 8.3.1, there exist an NP-language L′ and a nonadaptive
BB reduction RG→L′ from distinguishing G to a distributional NP problem (L′, U) in the errorless
setting. Since L′ ∈ NP and L is NP-hard, there exists a Karp reduction RL′→L from L′ to L.

Now we consider the following procedure:

1. select an instance x′ of L′ at random;

2. translate x′ into an instance x of L as x = RL′→L(x′);

3. plug x into RL→f with a random tape r;

At this stage, RL→f makes polynomially many queries (z1, y1), . . . , (zq, yq).

4. answer the queries by some inverting oracle O;

5. output the same decision b ∈ {0, 1} as RL→f .

Note that if the oracle O correctly inverts f , then the resulting decision b is L(x) with high
probability, and L(x) is equal to L′(x′).

The crucial observation is that there is no worst-case sense at all in the above procedure because
both x′ and r are selected at random. Therefore, all queries at the stage 3 are indeed efficiently
samplable, and the inverting oracle no longer needs to invert f for every auxiliary-input at the
stage 4. This observation leads to our construction of a standard OWF g.
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The function g takes three inputs x′, r, and xf , which intuitively represents a random instance
of L′, randomness for RL→f , and input for f , respectively. Then g(x′, r, xf ) imitates the above
procedure as follows: (2’) translate x′ into an instance x of L as x = RL′→L(x′), (3’) plug x into
RL→f with randomness r, then randomly pick one of auxiliary-input z in queries by RL→f and
output fz(x

f ).

We will show that the above-mentioned g is one-way if NP * BPP. Suppose for contradiction
that there exists an adversary A inverting g. Remember that g simulates a distribution on auxiliary-
input in the procedure above. Thus, intuitively, we can replace the inverting oracle O with the
adversary A at the stage 4 with high probability in the execution of RL→f . In fact, this is a
little technical part, and we will give further detail in Section 8.5. Then the procedure above no
longer needs any oracle and yields a randomized algorithm solving (L′, U) on average. By applying
reductions RG→L′ , Rf→G, and RL→f in this order, this also yields a randomized polynomial-time
algorithm for L. Since L is NP-hard, we conclude that NP ⊆ BPP.

We remark that RG→L′ is a nonadaptive BB reduction thanks to our simple construction in
Section 8.3.1. Therefore, if we also have a construction of AIPRG G from AIOWF f with a
nonadaptive BB reduction from inverting f to distinguishing G, then the proof above leads to a
nonadaptive BB reduction from L to (L′, U), which implies the collapse of the polynomial hierarchy
as in Theorem 8.2.2. Thus, finding a construction of AIPRG with such a simple security reduction
is one direction for excluding a nonadaptive BB reduction to base AIOWF on NP-hardness, as
mentioned in Section 8.2.2.

8.3.3 On Basing AIHSG on NP Hardness: Proof Idea of Theorem 8.2.7

The key idea for the proof is to classify each query generated by the nonadaptive BB reduction (in
the theorem) into a “light” query and a “heavy” query. A similar technique was also used in the
previous work for HSG by Gutfreund and Vadhan [GV08] and Hirahara and Watanabe [HW20].
We first see the previous case of HSG and then explain the difference to our case of AIHSG.

The Case of Hitting Set Generator (Previous work)

Let G : {0, 1}n → {0, 1}`(n) be a generator with `(n) ≥ (1 + Ω(1)) · n and R? be a nonadaptive BB
reduction from an NP-language L to avoiding G. Without loss of generality, we can assume that all
marginal distributions on queries by R are identical regardless of each query position by applying a
random permutation on queries before asking them to oracle. Thus, for each input x ∈ {0, 1}n, one
distribution Qx on queries is determined. We choose a threshold (roughly) τ = 1/Θ̃(2n) and define
a light (resp. heavy) query y ∈ {0, 1}`(n) as a query generated according to Qx with probability less
(resp. greater) than the threshold τ .

The essential part of the proof is to simulate the avoiding oracle for G by using the classification
of queries. First, assume that we could (somehow) distinguish the heavy case and the light case
for a given query. Then we can simulate one of avoiding oracles simply as follows: for each
query y generated by R(x), (1) determine whether y is heavy or light; (2) answer 0 (resp. 1) if
y is heavy (resp. light) query. Let O′ be the induced oracle by the strategy above. Note that
the probability that O′(y) outputs 0 is exponentially small because the fraction of heavy query
is Θ̃(2n)/2`(n) ≤ 2−Ω(1)n for the length `(n) of query. Thus, O′ satisfies the condition on the
probability of outputting 1. However, O′ is not a valid avoiding oracle for G because possibly there
is a query y such that y is light but contained in ImG. In this case, O′(y) outputs 1 for y ∈ ImG.
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The key observation to overcome this issue is the following:

(?) For each length `(n) of query (where the input size is n), the size of ImG is at most
2n; thus the probability that R asks some light query contained in ImG (that is, “bad”
query) is bounded above by 2n/Θ̃(2n) ≤ 1/poly(n).

Therefore, O′ is consistent with some avoiding oracle, and RO
′
(x) correctly recognizes x with high

probability over the execution of R.
By the above argument, we can reduce avoiding a generator to distinguishing heavy and light

queries. For the latter task, Gutfreund and Vadhan [GV08] gave a BPPNP algorithm by approxima-
tion of counting by Jerrum, Valiant, and Vazirani [JVV86], and Hirahara and Watanabe [HW20]
gave an AM∩coAM algorithm by the generalized version of the protocol by Feigenbaum and Fortnow
[FF93].

The Case of Auxiliary-input Hitting Set Generator (Our work)

Now we move on to our case of AIHSG. Let G = {Gz : {0, 1}n(|z|) → {0, 1}`(n(|z|))}z∈{0,1}∗ be an

auxiliary-input generator with `(n) ≥ (1 + Ω(1)) · n and R? be a nonadaptive BB reduction from
an NP-language L to avoiding G. We can also assume that all query distributions of R?(x) are
identical to Qx regardless of query position.

On applying the above argument to our case of AIHSG, the problematic part is the key ob-
servation (?). Remember that an adversary for AIHSG must avoid Gz for all z ∈ {0, 1}∗, and
auxiliary-input is possibly longer than output. Therefore, we cannot bound the size of the image
of the generator in general because the image may span the whole range (for example, consider the
following generator Gz(x) = z ⊕ (x ◦ 0|z|−|x|) for |z| > n(|z|)).

To resolve this, we need to consider each case of auxiliary-input z separately. Therefore, we
change the definitions of “light” and “heavy” and let them adapt to auxiliary-input. Let px(z) be
a probability that Qx generates a query of auxiliary-input z. If we can bound the probability that
R makes light query (z, y) with y ∈ ImGz by 1/(poly(n) · px(z)) for any z, then R makes such a
“bad” query (z, y) with probability at most

∑
z px(z) ·1/(poly(n) ·px(z)) = 1/poly(n). Then we can

use the same argument in the case of HSG and reduce avoiding G to distinguishing heavy and light
cases. This idea naturally leads to the following new definition of “light” and “heavy”: separating
each query (z, y) by the conditional probability px(y|z) that y is asked conditioned on the event
that z is asked. In fact, as shown in Section 8.6, this modification will work well even for AIHSG.

However, one issue remains: how can we distinguish heavy and light queries? To this end, we
must verify the largeness of the conditional probability of the given query. This part essentially
prevents us from applying the previous results. Since we consider a polynomial-time-computable
generator, the simulation with NP oracle does not give any nontrivial result, not as the work
by [GV08]5. Even for the simulation in AM ∩ coAM by Hirahara and Watanabe [HW20], there
seem to be several technical issues. We cannot trivially verify the size of conditional probability by
such protocols due to the restricted use of the upper bound protocol [AH91]. Moreover, we cannot
possibly even sample the conditional distribution efficiently for fixed auxiliary-input (for example,
consider the query distribution on ((z, vk), y) where y is a secure signature to z verified with a
public-key vk).

5Their work concerned the original aim of HSG, that is, derandomization [e.g., IW01]. For this purpose, we
consider (possibly) exponential-time-computable HSG G, and avoiding G in BPPNP is quite nontrivial. However, in
our case where G is polynomial-time-computable, avoiding G is in NP trivially.
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Our idea is to adopt the approximation method for probability by Impagliazzo and Levin
[IL90], i.e., the algorithm in Section 4.6. Remember that the approximation method enables to
reduce approximating the probability py = PrUn [y = f(Un)] to inverting f for any polynomial-time
computable f under the situation where y = f(x) and x ∈ {0, 1}n is selected at random. In fact, the
approximation method holds even for auxiliary-input function by the same proof of Theorem 4.6.1
(note that a similar idea was also used in [OW93]). By using the approximation algorithm for each
circuit sampling query and auxiliary-input, we have a good approximation of px(y|z) for query
(z, y) generated by R?(x). Thus, the approximation algorithm enables us to classify the given (z, y)
correctly. Note that the auxiliary-input in the approximation algorithm essentially corresponds to
the input x for each circuit sampling query and auxiliary-input.

To show Theorem 8.2.7, we need further observations. Since R makes its queries nonadaptively,
we can also invoke the approximation algorithm nonadaptively. Moreover, the approximation
algorithm indeed uses an inverting adversary for a certain AIOWF as black-box and nonadaptively,
as seen in the proof of Theorem 4.6.1. As a result, a nonadaptive BB reduction from an NP-hard
language L to avoiding AIHSG yields a nonadaptive BB reduction from L to inverting AIOWF.
Thus, by Theorem 8.2.4, R also yields a one-way function under the assumption that NP * BPP.

8.4 On Basing Auxiliary-Input Pseudorandom Generator on NP-
Hardness

In this section, we formally rule out nonadaptive BB reductions from an NP-hard problem to
distinguishing AIPRG based on Section 8.3.1. Let us state the main theorem again.

Theorem (Reminder of Theorem 8.2.2). For any auxiliary-input function G = {Gz : {0, 1}n →
{0, 1}`(n)}z∈{0,1}∗ with `(n) > n, there exists no nonadaptive BB reduction from an NP-hard lan-
guage L to distinguishing G unless the polynomial hierarchy collapses.

Notations. For n, k ∈ N, x ∈ {0, 1}n, and n1, . . . , nk ∈ [n] with
∑

i ni = n, we use the
notation x→n1,...,nk (x(1), . . . , x(k)) to refer to the separation of x into k substrings satisfying that
x = x(1) ◦ · · · ◦ x(k) and |x(i)| = ni for each i ∈ [k].

First, we give the nonadaptive BB reduction from distinguishing AIPRG to avoiding HSG.

Lemma 8.4.1. Let G be an auxiliary-input function stretching its input, and let m : N → N
be an arbitrary polynomial. There exists a polynomial-time computable function G′ : {0, 1}n →
{0, 1}m(n) and a randomized polynomial-time oracle machine R? satisfying the following: for any
polynomial γ′, there exists a polynomial γ such that for any oracle O which 1/γ′-avoids G′, RO

1/γ-distinguishes G. Moreover, R? is nonadaptive.

Proof. Without loss of generality, we can assume that G has the stretch `(n) = n+ 1 by discarding
the suffix of output. We define the generator G′ : {0, 1}n′ → {0, 1}m(n′) in the lemma as

G′(x) =

{
b1 ◦ · · · ◦ bm(n) if (n′ =)|x| = a+ n(a) for some a ∈ N
0m(n) otherwise,

where each bi ∈ {0, 1} is a bit determined by the following procedure: (1) x →a,n(a) (z, x(0)); (2)

Gz(x
(i−1)) →n(a),1 (x(i), bi) for each i ∈ [m(n)]. It is easily verified that G′ is polynomial-time

computable.
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Algorithm 2: R (a nonadaptive BB reduction from distinguishing G to avoiding G′ )

Input : an auxiliary-input z ∈ {0, 1}a and y ∈ {0, 1}n(a)+1

Oracle : O (1/γ′-avoiding G′)

1 let m := m(a+ n(a)) and select k ∼ [m];

2 let x(k) := y[n(a)];

3 for i = 1 to m do
4 if i < k then select σi ∼ {0, 1};
5 else if i = k then σk = yn(a)+1;

6 else execute Gz(x
(i−1))→n(a),1 (x(i), σi);

7 query b← O(σ1 ◦ · · · ◦ σm);
8 return b;

Now we define the nonadaptive reduction R? in the lemma as Algorithm 2.
We define another auxiliary-input generator {G′′z : {0, 1}n(|z|) → {0, 1}m(|z|+n(|z|))}z∈{0,1}∗ as

G′′z(x) := G′(z ◦ x). If the given oracle O 1/γ′-avoids G′, then for any z ∈ {0, 1}a,∣∣Pr
[
O(G′′z(Un(a)) = 1

]
− Pr

[
O(Um(a+n(a))) = 1

]∣∣
=
∣∣Pr
[
O(G′(z ◦ Un(a))) = 1

]
− Pr

[
O(Um(a+n(a))) = 1]

]∣∣ ≥ 1

γ′(a+ n(a))
.

By the standard hybrid argument [cf. Gol01], we have that for any z ∈ {0, 1}a,∣∣Pr
[
RO(z,Gz(Un(a))) = 1

]
− Pr

[
RO(z, Un(a)+1) = 1

]∣∣ ≥ 1

m(a+ n(a)) · γ′(a+ n(a))
.

By taking a polynomial γ satisfying m(a+n(a)) ·γ′(a+n(a)) ≤ γ(n(a)), the above inequality shows
that RO 1/γ-distinguishes G for any O 1/γ′-avoiding G′.

Lemma 8.4.1 also implies a nonadaptive BB reduction from distinguishing AIPRG to a distri-
butional NP problem.

Lemma 8.4.2. For any auxiliary-input function G stretching its input and polynomial δ, there exist
a language L ∈ NP, a polynomial γ, and a randomized polynomial-time oracle machine R? such
that for any errorless heuristic oracle O for (L,U) of failure probability 1/δ, RO 1/γ-distinguishes
G. Moreover, R? is nonadaptive.

Proof. Let γ′(n) = δ(2n)
δ(2n)−2 and m(n) = 2n. By Lemma 8.4.1 for G and m, there exist a polynomial

γ and a nonadaptive BB reduction R1 from 1/γ-distinguishing G to 1/γ′-avoiding G′.
We define the language L in the lemma as L := ImG′ = {G′(x) : x ∈ {0, 1}∗}. Since G′ is

polynomial-time computable, L ∈ NP.
Since δ is polynomial, there exists n0 ∈ N such that 2n/2 ≥ δ(n) for any n ≥ n0. Now we

construct a nonadaptive BB reduction R2 from 1/γ′-avoiding G′ to an errorless heuristic algorithm
for (L,U) of failure probability 1/δ as Algorithm 3.

We show that R2 is a reduction from 1/γ′-avoiding G′ to an errorless heuristic algorithm for
(L,U) of failure probability 1/δ. Then by combining R1 and R2, we have a nonadaptive BB
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Algorithm 3: R2 (a nonadaptive BB reduction from avoiding G′ to (L,U))

Input : y ∈ {0, 1}2n
Oracle : O (an errorless heuristic algorithm for (L,U) of failure probability 1/δ)

1 if 2n < n0 then
2 check whether y ∈ Im(G) by the brute-force search, if so, return 0, otherwise, return 1

3 query b← O(y);
4 if b ∈ {1,⊥} then return 0;
5 else return 1;

reduction R from 1/γ-distinguishing G′ to an errorless heuristic algorithm for (L,U) of failure
probability 1/δ.

Let y ∈ {0, 1}2n be the input for R2. When 2n < n0 holds, R2 can perfectly determine whether
y ∈ ImG′ and achieve the trivial threshold τn in the definition. Therefore, we consider only the
case where 2n ≥ n0.

Suppose that the given oracle O is an errorless heuristic algorithm of failure probability at most
1/δ, then we have that

y ∈ L (= ImG) =⇒ O(y) ∈ {1,⊥}; and Pr
y∼{0,1}2n

[O(y) = ⊥] ≤ δ(2n).

By the first implication and line 4, when y is generated by G, RO2 (y) always outputs 0. The
upper bound on the probability that RO2 outputs 0 is given as follows:

Pr
y∼{0,1}2n

[RO(y) = 0] = Pr
y∼{0,1}2n

[O(y) = ⊥ or 1]

≤ Pr
y∼{0,1}2n

[O(y) = ⊥] + Pr
y∼{0,1}2n

[O(y) = 1]

≤ Pr
y∼{0,1}2n

[O(y) = ⊥] + Pr
y

[y ∈ G({0, 1}n)] (∵ O(y) = 1⇒ y ∈ G({0, 1}n))

≤ 1

δ(2n)
+ 2−n ≤ 2

δ(2n)
= 1− 1

γ′(n)
. (∵ 2n ≥ n0)

Lemma 8.4.2 implies Theorem 8.2.2 along with the following theorem shown by Bogdanov and
Trevisan [BT06b].

Theorem 8.4.3 ([BT06b]). For any polynomial p, any language L, and any distributional NP
language (L′,D), if there exists a nonadaptive BB reduction from L to an errorless heuristic for
(L′,D) of failure probability 1/p, then L ∈ coNP/poly. Moreover, if L is NP-hard, then PH = Σp

3.

Proof of Theorem 8.2.2. By Lemma 8.4.2, there exist an NP-language L′, a polynomial γ, and a
nonadaptive BB reduction R? from 1/γ-distinguishing G to an errorless heuristic algorithm for
(L′, U) of failure probability 1/n. By combining R with the nonadaptive BB reduction in the
assumption from L to 1/γ-distinguishing G, we can construct a nonadaptive BB reduction from L
to an errorless heuristic algorithm for (L′, U) of failure probability 1/n. Thus, by Theorem 8.4.3,
the polynomial hierarchy collapses at the third6 level.

6In fact, by more careful simulation technique for HSG by Hirahara and Watanabe [HW20], we can improve the
consequence on the collapse of polynomial hierarchy at the second level.
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8.5 On Basing Auxiliary-Input One-Way Function on NP-Hardness

In this section, we formally show Theorem 8.2.4 based on the idea in Section 8.3.2.

Theorem (Reminder of Theorem 8.2.4). For any auxiliary-input function f = {fz : {0, 1}n →
{0, 1}`}z∈{0,1}∗ and polynomial p, if there exists a nonadaptive BB reduction from an NP-hard
language L to (1 − 1/p)-inverting f , then NP * BPP also implies that a one-way function exists
(via an adaptive BB reduction).

First, we introduce the following reduction from inverting AIOWF to a distributional NP prob-
lem, which immediately follows from Lemma 8.4.2 in Section 8.4.

Lemma 8.5.1. For any auxiliary-input function f and reciprocals δ, δ′ of polynomial, there exist
an NP-language L and a randomized polynomial-time oracle machine R? such that for any errorless
heuristic oracle O for (L,U) of failure probability δ′, RO (1− δ)-inverting f .

Proof. The lemma follows from Lemma 8.4.2 and the construction of auxiliary-input pseudorandom
generator based on an auxiliary-input (weak) one-way function [e.g., HILL99].

Now we give the full proof of Theorem 8.2.4.

Proof of Theorem 8.2.4. Let RL→f be the nonadaptive BB reduction from L to (1 − δ)-inverting
f . Without loss of generality, we can assume that the failure probability of RL→f is at most 1/16
instead of 1/3 (by taking majority vote of parallel executions) and the distributions on query are
identical regardless of the query position (by adapting random permutation before asking them).
We can also assume that the running time tRL→f (m), query complexity qRL→f (m), and the length
of random bits rRL→f (m) are increasing for the input size m.

By Lemma 8.5.1, there exist an NP-language L′ and a BB reduction Rf→L′ from (1 − δ)-
inverting f to an errorless heuristic algorithm for (L′, U) of failure probability δ. Since L′ is in NP,
and L is NP-hard, there exists a Karp reduction RL′→L from L′ to L. Without loss of generality,
|RL′→L(x)| ≤ p(|x|) for some (increasing) polynomial p.

We define polynomials q(·), r(·), and a(·) as follows:

q(m) := qRL→f (p(m)), r(m) := rRL→f (p(m)), a(m) := tRL→f (p(m))

On the execution of RL→f (RL′→L(x)) where x ∈ {0, 1}m, the number of queries, the number of
random bits, and the length of queries are bounded above by q(m), r(m), and a(m), respectively.

We also define a Turing machine Qm : {0, 1}m × {0, 1}r(m) → {0, 1}≤a(m) as Qm(x, s) outputs
an auxiliary-input of the first query generated by RL→f (RL′→L(x); s).

Now we construct a family of functions g = {gm : {0, 1}m+r(m)+n(a(m)) → {0, 1}∗}m∈N by

gm(x) =
〈
z, fz(x

f
[n(|z|)])

〉
,

where x→m,r(m),n(a(m)) x
L′ ◦ s ◦ xf and z = Qm(xL

′
, s).

Since f and Qm are polynomial-time computable, g is also polynomial-time computable. We
will show that if g is not one-way, then NP ⊆ BPP. This immediately yields Theorem 8.2.4.
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For simplicity, we consider that gm takes as input a triple of length m, r(m), and N(m) :=
n(a(m)), respectively. Suppose that g is not one-way. Then there exists a randomized polynomial-
time algorithm A such that for any m ∈ N,

Pr
A,Um,Ur(m),UN(m)

[
A(gm(Um, Ur(m), UN(m))) /∈ g−1

m (gm(Um, Ur(m), UN(m)))
]
≤ δ(m) · δ(N(m))

512 · q(m)
.

We also define a randomized polynomial-time algorithm Af as

Af (z, y; sA) =

{
x

(3)
[n(|z|)] if (x(1), x(2), x(3))← A(z, y; sA) and z = Qm(x(1), x(2))

⊥ otherwise.

For any m ∈ N, xL
′ ∈ {0, 1}m, s ∈ {0, 1}r(m), xf ∈ {0, 1}N(m), random bits sA ∈ {0, 1}∗ for A and

Af , and z := Qm(xL
′
, s), we have that

A(gm(xL
′
, s, xf ); sA) ∈ g−1

m (gm(xL
′
, s, xf ))

⇐⇒ gm(A(gm(xL
′
, s, xf ); sA)) = gm(xL

′
, s, xf )

(
=
〈
z, fz(x

f
[n(|z|)])

〉)
⇐⇒ z = Qm(x(1), x(2)) and fz(x

(3)
[n(|z|)]) = fz(x

f
[n(|z|)]) where (x(1), x(2), x(3))← A(gm(xL

′
, s, xf ); sA)

⇐⇒ fz(A
f (gm(xL

′
, s, xf ); sA)) = fz(x

f
[n(|z|)])

⇐⇒ Af (z, fz(x
f
[n(|z|)]); sA) ∈ f−1

z (fz(x
f
[n(|z|)])). (8.1)

Fix m ∈ N arbitrarily. Let r := r(m), N := N(m) and q := q(m). We divide instances on L′

into three sets BL′
m , G

L′
m , and NL′

m (which stand for bad, good, and neutral, respectively) as

BL′
m :=

{
x ∈ {0, 1}m : Pr

A,Ur,UN

[
A(gm(x, Ur, UN )) /∈ g−1

m (gm(x, Ur, UN ))
]
>

δ(N)

216 · q

}
,

GL
′

m :=

{
x ∈ {0, 1}m : Pr

A,Ur,UN

[
A(gm(x, Ur, UN )) /∈ g−1

m (gm(x, Ur, UN ))
]
≤ δ(N)

512 · q

}
,

NL′
m := {0, 1}m \ (BL′

m ∪GL
′

m ).

Now fix any (not-bad) instance x ∈ GL
′

m ∪ NL′
m . We also define good and bad sets on the

randomness for A. Let rA be a polynomial such that rA(m) is the number of random bits used by
A for inverting gm. Then we define the bad and good sets of randomness of A as

BA
m,x :=

{
sA ∈ {0, 1}rA(m) : Pr

Ur,UN

[
A(gm(x, Ur, UN ; sA)) /∈ g−1

m (gm(x, Ur, UN ))
]
>
δ(N)

16 · q

}
,

GAm,x := {0, 1}rA(m) \BA
m,x.

For any good random bits sA ∈ GAm,x, we define a bad set Bf
m,x,sA on auxiliary-input of f as

Bf
m,x,sA

:=

{
z ∈ {0, 1}≤a(m) : Pr

Un(|z|)

[
Af (z, fz(Un(|z|)); sA) /∈ f−1

z (fz(Un(|z|)))
]
> δ(n(|z|))

}
.

Consider a function Om,x,sA : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ by

Om,x,sA(z, y) =

{
Af (z, y; sA) z ∈ {0, 1}≤a(m) \Bf

m,x,sA

xz,y z ∈ Bf
m,x,sA or z ∈ {0, 1}>a(m),
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where xz,y is the lexicographically first element of f−1
z (y) if any, otherwise xz,y = 0.

First we show that the above Om,x,sA(z, y) is indeed a (1− δ)-inverting oracle for f .

Claim 8.5.2. For any m ∈ N, x ∈ GL′m ∪NL′
m , and sA ∈ GAm,x, Om,x,sA (1− δ)-inverts f .

Proof of Claim 8.5.2. Fix m ∈ N, x ∈ GL′m , and sA ∈ GAm,x arbitrarily. If z ∈ Bf
m,x,sA ∪ {0, 1}>a(m),

by the definition of Om,x,sA , Om,x,sA(z, y) must output the first inverse element of y if any.

If z ∈ {0, 1}≤a(m) \Bf
m,x,sA , then we have that

Pr
x∼{0,1}n(|z|)

[Om,x,sA(z, fz(x)) /∈ f−1
z (fz(x))] = Pr

x
[Af (z, fz(x); sA) /∈ f−1

z (fz(x))] ≤ δ(n(|z|)),

where the last inequality holds because z is not contained in Bf
m,x,sA . �

Note that, by Claim 8.5.2, we have that for any x′ ∈ {0, 1}∗,

Pr
RL→f

[R
Om,x,sA
L→f (x′) 6= L(x′)] ≤ 1/16. (8.2)

If we can construct a randomized errorless heuristic algorithm B for (L′, U) of failure probability
at most δ, then B and Rf→L′ yield a randomized polynomial-time algorithm (1 − δ)-inverting f .
By using RL→f , we have also a randomized polynomial-time algorithm for L. Since L is NP-hard,
this implies NP ⊆ BPP. Therefore, the remaining part is to construct the randomized errorless
heuristic algorithm B.

Now we construct B by using A, RL′→L, and RL→f as Algorithm 4.

Algorithm 4: B (a randomized errorless heuristic algorithm for (L′, U))

Input : x ∈ {0, 1}m

1 estimate the failure probability of A

2 let c := 0, M := 221·q2(m)
δ2(N(m))

;

3 repeat M times do

4 select s ∼ {0, 1}r(m), xf ∼ {0, 1}N(m) and compute y = gm(x, s, xf );

5 execute (x̄(1), x̄(2), x̄(3))← A(y);

6 if gm(x̄(1), x̄(2), x̄(3))) 6= y (fail in inverting) then c := c+ 1;

7 if c > M · 3·δ(N(m))
1024·q(m) then return ⊥;

8 select random bits for Af as sA ∼ {0, 1}rA(m);
9 execute x′ ← RL′→L(x);

10 execute RL→f (x′) where for each query (z, y), answer Af (z, y; sA);
11 if RL→f (x′) halts and outputs a value b, then return b;

We show that B is a randomized errorless algorithm for (L′, U) of failure probability δ. In the
subsequent argument, we use x to denote the input for B. Let m = |x|. By Hoeffding inequality,
we can show the following claim on lines 1-7.

Claim 8.5.3. 1. If x ∈ BL′
m , then PrB[B(x) = ⊥] ≥ 15/16

2. If x ∈ GL′m , then PrB[B(x) = ⊥] ≤ 1/16.
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Proof of Claim 8.5.3. (1) For each i-th trial in line 3, consider a Bernoulli random variable Xi

which takes 1 if A fails in inverting gm, otherwise 0. By the definition of x ∈ BL′
m ,

µ := E[Xi] >
δ(N(m))

216 · q
.

Therefore, we have that

Pr
B

[B(x) 6= ⊥] = Pr

[
M∑
i=1

Xi ≤M ·
3 · δ(N(m))

1024 · q(m)

]

≤ Pr

[
1

M

M∑
i=1

Xi − µ ≤ −
δ(N(m))

1024 · q(m)

]

≤ exp

(
−2 · δ

2(N(m))

220 · q2(m)
·M
)

= e−4 <
1

16
,

where the second inequality follows from the Hoeffding inequality.

(2) We use the same notation about Xi and µ. In the case where x ∈ GL′m , we have that

µ := E[Xi] ≤
δ(N(m))

512 · q
.

Thus, by using the Hoeffding inequality again,

Pr
B

[B(x) = ⊥] = Pr

[
M∑
i=1

Xi > M · 3 · δ(N(m))

1024 · q(m)

]

≤ Pr

[
1

M

M∑
i=1

Xi − µ ≤
δ(N(m))

1024 · q(m)

]
≤ exp

(
−2 · δ

2(N(m))

220 · q2(m)
·M
)
<

1

16
.

�

By Claim 8.5.3, we can show the following claims:

Claim 8.5.4. Prx∼{0,1}m [x ∈ BL′
m ∪NL′

m ] ≤ δ(m).

Claim 8.5.5. If x ∈ GL′m , then PrB[B(x) = L′(x)] ≥ 3/4.

Claim 8.5.6. If x ∈ NL′
m , then PrB[B(x) ∈ {L′(x),⊥}] ≥ 3/4.

Assume that the three claims above hold at first. Then we can show that B is a randomized
errorless heuristic algorithm of failure probability δ as follows: For the condition on errorless, by
Claims 8.5.3-(1), 8.5.5, and 8.5.6, for any instance x ∈ {0, 1}m, B(x) ∈ {L′(x),⊥} with probability
at least 3/4. For the condition on the failure probability, Claims 8.5.3-(1), 8.5.5, and 8.5.6 imply
that B(x) outputs ⊥ with probability at least 3/4 only if x ∈ BL′

m ∪NL′
m . By Claim 8.5.4, the latter

event occurs with probability at most δ(m) over the uniform choice of x ∈ {0, 1}m.

Therefore, the remaining part is only to show Claims 8.5.4, 8.5.5, and 8.5.6.
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Proof of Claim 8.5.4. By the definitions of BL′
m and NL′

m ,

BL′
m ∪NL′

m =

{
x ∈ {0, 1}m : Pr

A,Ur,UN

[
A(gm(x, Ur, UN )) /∈ g−1

m (gm(x, Ur, UN ))
]
>

δ(N)

512 · q

}
.

Remember that A satisfies

Pr
A,Um,Ur,UN

[
A(gm(x, Ur, UN )) /∈ g−1

m (gm(x, Ur, UN ))
]
≤ δ(m) · δ(N)

512 · q
.

By Markov’s inequality, we have that Prx∼{0,1}m [x ∈ BL′
m ∪NL′

m ] ≤ δ(m). �

Claims 8.5.5 and 8.5.6 are immediately implied by the following Claim 8.5.7. Therefore, we first
show Claims 8.5.5 and 8.5.6 by assuming Claim 8.5.7 and then show Claim 8.5.7.

Claim 8.5.7. If x ∈ GL′m ∪NL′
m , then PrB[B(x) = ¬L′(x)|B(x) 6= ⊥] ≤ 3/16.

Proof of Claim 8.5.5. If x ∈ GL′m , then

Pr
B

[B(x) 6= L′(x)] = Pr
B

[B(x) = ¬L′(x) or B(x) = ⊥]

= Pr
B

[B(x) = ⊥] + Pr
B

[B(x) = ¬L′(x)|B(x) 6= ⊥]

≤ 1/16 + 3/16 = 1/4,

where the last inequality follows from Claims 8.5.3-(2) and 8.5.7. �

Proof of Claim 8.5.6. If x ∈ NL′
m , then

Pr
B

[B(x) ∈ {L′(x),⊥}] = Pr
B

[B(x) = ⊥] + Pr
B

[B(x) = L′(x)|A(x) 6= ⊥]

≥ Pr
B

[B(x) = L′(x)|B(x) 6= ⊥] ≥ 13/16 > 3/4,

where the last inequality follows from Claim 8.5.7. �

Proof of Claim 8.5.7. By the assumption that x ∈ GL′m ∪NL′
m , we have that

Pr
A,Ur,UN

[
A(gm(x, Ur, UN )) /∈ g−1

m (gm(x, Ur, UN ))
]
≤ δ(N)

216 · q
.

By Markov’s inequality,

Pr
sA∼{0,1}rA

[sA ∈ BA
m,x] ≤ 1

16
. (8.3)

Therefore, we assume that B succeeds in selecting a good sA ∈ GAm,x. By Claim 8.5.2, if B

could simulate Om,x,sA in line 10 instead of Af ( · ; sA), then RL→f can recognize L′(x) with high
probability. As shown below, however, answer by Af ( · ; sA) is consistent with answer by Om,x,sA
with high probability over the choice of random bits for RL→f .

Let (z, y) be a query generated by RL→f . By the definition of Om,x,sA , Af (z, y; sA) is inconsis-

tent with Om,x,sA(z, y) only if (a) z ∈ Bf
m,x,sa or (b) |z| > a(m). Since a(m) is the upper bound on

the length of queries by RL→f (RL′→L(x)), the latter case (b) never occurs.
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Thus, we bound above on the probability that the event (a) occurs. For the choice of the

randomness s ∈ {0, 1}r(m) to execute RL→f , define a bad set B
RL→f
m,x,sA as

B
RL→f
m,x,sA :=

{
s ∈ {0, 1}r(m) : Pr

UN(m)

[
A(gm(x, s, UN(m); sA)) /∈ g−1

m (gm(x, s, UN(m)))
]
> δ(N(m))

}
.

Since sA ∈ GAm,x, we have that

Pr
Ur(m),UN(m)

[
A(gm(x, Ur(m), UN(m); sA)) /∈ g−1

m (gm(x, Ur(m), UN(m)))
]
≤ δ(N(m))

16 · q(m)

By Markov’s inequality,

Pr
s∼{0,1}r(m)

[
s ∈ BRL→f

m,x,sA

]
≤ 1

16 · q(m)
.

We define the event Ex over the choice of random bits for RL→f as

Ex :=
(
RL→f (RL′→L(x)) makes the first query (z, y) such that z ∈ Bf

m,x,sa

)
.

Then by the definitions of Qm and gm,

Pr
RL→f

[Ex] = Pr
s∼{0,1}r(m)

[Qm(x, s) ∈ Bf
m,x,sA

]

≤ Pr
s∼{0,1}r(m)

[
z ← Qm(x, s); Pr

Un(|z|)

[
Af (z, fz(Un(|z|)); sA) /∈ f−1

z (fz(Un(|z|)))
]
> δ(n(|z|))

]
≤ Pr

s∼{0,1}r(m)

[
Pr

UN(m)

[
A(gm(x, s, UN(m)); sA) /∈ g−1

m (gm(Un(m)))
]
> δ(N(m))

]
(∵ (8.1))

= Pr
s∼{0,1}r(m)

[
s ∈ BRL→f

m,x,sA

]
≤ 1

16 · q(m)
.

Since each query distribution by RL→f is identical to the first query distribution, by the union
bound, we have that

Pr
RL→f

[the event (a) occurs]

= Pr
RL→f

[RL→f (RL′→L(x)) makes at least one query (z, y) such that z ∈ Bf
m,x,sa ]

≤ q(m) · Pr
RL→f

[Ex] ≤ q(m) · 1

16 · q(m)
=

1

16
.

Therefore, we have that

Pr
RL→f

[R
Om,x,sA
L→f (RL′→L(x)) 6= R

Af (·;sA)
L→f (RL′→L(x))] ≤ Pr

RL→f
[the event (a) occurs] ≤ 1/16. (8.4)

Since RL′→L is a Karp reduction from L′ to L, L′(x) = L(RL′→L(x)) holds. By Eq. (8.2),

Pr
RL→f

[R
Om,x,sA
L→f (RL′→L(x)) 6= L′(x)] ≤ 1/16. (8.5)
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By the union bound, we conclude that (under the condition that B does not output ⊥ in line 7)

Pr
B

[B(x) 6= L′(x)] ≤ Pr
sA

[sA ∈ BA
m,x] + Pr

sA,RL→f
[R

Af (·;sA)
L→f (RL′→L(x)) 6= L′(x)|sA /∈ BA

m,x]

≤ Pr
sA

[sA ∈ BA
m,x] + Pr

sA,RL→f
[R
Om,x,sA
L→f (RL′→L(x)) 6= L′(x)|sA /∈ BA

m,x]

+ Pr
sA,RL→f

[R
Af (·;sA)
L→f (RL′→L(x)) 6= R

Om,x,sA
L→f (RL′→L(x))|sA /∈ BA

m,x]

≤ 1

16
+

1

16
+

1

16
=

3

16
.

where the last inequality follows from Eq. (8.3), (8.4), and (8.5). �

8.6 On Basing Auxiliary-Input Hitting Set Generator on NP-
Hardness

In this section, we formally show Theorem 8.2.7 based on the idea in Section 8.3.3.

Theorem (Reminder of Theorem 8.2.7). Let p be a polynomial and G := {Gz : {0, 1}n →
{0, 1}`(n)}z∈{0,1}∗ be an auxiliary-input function where `(n) > (1 + ε) · n for some constant ε > 0.
If there exists a nonadaptive BB reduction from an NP-hard language L to (1 − 1/p)-avoiding G,
then NP * BPP also implies that a one-way function exists (via an adaptive BB reduction).

Theorem 8.2.7 obviously follows from Lemma 8.6.1 and Theorem 8.2.4.

Lemma 8.6.1. Let δ be a reciprocal of polynomial and G := {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ be an
auxiliary-input function where `(n) > (1+ε)·n for some constant ε > 0. If there exists a nonadaptive
BB reduction from an NP-hard language L to (1−δ)-avoiding G, then there exist another auxiliary-
input function f and a reciprocal δ′ of polynomial such that there exists a nonadaptive BB reduction
from L to (1− δ′)-inverting f .

To show Lemma 8.6.1, we use the following auxiliary-input analogue of Theorem 4.6.1, which
holds by the same proof except the consideration of auxiliary-input (where we regard the description
of circuits as auxiliary-input).

Lemma 8.6.2. Let ε ∈ (0, 1] and δ : N → (0, 1] be a reciprocal of polynomial. If there exists
no auxiliary-input one-way function, then for any polynomial s(n), there exists a polynomial-time
randomized algorithm Ests(n) such that for any n-input circuit C of size s(n),

Pr
Ests(n),x∼{0,1}n

[
Ests(n)(C,C(x)) ∈ [(1− ε) · pC(x), (1 + ε) · pC(x)]

]
≥ 1− δ(n),

where pC(x) := Prx′∼{0,1}n [C(x′) = C(x)].
Moreover, there exists an auxiliary-input function f = {fz}z∈{0,1}∗ such that Ests(n) accesses an

inverting algorithm for f nonadaptively as oracle.

Now, we show Lemma 8.6.1 to complete the proof of Theorem 8.2.7.
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Proof of Lemma 8.6.1. Let ε′ = ε/2, and let R? be the nonadaptive BB reduction from L to (1−δ)-
avoiding G. Without loss of generality, we can assume that R? makes q(m) queries on input
x ∈ {0, 1}m, where q is a polynomial, and all q(m) distributions on query generated by R are
identical regardless of query position by applying a random permutation before asking them.

Fix input x ∈ {0, 1}m arbitrarily. Let Qx be the distribution on the first query by R(x)

(which is identical to query distributions in other query positions). Let Q
(1)
x be the distribution on

auxiliary-input of Qx.

Let a ∈ N be a length of auxiliary-input. Let n := n(a) and ` := `(n). We divide possible
queries into three sets Hx, Lx and Mx (which stand for heavy, light, and medium, respectively) as
follows:

Hx :=

{
(z, y) ∈ {0, 1}n × {0, 1}` : px(y|z) > 9

2(1+ε′)n

}
,

Lx :=

{
(z, y) ∈ {0, 1}n × {0, 1}` : px(y|z) ≤ 1

2(1+ε′)n

}
,

Mx :=
(
{0, 1}n × {0, 1}`

)
\ (Hx ∪ Lx) ,

where px(y|z) = Pr[(z, y) ∼ Qx|z ∼ Q(1)
x ].

Now we define a set Tx,a of all statistical tests T : {0, 1}a×{0, 1}` → {0, 1} satisfying following
conditions: for any z ∈ {0, 1}a,

1. y ∈ Im(Gz) =⇒ T (z, y) = 0

2. (y /∈ Im(Gz) ∧ (z, y) ∈ Hx) =⇒ T (z, y) = 0

3. (y /∈ Im(Gz) ∧ (z, y) ∈ Lx) =⇒ T (z, y) = 1

Since δ(n) is a reciprocal of polynomial, − log δ(n) = O(log n). Therefore, there exists n0 ∈ N such
that for any n ≥ n0, n ≥ 1

ε′ (1− log δ(n)) holds. In the following claim, we show that each element
in Tx,a avoids Gz for large enough a.

Claim 8.6.3. For any x ∈ {0, 1}m and a ∈ N, if n(a) ≥ n0, then any T ∈ Tx,a (1 − δ)-avoids Gz
for any z ∈ {0, 1}a.

Proof. Fix T ∈ Tx,a arbitrarily. Since T satisfies the condition 1, we have that T (z, y) = 0 for any
z ∈ {0, 1}a and y ∈ Im(Gz). Thus, it is enough to show that

Pr
y∼{0,1}`(n(a))

[T (z, y) = 0] ≤ δ(n(a)).

Since T also satisfies the condition 3,

Pr
y∼{0,1}`

[T (z, y) = 0] ≤ Pr
y∼{0,1}`

[y ∈ Im(Gz) ∨ (y, z) /∈ Lx]

≤ Pr
y∼{0,1}`

[y ∈ Im(Gz)] + Pr
y∼{0,1}`

[(y, z) ∈ Hx ∪Mx]

≤ 2n

2`
+ Pr
y∼{0,1}`

[(y, z) ∈ Hx ∪Mx].
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Notice that if ∣∣∣{y ∈ {0, 1}` : px(y|z) > 2−(1+ε′)n
}∣∣∣ > 2(1+ε′)n,

then,

1 =
∑

y∈{0,1}`
px(y|z) ≥

∑
y∈{0,1}`:

(y,z)∈Hx∪Mx

px(y|z) > 2−(1+ε′)n · 2(1+ε′)n = 1.

Hence, we have that∣∣∣{y ∈ {0, 1}` : (y, z) ∈ Hx ∪Mx

}∣∣∣ =
∣∣∣{y ∈ {0, 1}` : px(y|z) > 2−(1+ε′)n

}∣∣∣ ≤ 2(1+ε′)n.

Therefore,

Pr
y∼{0,1}`

[T (z, y) = 0] ≤ 2n

2`
+ Pr
y∼{0,1}`

[(y, z) ∈ Hx ∪Mx]

≤ 2n

2`
+

2(1+ε′)n

2`

≤ 2n(1 + 2ε
′n)

2(1+2ε′)n
≤ 2ε

′n+1

22ε′n
=

2

2ε′n
≤ δ(n(a)). (∵ n(a) ≥ n0)

�

For x ∈ {0, 1}m and a family of statistical tests {Ta}a∈N where Ta ∈ Tx,a, we define a function
O{Ta} : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ as

O{Ta}(z, y) =


1 if |y| 6= `(n(|z|))
1l{y ∈ Im(Gz)} if |y| = `(n(|z|)) ∧ (2ε

′n(|z|) ≤ 144q(m) ∨ n(|z|) < n0)

T|z|(z, y) otherwise.

We define sets Tx and T of functions as Tx :=
{
O{Ta}a∈N : Ta ∈ Tx,a

}
and T =

⋃
x∈{0,1}∗ Tx. Then

Claim 8.6.3 implies that any O ∈ T (1− δ)-inverts G and thus, for any x ∈ {0, 1}∗,

Pr
R

[RO(x) 6= L(x)] ≤ 1/3. (8.6)

We can assume that R?(m) uses at most r(m) random bits for any m ∈ N to create its q(m)
queries, where r(·) is a polynomial. Let s(·) be a polynomial satisfying that for any m ∈ N and
x ∈ {0, 1}m, the first query by R?(x) is generated by an s(r(m))-size circuit which takes r(m)
random bits as input.

We construct a randomized polynomial-time algorithm A for L as Algorithm 5 by using the
approximation algorithm Ests(n) with ε = 1/2 and δ(r(m)) = 1

32·q(m) in Lemma 8.6.2. Remark

that A uses Ests(n) nonadaptively (in line 3). Since Ests(n) uses an inverting oracle for a certain
auxiliary-input function f , this yields a nonadaptive BB reduction from L to inverting f .

We will show that A indeed solves L. It is not hard to see that A is polynomial-time computable
and executes Ests(n) 2q(m) times for the input of size m. Since the failure probability of each

execution is at most 1
32·q(m) , the probability that at least one of the executions fails is at most 1/16.

We assume that all executions of Ests(n) will not fail. For x ∈ {0, 1}∗ and a ∈ N, we define a

set T ′x,a composed of all statistical tests T ′ : {0, 1}a×{0, 1}`(n(a)) → {0, 1} satisfying the followings:
for any z ∈ {0, 1}a,
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Algorithm 5: A (a randomized algorithm for L)

Input : x ∈ {0, 1}m

1 execute R?(x) and make q(m) queries (z1, y1), . . . , (zq(m), yq(m));

2 embed x to R? and create s(r(m))-size circuits Cx(r) and C
(1)
x (r) generating the first query

and the auxiliary-input in the first query of R?(x; r), respectively;

3 execute p̃i ← Ests(n)(Cx, (zi, yi)) and p̃′i ← Ests(n)(C
(1)
x , zi) for each i ∈ [q(m)];

4 for i := 1 to q(m) do
5 let ni := n(|zi|);
6 answer the i-th query (zi, yi) as follows:
7 if ∃j < i such that (zj , yj) = (zi, yi) then return the same answer as the j-th query;

8 else if ni < n0 or 2ε
′ni ≤ 144q(m) then find the answer by brute-force search and

return it (note that the latter condition implies 2ni ≤ (144q(m))1/ε′ ≤ poly(m));

9 else if p̃i
p̃′i
≤ 3

2(1+ε′)ni
then return 1;

10 else return 0;

11 if R?(x) halts and outputs b ∈ {0, 1} then return the same value b;

1. (z, y) ∈ Hx =⇒ T ′(z, y) = 0;

2. (z, y) ∈ Lx =⇒ T ′(z, y) = 1;

For a family of statistical tests {T ′a}a∈N where T ′a ∈ T ′x,a, we define a function O{T ′a} : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ in the same way as Tx,a. We also define the sets T ′x and T ′ of functions as
T ′x :=

{
O{T ′a}a∈N : T ′a ∈ T ′x,a

}
and T ′ =

⋃
x∈{0,1}∗ T ′x.

By the correctness of Ests(n), we have that for each i ∈ [q(m)],

1

3
· px(yi|zi) ≤

1
2 · Pr[(zi, yi) ∼ Qx]

3
2 · Pr[zi ∼ Q(1)

x ]
≤ p̃i
p̃′i
≤

3
2 · Pr[(zi, yi) ∼ Qx]

1
2 · Pr[zi ∼ Q(1)

x ]
≤ 3 · px(yi|zi).

Therefore,

(yi, zi) ∈ Lx =⇒ p̃i
p̃′i
≤ 3 · px(yi|zi) ≤

3

2(1+ε′)n
,

and

(yi, zi) ∈ Hx =⇒ p̃i
p̃′i
≥ 1

3
· px(yi|zi) >

3

2(1+ε′)n
.

Hence, for any x ∈ {0, 1}∗, A(x) answers each query of R?(x) by some oracle O′ in T ′x unless Ests(n)

fails. Thus, if the values of O′ is consistent with some O ∈ T , then A(x) can correctly simulate
(1− δ)-avoiding oracle for G. This motivates us to show the following claim.

Claim 8.6.4. For any m ∈ N, x ∈ {0, 1}m, and O′ ∈ T ′x, there exists O ∈ Tx such that

Pr
R

[
RO

′
(x) 6= RO(x)

]
≤ 1

16
.

First, we assume that Claim 8.6.4 holds. Notice that if the following three events occur on the
execution of A(x), then A(x) outputs L(x) correctly:
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1. Ests(n) does not fail, i.e., A simulates some oracle O′ ∈ T ′x;

2. RO
′
(x) = RO(x), where O ∈ Tx is the oracle in Claim 8.6.4;

3. RO(x) = L(x);

By Claim 8.6.4 and Eq. (8.6), the probability that each of events 1–3 does not occur is at most
1/16, 1/16, and 1/3, respectively. Therefore, for any x ∈ {0, 1}∗,

Pr
A

[A(x) 6= L(x)] ≤ 1

16
+

1

16
+

1

3
=

11

24
.

Thus, A solves L in the worst-case sense.

The remaining part is to show Claim 8.6.4.

Proof of Claim 8.6.4. Fix x ∈ {0, 1}m and O′ ∈ T ′x arbitrarily. By the definition of T ′x, there exists
a family of statistical tests {T ′a}a∈N, where T ′a ∈ T ′x,a, such that O′ ≡ O′{T ′a}.

For each a ∈ N, we define a statistical test Ta : {0, 1}a × {0, 1}`(n(a)) → {0, 1} as

Ta(z, y) =

{
0 if y ∈ Im(Gz)

T ′a(z, y) otherwise.

We also define O := O{Ta}. It is easily verified that Ta ∈ Tx,a. Thus, O ∈ Tx.

We have that

Pr
R

[
RO

′
(x) 6= RO(x)

]
≤ Pr

R

[
R?(x) queries (z, y) such that O(z, y) 6= O′(z, y)

]
.

Thus, we will bound the latter probability above by 1/16.

O(z, y) 6= O′(z, y)

=⇒ 2ε
′n(|z|) > 144q(m) and T|z|(z, y) 6= T ′|z|(z, y) (∵ definitions of O and O′)

⇐⇒ 2ε
′n(|z|) > 144q(m) and y ∈ Im(Gz) and T ′|z|(z, y) = 1 (∵ definitions of Ta and T ′a)

=⇒ 2ε
′n(|z|) > 144q(m) and y ∈ Im(Gz) and (z, y) /∈ Hx (∵ definition of T ′x).
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For each position j ∈ [q(m)],

Pr
R

[
R?(x) queries (z, y) such that O(z, y) 6= O′(z, y) at the j-th query

]
= Pr

(z,y)∼Qx

[
O(z, y) 6= O′(z, y)

]
≤ Pr

(z,y)∼Qx

[
2ε
′n(|z|) > 144q(m) and y ∈ Im(Gz) and (z, y) /∈ Hx

]
=

∑
z∈{0,1}∗:

2ε
′n(|z|)>144q(m)

Pr
(z′,y)∼Qx

[
y ∈ Im(Gz′) and (z′, y) ∈ Lx ∪Mx|z′ = z

]
· Pr
z′∼Q(1)

x

[z′ = z]

≤
∑

z∈{0,1}∗:
2ε
′n(|z|)>144q(m)

∑
y∈Im(Gz):

(z,y)∈Lx∪Mx

Pr
(z′,y′)∼Qx

[
y′ = y|z′ = z

]
· Pr
z′∼Q(1)

x

[z′ = z]

=
∑

z∈{0,1}∗:
2ε
′n(|z|)>144q(m)

∑
y∈Im(Gz):

(z,y)∈Lx∪Mx

px(y|z) · Pr
Q

(1)
x

[z ∼ Q(1)
x ]

≤
∑

z∈{0,1}∗:
2ε
′n(|z|)>144q(m)

∑
y∈Im(Gz):

(z,y)∈Lx∪Mx

9

2(1+ε′)n(|z|) · Pr
Q

(1)
x

[z ∼ Q(1)
x ] (∵ (z, y) ∈ Lx ∪Mx)

≤
∑

z∈{0,1}∗:
2ε
′n(|z|)>144q(m)

|Im(Gz)| ·
9

2(1+ε′)n(|z|) · Pr
Q

(1)
x

[z ∼ Q(1)
x ]

≤
∑

z∈{0,1}∗:
2ε
′n(|z|)>144q(m)

9

2ε′n(|z|) · Pr
Q

(1)
x

[z ∼ Q(1)
x ] (∵ |Im(Gz)| ≤ 2n(|z|))

≤
∑

z∈{0,1}∗:
2ε
′n(|z|)>144q(m)

1

16 · q(m)
· Pr
Q

(1)
x

[z ∼ Q(1)
x ] (∵ 2ε

′n(|z|) > 144q(m))

≤ 1

16 · q(m)
·
∑

z∈{0,1}∗
Pr
Q

(1)
x

[z ∼ Q(1)
x ] =

1

16 · q(m)
.

By the union bound, we conclude that

Pr
R

[
R?(x) queries (z, y) such that O(z, y) 6= O′(z, y)

]
≤ q(m)

16 · q(m)
=

1

16
.

�
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Chapter 9

New and Improved Oracle Separations

In the previous chapters, we presented several characterization results related to the hardness of
learning and gave new clear insights into the average-case complexity of NP and cryptography
from the perspective of learning. An important future direction towards excluding Heuristica and
Pessiland is to further improve our characterization results and unify the notions we discussed in
this thesis.

In this chapter, we study limitations of our techniques presented in this thesis, more generally,
limitations of relativizing proofs which hold even with additional oracle access to an arbitrary
function O : {0, 1}∗ → {0, 1}∗. Note that a relativizing proof is a very common and powerful
framework of proofs and suffices for deriving almost all theorems previously shown in theoretical
computer science by using a reduction with quite a few exception (e.g., IP = PSPACE [LFKN92;
Sha92] and the PCP theorem [AS98; ALMSS98]). Particularly, all the main results in Chapters 3–8
are relativized, i.e., shown by relativizing proofs.

Suppose that you try to show a conjecture that if A (e.g., P 6= NP) holds, then B (e.g., the
existence of secure cryptography) also holds; however, someone shows the existence of an oracle O
under which A holds but B does not hold (i.e., ¬(A → B)). Then, as a consequence, you cannot
hope any relativizing proof to show the conjecture because if such a relativizing proof exists, then
A→ B holds in the presence of any oracle, which contradicts the existence of O. Namely, the oracle
O works as a barrier against relativizing proof and is thus often called a relativization barrier or
an oracle separation between the notions A and B (particularly when the conjecture is stated as
A ↔ B, and ¬(A ↔ B) holds relative to O). One important role of an oracle separation is to
avoid hopeless approach for proving the conjecture and to identify on which part we essentially
need a novel idea not captured in the standard relativized framework. At a high level, for an
oracle separation, we need to deeply understand and exploit the essential difference between the
two discussed notions, which itself can be important knowledge for proving the conjecture. Other
roles of oracle separations are explained in the survey by Fortnow [For94].

In this chapter, we present new relativization barriers against conceptually improving our main
results in the previous chapters and related work. In Section 9.1, we present the oracle separation
between PAC learning and the errorless average-case easiness of NP, as in Theorem 3.1.2. We also
show the tight lower bound for a relativizing worst-case-to-average-case reduction within PH that
matches the upper bound previously shown by Hirahara [Hir21b]. In Section 9.2, the oracle separa-
tion between PAC learning under the uniform example distribution and the error-prone average-case
easiness of NP, as in Theorem 3.1.3. We remark that the main result in Section 9.2 also implies two
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important results (i) the oracle separation between errorless and error-prone average-case complex-
ity of NP, which was a longstanding open problem posed in the pioneering work by Impagliazzo
[Imp95]; and (ii) a strong oracle separation between OWF and subexponentially-secure AIOWF
(as Theorem 8.2.8), which improves the previous oracle separation presented in [Tre10; Nan21b].
In Section 9.3, we give a brief survey of related work on other separation results. Particularly, fig-
ure 9.1 shows a high-level overview of relativization barriers in Heuristica and Pessiland, including
our results, and it can be very helpful in understanding the relationship between our work and
related work.

9.1 Worst-Case vs. Average-Case Complexity

In this section, we construct “relativized Heuristica” in which there is no PAC learner with respect
to almost-uniform distributions.

Theorem 9.1.1 (Theorem 3.1.2). For any arbitrary small constant ε > 0, there exists an oracle
Oε such that

1. DistPHOε ⊆ AvgPOε;

2. SIZEOε [n] is not weakly learnable with membership queries on all uniform distributions over
S ⊆ {0, 1}n such that |S| > 2(1−ε)n by nonuniform 2o(n/ logn)-time algorithms.

Let us remark that Theorem 9.1.1 shows strong evidence that the learning-theoretic implication
in Theorem 3.1.1 cannot be improved without a profoundly new technique. Particularly, unless we
use some non-relativizing techniques, we cannot improve Theorem 3.1.1 for learning on almost-
uniform example distributions even under the strong average-case assumption that DistPH ⊆ AvgP
and even with drastically weakened requirements: (a) weak learning (b) in sub-exponential time
(c) with additional access to a membership query oracle.

In addition, we construct an oracle that separates the average-case complexity of PH from the
worst-case complexity of UP ∩ coUP with the best possible parameters on time complexity.

Theorem 9.1.2. There exists an oracle O such that

(1) DistPHO ⊆ AvgPO and (2) UPO ∩ coUPO 6⊆ SIZEO[2o(n/ logn))].

Furthermore, for all k ∈ N and constants a > 0, there exists an oracle Ok,a such that

(1) DistΣp
k
Ok,a ⊆ AvgPOk,a and (2) UPOk,a ∩ coUPOk,a 6⊆ SIZEOk,a [2an/ logn].

This result significantly improves the previous oracle construction of Impagliazzo [Imp11], who
proved that there exist a constant α ∈ (0, 1/2] and an oracle O such that

(1) DistNPO ⊆ AvgPO and (2) UPO ∩ coUPO 6⊆ SIZEO[2n
α
].

In Theorem 9.1.2, we improve this oracle construction in the following two aspects. First, the worst-
case lower bound is improved from O(2n

α
) to 2o(n/ logn). Second, the feasibility of the average-case

computation is improved from DistNP to DistPH. The core concept of our improvements is to
consider a switching lemma on a large alphabet, which may be of independent interest.

It is worthy of note that Hirahara [Hir21b] presented the first nontrivial worst-case-to-average-
case connection for PH:
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Theorem 9.1.3 ([Hir21b]). • If DistPH ⊆ AvgP, then PH ⊆ DTIME[2O(n/ logn)]; and

• If DistΣp
k+1 ⊆ AvgP, then Σp

k ⊆ DTIME[2O(n/ logn)] for each k ∈ N.

This result is proved by a relativizing proof technique (see [HN21, Appendix A] for the details).
Therefore, the time complexity 2n/ω(logn) given in Theorem 9.1.2 is nearly optimal for PH and
completely optimal for Σp

k. In this sense, we identify the capability of relativizing proof techniques
for worst-case-to-average-case reductions within PH, which is the central notion in computational
complexity theory.

9.1.1 Proof Idea of Oracle Separation

In this subsection, we first present our proof ideas for Theorem 9.1.2 and then for Theorem 9.1.1.
Before presenting our key idea to show Theorem 9.1.2, we first explain the idea applied in [Imp11]

and the reason why it is not sufficient for the improved lower bound 2Ω(n/ logn).
The oracle construction by Impagliazzo [Imp11] is based on the following observation: For a

hidden random function f : {0, 1}n → {0, 1}m(n), the answers to most NP computations involving
in f are determined by a random restriction of the truth-table of f . Therefore, by providing access
to a restrictive NP oracle A that answers correctly only if the random restriction determines the
answer (otherwise, A answers ⊥), NP problems become easy on average. By contrast, we require
all the information of f to perform all NP computations involving in f . Thus, NP problems remain
hard in the worst-case sense in the presence of A. We review how this idea can be implemented.

More precisely, the oracle O constructed in [Imp11] consists of the following two oracles: a
random permutation F = {Fn}n∈N, where Fn : {0, 1}n → {0, 1}n, and a restricted NP-oracle A.
The oracle A takes a nondeterministic oracle machine M?, x ∈ {0, 1}∗, and 1T

4
, where T ∈ N,

as input and simulates MF+A(x) in T steps. We remark that the simulation overhead T 4 in A
is crucial for preventing circular calls for A. The purpose of F is to make UP ∩ coUP hard by
considering its inverting problem, and the purpose of A is to make DistNP easy on average in the
relativized world. A challenging task in the construction is to preserve the worst-case hardness of
NP, even in the presence of the restricted NP-oracle A.

To satisfy this requirement, the key idea applied in [Imp11] is to let A reveal the values of F
gradually according to the time bound T . The execution of a nondeterministic machine MO is
represented as a disjunctive normal form (DNF) formula in variables Fx,y for x, y ∈ {0, 1}∗ with
|x| = |y| (referred to as matching variables), which expresses the connection specified by F (i.e.,
Fx,y = 1 iff F(x) = y). Impagliazzo’s idea is to apply random restrictions to these matching
variables repeatedly on the choice of F , i.e., to determine the values of F in multiple steps. In
the execution of A, we determine the disclosure levels for F as follows. On input (M,x, 1T

4
),

A applies only the first i := 2−1 log log T restrictions to the DNF formula φM corresponding to
M?(x) (where i is selected so that circular calls for A will not occur). If φM becomes a constant
by these restrictions, then A returns the same constant; otherwise, A returns “⊥”. We remark
that, whenever A(M,x, 1T

4
) returns some constant, the answer by A is consistent with the answer

of MO(x) executed in T steps. To solve the NPO problem LO determined by a polynomial-time
nondeterministic machineMO on average, we query (M,x, 1T

4
) toA for an input x and a sufficiently

large T with respect to the time bound of M and return the answer from A. When the instance
x is selected by some efficient sampler SO, SO cannot access F at high disclosure levels with high
probability, and the instance x is independent of such values of F . In this case, the average-
case easiness for NP follows from the switching lemma for DNFs on matching variables. Roughly
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speaking, the lemma shows that the output of any small depth DNF formula on matching variables
is fixed to a constant with high probability by applying a random restriction. Since the simulation
of M by A is regarded as the application of a random restriction to φM , the switching lemma
guarantees that the value of φM is determined with high probability, and it must be the correct
answer for LO. Meanwhile, inverting F remains hard in the worst case as long as the inverting
algorithms do not have sufficient resources to fully access F .

The bottleneck in the above-mentioned construction lies in the bad parameters of the switching
lemma for matching variables. Let N be the number of unassigned entries of Fn (for some n ∈ N)
at some stage when selecting random restrictions. To obtain the nontrivial bound on the failure
probability of A (i.e., the probability that φM does not become a constant by a random restriction)
by applying the switching lemma for matching variables, we need to additionally assign at least
N −

√
N entries of Fn. To obtain the lower bound t(n) = 2Ω(n/ logn) in the result, we need to

apply such random restrictions imax(n) := 2−1 log log t(n) times to prevent t(n)-time algorithms
from accessing all random restrictions (i.e., full access to F) by A. In these settings of parameters,
all the values of F are assigned before applying random restrictions imax(n) times. In other words,
t(n)-time algorithms can access to all the information about F by A, which is sufficient to invert
F efficiently.

Switching Lemma on General Domains

Now, we present the key idea for improving the lower bound. In this section, for simplicity, we
focus on the case of separation from DistNP.

The key idea for the improvement is to apply a switching lemma on general domains instead of
the switching lemma for matching variables, where the variables are separated into several blocks
and take different alphabets in different blocks. The size of the alphabets and the probability of
random restrictions also vary among the blocks. We first present the details of the switching lemma
and then explain the oracle construction and the importance of large alphabets.

Let Σ be a finite set of alphabets. For a variable x that takes a value in Σ, we define a literal
on x as a condition taking either of the following forms for some a ∈ Σ: (i) x = a or (ii) x 6= a.
Using these generalized literals, we define DNFs, conjunctive normal form formulas (CNFs), and
circuits of general domains as the usual ones of a binary domain.

For p ∈ [0, 1] and a set V of variables on Σ, we define a p-random restriction ρ : V → Σ ∪ {∗}
by the following procedure. First, we select a random subset S ⊆ V of size bp|V |c uniformly at
random. Then, we set ρ(x) = ∗ (which represents “unassigned”) for x ∈ S and assign a uniformly
random value ρ(x) from Σ for each x ∈ V \ S. For partial assignments ρ1 to variables V1 and ρ2 to
variables V2, we use the notation ρ1ρ2 to represent the composite restriction to V1 ∪ V2. Then, our
technical lemma is stated as follows.

Lemma 9.1.4. For m ∈ N, let Σ1, . . . ,Σm be finite sets of alphabets, and let V1, . . . , Vm be disjoint
sets of variables, where each variable in Vi takes a value in Σi. For each i ∈ [m], let ρi be a pi-
random restriction to Vi, where pi ∈ [0, 1]. Then, for any t-DNF φ on the variables in V1∪ . . .∪Vm
and k ∈ N ∪ {0}, we have

Pr
ρ1,...,ρm

[φ|ρ1...ρm is not expressed as k-CNF ] ≤ O
(
mt ·max

i∈[m]
pi|Σi|2

)k+1

.
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Tight Separation between UP ∩ coUP and DistNP

Here, we present the oracle construction for separating UP ∩ coUP and DistNP and explain why
large alphabets on the switching lemma are important for the tight lower bound t(n) = 2Ω(n/ logn).

In our construction, an oracle O consists of two oracles V and A, where V makes UP∩coUP hard,
and A makes DistNP easy on average in the relativized world. Further, V and A are determined by
the internal random function f = {fn}n∈N, where fn : {0, 1}n → Σn, and Σn is a subexponentially
large alphabet in n. For each n ∈ N, we select the random function fn by repeatedly applying p(n)-
random restrictions imax(n) := Θ(log log t(n)) times and determine the disclosure levels from 1 to
imax(n) (i.e., full access to fn) on the execution of A. We define V as V(x, y) = 1 if F (x) = y; other-
wise, V(x, y) = 0. We also define the restricted NP oracle A similarly to the previous construction.
The easiness of DistNP follows from the switching lemma on general domains (Lemma 9.1.4).

In our oracle construction, computing fn is hard for t(n)-time algorithms because any t(n)-time
algorithm cannot obtain any information of f of the highest disclosure level from A by the choice of
imax(n). In fact, we can obtain the lower bound close to |Σn| on the time complexity of computing
fn, even with access to V. The lower bound for UPO ∩ coUPO holds because computing fn is
reducible to the following language LO in UPO ∩ coUPO:

LO = {(x, i) : n ∈ N, x ∈ {0, 1}n, i ∈ [n], and ∃y ∈ Σn s.t. fn(x) = y and 〈y〉i = 1},

where 〈y〉 denotes a (proper and unique) binary representation of y ∈ Σn.
Next, we explain the importance of large alphabets. It is natural to attempt to use a standard

switching lemma on binary alphabets because the parameters achievable by such a switching lemma
are significantly better than those achievable by a switching lemma on matching variables. We
explain below why this approach is insufficient to obtain the tight lower bound. Let fn : {0, 1}n →
{0, 1}poly(n) be a random function constructed by repeatedly applying the standard p(n)-random
restrictions on each bit of fn(x) for every x ∈ {0, 1}n. Note that the output length of fn must
be at most poly(n) in order to make sure that LO ∈ UPO ∩ coUPO. There are two conflicting
requirements on the probability p(n).

On one hand, to obtain the lower bound t(n) = 2Ω(n/ logn), we need to let p(n) be subex-
ponentially small for the following reasons. Consider the case in which an NPO problem LO is
determined by a polynomial-time nondeterministic machine MO, and query MO to A for some
time bound T = poly(n) to solve LO on average. For each instance x ∈ {0, 1}n, MO(x) may
access fn′ by A for some n′ ≈ t−1(T ) such that imax(n′) (= Θ(log log t(n′))) is slightly larger than
the disclosure level Θ(log log T ), which is accessible to M?. In this case, random restrictions for
fn′ are applied in the simulation of MO(x) by A. To bound the failure probability of A above
by 1/q(n) for some q(n) = poly(n) by the switching lemma, we need to select p(n) to satisfy
p(n′) ≈ p(t−1(T )) = p(t−1(poly(n))) ≤ 1/q(n). To satisfy this requirement, we need to select a
subexponentially small p(n).

On the other hand, p(n) must not be subexponentially small in order to show the worst-case
lower bound on the time complexity of LO. In general, it is possible to obtain approximately 2dn

as the lower bound on the time complexity of computing fn, where dn is the maximum number of ∗
contained in fn(x) for some x ∈ {0, 1}n at the (imax(n)− 1) disclosure level, where remember that
imax(n) − 1 = Θ(log log t(n)). However, when we apply random restrictions for binary variables
with a subexponentially small probability p(n), it holds that dn = O(1) with high probability;
hence, we cannot obtain the desired lower bound 2Ω(n/ logn) by just using a switching lemma on
binary alphabets.
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The switching lemma on general domains insists that the size of the alphabets only affects
the probability of a random restriction multiplicatively. Thus, we can select subexponentially
many alphabets even for subexponentially small p(n) without affecting the failure probability. This
yields sufficient ∗s in fn(x) at the (imax(n)−1) disclosure level, and interestingly, it yields the tight
subexponential lower bound for UP ∩ coUP.

We remark that we can extend the above-mentioned argument to the case of the separation
between UP∩coUP and DistPH by extending Lemma 9.1.4 to constant-depth circuits as the standard
switching lemma.

Extending the Hardness from UP ∩ coUP to Learning

To extend the hardness result to learning, we change the oracle V in the above-mentioned con-
struction to a new oracle F determined as follows. In addition to the random function f =
{fn}n∈N, where fn : {0, 1}n → Σn, we select an internal random function g = {gn}n∈N, where
gn : {0, 1}n × {0, 1}n → {0, 1} by repeatedly applying random restrictions. Intuitively, we use g
as the target function gz(x) := g(z, x) for each z ∈ {0, 1}∗ and f as the pair of locks and keys to
access g through the oracle F . Specifically, we define the oracle F by F(z, y, x) = gz(x) if f(z) = y;
otherwise, F(z, y, x) = 0.

Then, we construct an oracle O consisting of F and the restricted NP oracle A. The average-
case easiness of DistNP follows from the switching lemma on general domains in a similar way,
where we identify each entry fn(z) (for z ∈ {0, 1}n) with a variable on Σn and identify each entry
g(z, x) (for z, x ∈ {0, 1}n) with a binary variable.

Now, we present the proof sketch of the hardness of learning. We consider the following concept
class CO = {hz,y : hz,y(x) = F(z, y, x) for z ∈ {0, 1}n and y ∈ Σn}. Since a worst-case learner L
for CO learns F(z, y, x) for all z ∈ {0, 1}n and y ∈ Σn, such an L must learn gz for all z ∈ {0, 1}n.
Note that the learner L can access F but not gz through F unless the key f(z) is identified.

We will show the upper bound on the probability that L succeeds in learning CO without
sufficient resources for full access to f and g by A. There are the following two cases for L: (1) L
finds f(z) for all z with notable probability, or (2) L learns gz without identifying f(z) for some z.
In the former case, L essentially succeeds in computing f , which must be hard in the worst case, as
discussed in the case of UP ∩ coUP. In the latter case, if we consider the case of learning gz on the
uniform distribution over unrevealed entries of gz at the (imax(n)−1) disclosure level, then L cannot
distinguish the value of gz with a truly random value on the support of the example distribution
even with access to A. Thus, L cannot learn gz even weakly on such an example distribution. In
fact, we can show that there exists an index z with high probability such that the value f(z) is
unassigned and many ∗s remain in the truth table of gz at the (imax(n)− 1) disclosure level. This
yields the subexponential lower bound of weak learning on almost-uniform distributions.

Based on the ideas above, we prove Theorems 9.1.1 and 9.1.2 in subsequent sections. In Sec-
tion 9.1.2, we show the switching lemma on general domains. In Section 9.1.3 and 9.1.4, we prove
Theorems 9.1.2 and 9.1.1.

9.1.2 Switching Lemma on General Domains

In this section, we extend the switching lemma of a binary domain to general domains. Our proof
mainly follows the proof presented by Razborov [Raz93].
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We remark that, for p ∈ [0, 1] and a set V of variables on alphabets Σ, we define a p-random
restriction ρ : V → Σ ∪ {∗} by the following procedure. First, we select a random subset S ⊆ V
of size bp|V |c uniformly at random. Then, we set ρ(x) = ∗ for x ∈ S and assign a random value
ρ(x) ∼ Σ for each x ∈ V \S. For every restriction ρ to S and every function f defined on S, we let
f |ρ denote the restricted function obtained by applying a partial assignment to f according to ρ.

Lemma 9.1.5 (Lemma 9.1.4). For m ∈ N, let Σ1, . . . ,Σm be finite sets of alphabets, and let
V1, . . . , Vm be disjoint sets of variables, where each variable in Vi takes a value in Σi. For each
i ∈ [m], let ρi be a pi-random restriction to Vi, where pi ∈ [0, 1]. Then, for any t-DNF φ on the
variables in V1 ∪ . . . ∪ Vm and k ∈ N ∪ {0}, we have

Pr
ρ1,...,ρm

[φ|ρ1...ρm is not expressed as k-CNF ] ≤ O
(
mt ·max

i∈[m]
pi|Σi|2

)k+1

.

Proof. Each literal in φ of the form (x 6= a) (for some a ∈ Σi) is expressed as
∨
b∈Σi:b 6=a(x = b).

Note that if we apply this transformation to all literals of the form (x 6= a) in φ and expand them
to obtain a DNF formula, these operations do not change the width of the original DNF φ. Thus,
without loss of generality, we can assume that φ does not contain any literal of the form (x 6= a).

For each i ∈ [m], let Mi = |Σi|, Ni = |Vi|, and ni = bpiNic. To prove the lemma, we assume
that φ|ρ1...ρm is not expressed as k-CNF and show that ρ = ρ1 · · · ρm has a short description for
estimating the number of such restrictions.

We can select a partial assignment π to V1∪ . . .∪Vm of size at least k+1 such that φ|ρπ ≡ 0, but
for any proper subrestriction π′ of π, φ|ρπ′ 6≡ 0 (otherwise, φ|ρ must be expressed as k-CNF). We
also select subrestrictions πj of π and restrictions σj inductively on j ≤ s (≤ k+ 1) by the following
procedure. Assume that (π1, σ1), . . . , (πi−1, σj−1) have been determined, and π1 · · ·πj−1 6≡ π; if not,
we complete the procedure. Since π1 · · ·πj−1 is a proper subrestriction of π, we have φ|ρπ1···πj−1 6≡ 0,
and we can select the first term τj (in some fixed order) such that the value of τj is not determined
by ρπ1 · · ·πj−1. Since τj |ρπ ≡ 0, there must exist a set Sj of variables that are contained in τj ,
unassigned by π1 · · ·πj−1 but assigned by π. We define σj as a partial assignment to Sj , which
is consistent with the literals in τj . We also define πj as the corresponding subrestriction of π
to Sj . This procedure is repeated until π1 · · ·πj ≡ π holds; let s denote the index j at the end.
For convenience, we trim Ss (and πs, σs correspondingly) in some arbitrary manner to satisfy
k + 1 = |S1 ∪ · · · ∪ Ss|.

For each j ∈ [s], let Pj denote the set of indices in [t], which indicates the position of the
variables in Si among the literals in τj , and let Qj denote Qj = (πj(v1), . . . , πj(v|Pj |)), where vj′ is
the j′-th variable indicated by Pj . For each i ∈ [m], let ki be the number of variables in Vi that are
assigned by σ1 . . . σs, i.e., we have k + 1 =

∑
i ki.

We claim that ρ can be reconstructed from the composite restriction ρ′ = ρσ1 · · ·σs, P1, . . . , Ps,
and Q1, . . . , Qs by the following procedure: (0) let j = 1; (1) find the first term not to become
0 by ρ′, which must be τj by the construction; (2) obtain σj and πj from ρ′, Pj , and Qj ; (3) let
ρ′ := ρπ1 . . . πjσj+1 . . . σm and j := j + 1, and repeat (1) and (2) to obtain σj and πj ; (4) repeat
(3) until all of σ1, . . . , σs are obtained; then, ρ can be reconstructed from ρ′ and σ1, . . . , σs.

Therefore, ρ is represented by P1, . . . , Ps, Q1, . . . , Qs, and the composite restriction ρ′ that has
(ni − ki) ∗s on Vi for each i ∈ [m]. For each choice of k1, . . . , km such that k + 1 =

∑
i ki and each

i ∈ [m], the possible choice of Pi is at most tki , and the possible choice of Qi is at most Mki
i . Thus,
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the possible number of such expressions is at most

C·
∑

ki:k+1=
∑
i ki

∏
i∈[m]

(
Ni

ni − ki

)
·MNi−ni+ki

i ·tki ·Mki
i = C·

∑
ki:k+1=

∑
i ki

tk+1·
∏
i∈[m]

(
Ni

ni − ki

)
·MNi−ni+ki

i ·Mki
i ,

for some absolute constant C.

If maxi∈[m] ni/Ni ≥ 1/2, then the lemma holds trivially because 2 maxi∈[m] pi ≥ 1. Therefore,
we can assume that ni/Ni < 1/2, i.e., ni < Ni/2 for each i ∈ [m]. Then, we can establish the upper
bound on the probability as follows:

Pr
ρ1,...,ρm

[φ|ρ1...ρm is not expressed as k-CNF ] ≤ C ·
∑

ki:k+1=
∑
i ki

tk+1 ·
∏
i∈[m]

(
Ni

ni−ki

)
·MNi−ni+2ki

i(
Ni
ni

)
·MNi−ni

i

≤ C ·
∑

ki:k+1=
∑
i ki

tk+1 ·
∏
i∈[m]

nkii
(Ni − ni)ki

M2ki
i

≤ C ·
∑

ki:k+1=
∑
i ki

tk+1 ·max
i∈[m]

(
niM

2
i

Ni − ni

)k+1

≤ C · (mt)k+1 ·max
i∈[m]

(
niM

2
i

Ni − ni

)k+1

≤ C · (mt)k+1 ·max
i∈[m]

(
2niM

2
i

Ni

)k+1

= O

(
mt ·max

i∈[m]

niM
2
i

Ni

)k+1

= O

(
mt ·max

i∈[m]
pi|Σi|2

)k+1

.

The above-mentioned lemma implies the following by considering the negation of a given CNF
formula.

Lemma 9.1.6. For m ∈ N, let Σ1, . . . ,Σm be finite sets of alphabets, and let V1, . . . , Vm be disjoint
sets of variables, where each variable in Vi takes a value in Σi. For each i ∈ [m], let ρi be a pi-
random restriction to Vi, where pi ∈ [0, 1]. Then, for any t-CNF φ on the variables in V1∪ . . .∪Vm
and k ∈ N ∪ {0}, we have

Pr
ρ1,...,ρm

[φ|ρ1...ρm is not expressed as k-DNF ] ≤ O
(
mt ·max

i∈[m]
pi|Σi|2

)k+1

.

Now, we extend the above-mentioned results to constant-depth circuits on general domains.
For any depth-d circuit, we number each layer from 0 (bottom) to d (top), where layer 0 consists
of input gates and layer d consists of the topmost ∨- or ∧-gate. Without loss of generality, we can
assume that each depth-d circuit satisfies the following properties: (1) each input gate is a literal
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taking the form of either (x = a) or (x 6= a) for some alphabet a; (2) each layer (from 1 to d)
contains either ∨-gates or ∧-gates; and (3) the type of gate (i.e., ∨ or ∧) alternates at adjacent
layers. For any depth-d circuit, we define its width by the maximum number of literals (i.e., input
gates) that are connected to the same gate and define its internal size by the total number of gates
at layers 2, 3, . . . d (note that we do not contain the number of gates at layer 1). Then, our technical
lemma is stated as follows.

Lemma 9.1.7. For m ∈ N, let Σ1, . . . ,Σm be finite sets of alphabets, and let V1, . . . , Vm be disjoint
sets of variables, where each variable in Vi takes a value in Σi. For each i ∈ [m], let ρi be a
pi-random restriction to Vi, where pi ∈ [0, 1]. Then, for any depth-d circuit C on the variables in
V1 ∪ . . . ∪ Vm of width ≤ t and internal size ≤ c2t (for some constant c), we have

Pr
ρ1,...,ρm

[C|ρ1...ρm is not a constant ] ≤ O
(
mt ·max

i∈[m]
p

1
d
i |Σi|2

)
.

Proof. For each i ∈ [d], let si be the number of gates at layer i.
First, we consider only the case where the following holds: for all i ∈ [m],

bpiNc ≤ bp1/d
i bp

1/d
i · · · bp1/d

i Nc · · · cc︸ ︷︷ ︸
d− 1 times

. (9.1)

In this case, we can regard a pi-restriction ρi as consecutive applications of p
1/d
i -random re-

strictions ρ
(1)
i , . . . , ρ

(d−1)
i , and one remaining random restriction. For each i ∈ [d − 1], let ρ(i) ≡

ρ
(i)
1 . . . ρ

(i)
m .

We assume that layer 1 consists of ∧-gates (in the case of ∨-gates, we can show the lemma in
the same manner). In this case, each gate in layer 2 is regarded as t-DNF; thus, we can apply
Lemma 9.1.5 and show that all the gates at layer 2 are transformed into t-CNF with a probability

of at least 1 − s2 · (c′mt · maxi∈[m] p
1/d
i |Σi|2)t for some absolute constant c′. If such an event

occurs, then each ∨-gate at layer 2 collapses into its parent node. Thus, the depth decreases by
1. Since the resulting depth-(d − 1) circuit has width t, we can apply Lemma 9.1.6 and the same

argument at layer 3. We repeat the same argument (d − 2) times for ρ
(1)
i , . . . , ρ

(d−2)
i at layers

2, . . . , d, respectively. Then, the resulting circuit becomes a depth-2 circuit of width t (i.e., t-DNF
or t-CNF) with a probability of at least

1− (s2 + s3 + . . .+ sd) · (c′mt ·max
i∈[m]

p
1/d
i |Σi|2)t+1 ≥ 1− (c2t) · (c′mt ·max

i∈[m]
p

1/d
i |Σi|2)t+1.

We apply Lemmas 9.1.5 and 9.1.6 and show that the resulting circuit becomes a constant by

ρ(d−1) with a probability of at least 1− c′mt ·maxi∈[m] p
1/d
i |Σi|2. Without loss of generality, we can

assume that 2c′mt ·maxi∈[m] p
1/d
i |Σi|2 < 1; otherwise, the lemma holds trivially. Thus, we conclude

that

Pr
ρ1,...,ρm

[C|ρ1...ρm is not a constant ] ≤ Pr
ρ(1),...,ρ(d−1)

[
C|ρ(1)···ρ(d−1) is not a constant

]
≤ c(2c′mt ·max

i∈[m]
p

1/d
i |Σi|2)t+1 + c′mt ·max

i∈[m]
p

1/d
i |Σi|2

≤ 2cc′mt ·max
i∈[m]

p
1/d
i |Σi|2 + c′mt ·max

i∈[m]
p

1/d
i |Σi|2

= O

(
mt ·max

i∈[m]
p

1
d
i |Σi|2

)
.

199



Next, we consider the case where (9.1) does not hold for some i ∈ [m]. We can assume that

p
1/d
i < 1/4; otherwise, we have 1/4 ≤ p

1/d
i ≤ maxi∈[m] p

1/d
i |Σi|2, and the lemma holds trivially. In

this case, we can show that

piN ≥ bpiNc

> bb· · · bp1/d
i Nc · · · cc

≥ bb· · · bp1/d
i (p

1/d
i N − 1)c · · · cc

≥ p(d−1)/d
i N − (1 + p

1/d
i + p

2/d
i + · · ·+ p

(d−2)/d
i )

≥ p(d−1)/d
i N − 2.

By rearranging the above, we have

2

p
(d−1)/d
i N

≥ 1− p1/d
i >

3

4
,

and

piN = p
1/d
i · p(d−1)/d

i N <
1

4
· 8

3
=

2

3
.

Therefore, bpiNc = 0 holds, and all the variables in Vi are fully determined by ρi. Thus, we can
ignore such i in the argument above.

9.1.3 Oracle Separation: UP ∩ coUP and Distributional PH

Now, we improve the oracle separation in [Imp11] by applying Lemma 9.1.7. In this section, we
present the following theorem (i.e., the first item of Theorem 9.1.2). Note that the second item of
Theorem 9.1.2 is shown in a similar way by changing the parameters (we will discuss this at the
end of this section).

Theorem 9.1.8. For any function ε(n) such that ω(1) ≤ ε(n) ≤ n/ω(log2 n), there exists an oracle

Oε satisfying (1) DistPHOε ⊆ AvgPOε and (2) UPOε ∩ coUPOε 6⊆ SIZEOε [2
O( n

ε(n) logn
)
].

Construction of Random Oracle

Let ε : N→ N denote a parameter such that ω(1) ≤ ε(n) ≤ n/ω(log2 n).

Construction. Oε = V +A, where each oracle is randomly selected by the following procedure:

1. Define functions t, p, `, and imax as

t(n) = 2
n

ε(n)·logn , p(n) = t(n)−ε(n)1/2
, `(n) = t(n)2, and imax(n) = log log t(n).

2. For each n ∈ N, define a set Vn,0 of variables on alphabet Σn of size `(n) as

Vn,0 = {Fx : x ∈ {0, 1}n}.

We assume that each alphabet in Σn has a binary representation of length at most dlog `(n)e.
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3. For each n ∈ N and i ∈ [imax(n)− 1], we inductively (on i) define a p(n)-random restriction
ρn,i to Vn,i−1 and define a subset Vn,i ⊂ Vn,i−1 of variables as

Vn,i = {v ∈ Vn,i−1 : ρn,i(v) = ∗}.

We also define ρn,imax(n) as a 0-random restriction (i.e., a full assignment) to Vn,imax(n)−1. Let
ρn,i ≡ ρn,imax(n) for i ≥ imax(n) + 1. For simplicity, we may identify ρn,i with the composite
restriction ρn,1 . . . ρn,i to Vn,0 for each n and i.

4. Let f = {fn}n∈N, where fn : {0, 1}n → Σn is a random function defined as fn(x) = ρn,imax(n)(Fx).

5. Define V as follows:

V(x, y) =

{
1 if y = f(x)

0 otherwise.

6. Define A as follows: On input (〈M,d〉, x, 1T 2
), where M is an oracle machine, d ∈ N, x ∈

{0, 1}∗, and T ∈ N, the oracle A returns the value in {0, 1,⊥} determined according to the
following procedure:

1: Let i := log log T .
2: Construct a depth d+ 2 circuit C corresponding to the quantified formula

∃w1 ∈ {0, 1}|x|∀w2 ∈ {0, 1}|x|, . . . , Qdwd ∈ {0, 1}|x|,MO(x,w1, w2, . . . , wd),

where Qd = ∃ if d is an odd number; otherwise, Qd = ∀.
First, we construct a depth d circuit that represents the above-mentioned quantified
formula, where each leaf corresponds to MO(x,w1, w2, . . . , wd) for some w1, w2, . . . , wd,
where we truncate w1, w2, . . . , wd into a string of length T because we will execute M
in only T steps. Then, we replace each leaf with a DNF formula of width T to obtain
the circuit C, where each term corresponds to one possible choice of V such that
MV+A(x,w1, w2, . . . , wd) halts with an accepting state after execution in T steps.
In other words, we consider each function f ′ = {f ′n}Tn=1, where f ′n : {0, 1}n → Σn,
define an oracle V ′ in the same manner as V, and execute MV

′+A(x,w1, w2, . . . , wd)
in T steps. If M queries (x, y) to V ′, and the answer is 1 (resp. 0), then we add a
literal (Fx = y) (resp. (Fx 6= y)) to the corresponding term. Finally, we construct
a circuit C =

∨
f ′ Cf ′ on V1,0, . . . , VT,0.

By the construction described above, the above-mentioned quantified formula is sat-
isfied with the execution of MV+A in T steps iff C returns 1 when it is restricted
by ρ1,imax(1), . . . , ρT,imax(T ). We can also easily verify that the width of C is at most

T , and the internal size of C is at most 2T+1.
3: If C|ρ1,i,...,ρT,i ≡ b for some b ∈ {0, 1}, then return b; otherwise, return “⊥”.

To verify that the above-mentioned A is not circular on recursive calls for A, it is sufficient to
show the following.

Lemma 9.1.9. For each input, the value of A(〈M,d〉, x, 1T 2
) is determined only by ρn,j for n ≤ T

and j ≤ log log T (= i).
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Proof. We show the lemma by induction on T . We consider the execution of (〈M,d〉, x, 1T 2
). We

remark that A first makes a depth d+ 2 circuit C based on M , and C is independent of the value
of V.

We assume that M makes some valid query (〈M ′, d′〉, x′, 1T ′2) to A recursively on constructing
C. Since the length of such a query is at most T , we have T ′2 ≤ T . If we let i′ = log log T ′, then
we have

i′ = log log T ′ ≤ log log T
1
2 = log log T − 1.

By the induction hypothesis, the recursive answer of A is determined by only ρn,j for n ≤ T ′ and
j ≤ i − 1, and so is C. The lemma holds because the answer of A is determined by restricting C
by ρn,j for n ≤ T and j ≤ i.

Lemma 9.1.10. For ε(n) = ω(1), it holds that |Vn,imax(n)−1| = 2Ω(n) for sufficiently large n.

Proof. Since ε(n) = ω(1), we have t(n) ≤ 2n and imax(n) ≤ log n for sufficiently large n. Thus, for
sufficiently large n, we have

p(n)imax(n)−1 ≥ t(n)−ε(n)1/2 logn = 2
− n logn

ε(n)1/2 logn ≥ 2
− n
ω(1) ,

and |Vn,imax(n)| = Ω(p(n)imax(n)−1 · 2n) = 2Ω(n).

Note that we may omit the subscript ε from Oε.

Worst-Case Hardness of UP ∩ coUP

We introduce the following useful lemma to show the worst-case hardness.

Lemma 9.1.11 ([GT00]). Let S, T ⊆ {0, 1}∗ be finite subsets of the same size N , and let b : S → T
be a bijection. Let A? be a deterministic oracle machine that makes at most q queries to b. If
Ab(y) = b−1(y) for all y ∈ T , then b has the representation of length at most 2 log

(
N
a

)
+log((N−a)!)

when A is given, where a = N/(q + 1).

Now, we show the subexponential worst-case hardness of computing f .

Theorem 9.1.12. For any function ε such that ω(1) ≤ ε(n) ≤ n/ω(log2 n), with probability 1 over

the choice of Oε, no nonuniform oracle machine can compute f within t(n) = 2
n

ε(n)·logn steps, where
f is the random function selected in Oε.

Proof. First, we assume that for any nonuniform oracle machine A and any sufficiently large input
size n ∈ N,

PA,n := Pr
O

[
∀x ∈ {0, 1}n, AO(x) outputs f(x) within t(n) steps

]
≤ 2−Ω(t(n)2). (9.2)

Since every nonuniform t(n)-time oracle machine is described by O(t(n)) bits, by the union bound,
we have that for any sufficiently large n ∈ N, no nonuniform t(n)-time oracle machine satisfies the
event above with probability at least 1− 2O(t(n)) · 2−Ω(t(n)2) = 1− 2−Ω(t(n)2) = 1− n−ω(1) over the
choice of O, where we use the assumption that ε(n) ≤ n/ω(log2 n). By the Borel–Cantelli lemma,
the same event holds for all sufficiently large n ∈ N, i.e., no nonuniform t(n)-time oracle machine
can compute f , with probability 1 over the choice of O.
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In the remainder of the proof, we show Eq. (9.2). Fix sufficiently large n ∈ N and a nonuniform
t(n)-time oracle machine A arbitrarily so that N := |Vn,imax(n)−1| = 2Ω(n) as in Lemma 9.1.10.

First, we fix random restrictions ρn′,i except for ρn,imax(n) arbitrarily and use the notation ρ to
denote the restriction. We remark that ρ determines Vn,imax(n)−1. Even under the condition on ρ,
the value of fn(x) for each x such that Fx ∈ Vn,imax(n)−1 is selected from Σn uniformly at random
(by ρn,imax(n)). For any choice of ρ, we can divide a random selection of ρn,imax(n) into the following
two steps without loss of generality: (i) select N elements y1, . . . , yN ∼ Σn uniformly at random,
and (ii) select a random bijection b : Vn,imax(n)−1 → [N ] to assign each value of f(x) as f(x) ≡ yb(x)

for each x ∈ Vn,imax(n)−1.

We consider an arbitrary choice of O except for the aforementioned bijection b and use the
notation C to refer to such a partial choice of O. We regard C as a condition on the choice of
O. We say that the partial choice C is bad if there are two distinct indices j1, j2 ∈ [N ] such that
yj1 = yj2 . Since y1, . . . , yN are uniformly and independently selected from |Σn| = `(n) elements, by
the union bound, we obtain that

Pr
O

[C is bad ] ≤ N2 · 2−`(n) ≤ 22n · 2−`(n) = 2−Ω(t(n)2).

Below, we assume the event that C is not bad. Under this condition, we can identify the random
bijection b with a random bijection b′ that maps {y1, . . . , yN} to Vn,imax(n)−1.

Since we execute A in t(n) steps, the length of the query made by A is at most t(n). Thus, A
can only access A(M,x, 1T

2
) for T ≤ t(n)1/2. For such T , we have

i = log log T ≤ log log t(n)− 1 = imax(n)− 1.

Therefore, by Lemma 9.1.9, the answers of A to queries made by A are determined only by ρ.

Suppose that AO(x) = f(x) for all x ∈ {0, 1}n. Then, we can obtain a deterministic inverter I
for b′ of the query complexity at most t(n), where I simulates the oracle by using the embedded
ρ, C and its own query access to b′. Particularly, I accesses b′ only for answering the queries of the
form V(x, ·) for some x ∈ Vn,imax(n)−1. However, by Lemma 9.1.11, such a bijection b′ is represented

by 2 log
(
N
a

)
+ log((N − a)!) bits, where a = N/(t(n) + 1), when A, ρ, and C are given. Thus, we

obtain that

a =
N

t(n) + 1
≥ 2Ω(n)

2O(n/ logn)
= 2Ω(n),

and

Pr
O

[
∀x ∈ {0, 1}n, AO(x) = f(x)

∣∣ρ, C is not bad
]
≤ Pr

b′

[
∀x ∈ Vn,imax(n)−1, I

b′(x) = b′−1(x)
∣∣∣ρ, C is not bad

]
≤
(
N
a

)2 · (N − a)!

N !

≤
(
N

a

)
· 1

a!

≤
(
Ne

a

)a
· 1√

2πa

( e
a

)a
≤ (e(t(n) + 1))a ·

( e
a

)a
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≤

(
2O(n/ logn)

a

)a
≤ 2−a = 2−2Ω(n)

.

Thus, for any choice of ρ,

Pr
O

[
∀x ∈ {0, 1}n, AO(x) = f(x)

∣∣ρ]
≤ Pr
O

[C is bad ] + Pr
O

[
∀x ∈ {0, 1}n, AO(x) = f(x)

∣∣ρ, C is not bad
]

≤ 2−Ω(t(n)2) + 2−2Ω(n)
= 2−Ω(t(n)2).

Therefore, we conclude that

PA,n = E
ρ

[
Pr
O

[
∀x ∈ {0, 1}n, AO(x) outputs f(x) within t(n) steps

∣∣ρ]]
≤ E

ρ

[
2−Ω(t(n)2)

]
= 2−Ω(t(n)2).

Corollary 9.1.13. For any function ε(n) such that ω(1) ≤ ε(n) ≤ n/ω(log2 n), with probability 1

over the choice of Oε′ for ε′(n) =
√
ε(n), we have UPOε′ ∩ coUPOε′ 6⊆ SIZEOε′ [2

O( n
ε(n) logn

)
].

Proof. Fix a random oracle O = Oε′ arbitrarily. For each alphabet y ∈ Σn (n ∈ N), we use the
notation 〈y〉 to refer to its unique binary expression of length l := dlog `(n)e. We consider the
following language LO:

LO = {(x, i) : n ∈ N, x ∈ {0, 1}n, i ∈ [l], and ∃y ∈ Σn s.t. fn(x) = y and 〈y〉i = 1}.

Obviously, y := fn(x) is a unique witness for both statements 〈x, i〉 ∈ LO and 〈x, i〉 /∈ LO by
verifying whether V(x, y) = 1 and yi = 1 hold. Thus, LO ∈ UPO ∩ coUPO.

Suppose that UPO ∩ coUPO ⊆ SIZEO[2O(n/(ε(n) logn))]. Then, there exists a 2O(n/(ε(n) logn))-size
circuit AO that solves LO. Now, we can construct a nonuniform oracle machine BO to compute
f such as, for a given input x ∈ {0, 1}n, BO executes bi = AO(〈x, i〉) for each i ∈ [l] and outputs
b1 ◦ · · · ◦ bl by using the standard transformation from circuits to nonuniform Turing machines.

Let n′ the upper bound on |〈x, i〉| for all x ∈ {0, 1}n and i ∈ [l], and we can assume that n′ ≤ 2n
for sufficiently large n. Then, the running time of B is bounded above by 2O(2n/(ε(2n) log 2n)), which
is less than 2n/(ε

′(n) logn) for sufficiently large n. Since such an O contradicts the statement in

Theorem 9.1.12, we conclude that the event that UPO ∩ coUPO 6⊆ SIZEO[2
O( n

ε(n) logn
)
] occurs with

probability 1 over the choice of O.

Average-Case Easiness of PH

Next, we show the average-case easiness of PH.

Theorem 9.1.14. For any function ω(1) ≤ ε(n) ≤ n/ω(log2 n), the following event occurs with
probability 1 over the choice of Oε: for all triples of a polynomial-time oracle machine M?, d ∈
N, and a polynomial-time randomized oracle sampling machine S?, there exists a deterministic
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polynomial-time errorless heuristic oracle machine with a failure probability of at most n−ω(1) for
the distributional Σp

d problem (LOM ,DOS ) determined as follows: (DOS )n ≡ SO(1n) for each n ∈ N
and

LOM = {x ∈ {0, 1}∗ : ∃w1 ∈ {0, 1}|x|∀w2 ∈ {0, 1}|x|, . . . , Qdwd ∈ {0, 1}|x|,MO(x,w1, w2, . . . , wd) = 1},

where Qd = ∃ if d is an odd number; otherwise, Qd = ∀.

By the padding argument on the instance and the argument in [Imp95, Proposition 3], the
above-mentioned theorem implies the following.

Corollary 9.1.15. For any function ω(1) ≤ ε(n) ≤ n/ω(log2 n), the event DistPHOε ⊆ AvgPOε

occurs with probability 1 over the choice of Oε.

Theorem 9.1.8 immediately follows from Corollaries 9.1.13 and 9.1.15.

Proof of Theorem 9.1.14. For each n, let Tn be the maximum value of n, the square of the time for
S? to generate an instance of size n, and the square of the time to execute M? on instance size n.
Let in = log log Tn.

Now, we construct an errorless heuristic algorithm BO that is given x ∈ {0, 1}n as input and
returns a value of A(〈M,d〉, x, 1T 2

n). Remember that BO(x) = LOM (x) unless A(〈M,d〉, x, 1T 2
n)

outputs “⊥”. Thus, we show the inequality

Pn,M,S := Pr
O,S

[
A(〈M,d〉, x, 1T 2

n) = “⊥” where x← SO(1n)
]
≤ n−ω(1). (9.3)

Then, by applying Markov’s inequality, we have

Pr
O

[
Pr
S

[
BO(x) = LOM (x) where x← S(1n)

]
> n−ω(1)

]
≤ 1

n2
,

and the theorem follows from the Borel–Cantelli lemma and the countability of (M,d, S).
To show Eq. (9.3), we first show that the instance x ∈ {0, 1}n is determined by only ρn′,j for n′ ≤

Tn and j ≤ in−1 with a probability of at least 1−n−ω(1). Then, we will show that A(〈M,d〉, x, 1T 2
n)

returns LOM (x) (i.e., A(〈M,d〉, x, 1T 2
n) 6=“⊥”) with a probability of at least 1 − n−ω(1) under the

condition that x is determined by only ρn′,j for n′ ≤ Tn and j ≤ in − 1.

Let TSn be the time bound for S to generate an instance of size n. Since TSn ≤ T
1/2
n , the answers

of A to queries made by S(1n) are determined by only ρn′,j for n′ ≤ T 1/2
n and j ≤ in−2. Under the

condition on restrictions ρn′,j for n′ ≤ T 1/2
n and j ≤ in − 2, the value of x← SO(1n) is determined

by only ρn′,j for n′ ≤ Tn and j ≤ in − 1 unless S queries x ∈ {0, 1}≤T
1/2
n such that Fx ∈ V|x|,in−1

to V. Note that, if n′ ∈ N satisfies n′ < t−1(T
1/2
n ), then we have imax(n′) < log log(T

1/2
n ) =

log log Tn − 1 = in − 1. Thus, Vn′,in−1 = ∅. Otherwise, V|x|,in−1 is selected from V|x|,in−2 uniformly
at random. Thus, such a conditional probability is bounded above by

T 1/2
n max

t−1(T
1/2
n )≤n′≤T 1/2

n

bp(n′)|Vn′,in−2|c
|Vn′,in−2|

= O
(
T 1/2
n p(t−1(T 1/2

n ))
)

= O
(
T 1/2
n · (T 1/2

n )−
√
ε(n)
)

= T−ω(1)
n

= n−ω(1),
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where the last equation holds because Tn ≥ n.
Under the condition that the given instance x ∈ {0, 1}n is determined by only ρn′,j for n′ ≤ Tn

and j ≤ in − 1, the depth d + 2 circuit C constructed during the execution of A(〈M,d〉, x, 1T 2
n) is

determined only by ρn′,j for n′ ≤ Tn and j ≤ in−1. Then, applying the restriction ρn′,j for n′ ≤ Tn
and j ≤ in under this condition is regarded as a p(n′)-random restriction for Vn′,in−1 for each
n′ ≤ Tn, where we can ignore small n′ such that n′ < t−1(Tn) because imax(n′) < log log Tn = in for
such n′. Note that the width and internal size of C are at most Tn and 2Tn+1, respectively. Thus,
by applying Lemma 9.1.7, the probability that C does not become a constant (i.e., the probability
that A returns “⊥”) is at most

O

(
T 2
n max
t−1(Tn)≤n′≤Tn

p(n′)1/(d+2)`(n′)2

)
= O

(
T 2
n max
t−1(Tn)≤n′≤Tn

t(n′)−
ω(1)
d+2

+4

)
= T−ω(1)

n

= n−ω(1),

where the last equation holds because Tn ≥ n.

Oracle Separation between UP ∩ coUP and Distributional Σp
d

Theorem 9.1.16. For any constant a > 0 and d ∈ N, there exists an oracle Oa,d satisfying (1)

DistΣp
d
Oa,d ⊆ AvgPOa,d and (2) UPOa,d ∩ coUPOa,d 6⊆ SIZEOa,d [2

an
logn ].

Proof sketch. Let c = max{21(d + 2)a, 1} and ε(n) = 1/a for each n ∈ N. We construct an oracle
Oa,d, as in Section 9.1.3, where we set the parameters as follows:

t(n) = 2
n

ε(n)·logn , p(n) = t(n)−5(d+2), `(n) = t(n)2, and imax(n) =
1

c
log log t(n).

We also change the simulation overhead from T 2 to T 2c and the setting of i from log log n to
c−1 log logn in A. Then, we can easily show the analog of Lemma 9.1.9. Further, we get

p(n)imax(n)−1 ≥ t(n)−
5(d+2) logn

c = 2
− 20(d+2)an logn

c logn ≥ 2−
20
21
n,

and |Vn,imax(n)| = Ω(p(n)imax(n)−1 · 2n) = 2Ω(n). Thus, we can show the hardness of computing in

t(n) = 2
n

ε(n)·logn = 2an/ logn steps using the same proof as that of Theorem 9.1.12. It is not hard to

verify that this lower bound yields UPOa′,d ∩ coUPOa′,d 6⊆ BPTIMEOa′,d [2
an

logn ] by a proper choice of
a′ > 0 in the same way as Corollary 9.1.13. The average-case easiness of DistΣp

d also holds by the
same argument to as proof of Theorem 9.1.14, where we select Tn as the maximum value of n4,
n2c , the 2c-th power of the time for S? to generate an instance of size n, and the 2c-th power of the
time to execute M? on instance size n (see also Section 9.1.4).

9.1.4 Oracle Separation: Learning and Distributional PH

We prove the oracle separation between the hardness of learning and distributional PH. In this
section, we present Theorem 9.1.17. Note that we can obtain the second item of Theorem 9.1.1 as
a corollary to Theorem 9.1.17 (i.e., Corollary 9.1.18). The first item of Theorem 9.1.1 is shown in
a similar way by changing the parameters (we will discuss this after proving Theorem 9.1.17).
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Theorem 9.1.17. Let a : N → R>0 be a function such that n/ω(log2 n) ≤ a(n) ≤ O(1). For any

d ∈ N and sufficiently large c ∈ N, there exists an oracle O := Oa,c,d such that (1) DistΣp
d
O ⊆ AvgPO

and (2) no nonuniform 2
a(n)n
logn -time learner can weakly PAC learn SIZEO[n] with membership queries

on D , where D is an arbitrary class of example distributions such that Dn contains all uniform

distributions over subsets S ⊆ {0, 1}n with |S| ≥ 2(1−a(n)
c

)·n.

The following immediately follows from Theorem 9.1.17.

Corollary 9.1.18. For any constants a, ε > 0 and d ∈ N, there exists an oracle O such that (1)

DistΣp
d
O ⊆ AvgPO and (2) no nonuniform 2

an
logn -time learner can weakly PAC learn SIZEO[n] with

membership queries on all uniform distributions over subsets S ⊆ {0, 1}n with |S| ≥ 2(1−ε)·n.

Construction of Random Oracle

Let ε : N → N and c, d ∈ N denote parameters satisfying that Ω(1) ≤ ε(n) ≤ n/ω(log2 n) and
c ≥ max{3, 26(d+ 2)/ε(n)} for sufficiently large n.

Construction. Oε,c,d = F +A, where each oracle is randomly selected by the following procedure:

1. Define functions t, p, `, q, and imax as

t(n) = 2
n

ε(n)·logn , p(n) = t(n)−11(d+2), `(n) = t(n)4, q(n) = t(n)−3(d+2), and imax(n) =
1

c
log log t(n).

2. For each n ∈ N, define a set Vn,0 of variables on alphabet Σn of size `(n) as

Vn,0 = {Fz : z ∈ {0, 1}n}.

We assume that each alphabet in Σn has a binary representation of length at most dlog `(n)e.

3. For each n ∈ N, define a set Wn,0 of variables on alphabet {0, 1} as

Wn,0 = {Gz,x : z, x ∈ {0, 1}n}.

4. For each n ∈ N and i ∈ [imax(n)− 1], we inductively (on i) define a p(n)-random restriction
ρn,i to Vn,i−1, a q(n)-random restriction σn,i to Wn,i−1, and subsets Vn,i ⊂ Vn,i−1 and Wn,i ⊂
Wn,i−1 of variables as

Vn,i = {v ∈ Vn,i−1 : ρn,i(v) = ∗} and Wn,i = {w ∈Wn,i−1 : σn,i(w) = ∗}.

We also define ρn,imax(n) (resp. σn,imax(n)) as a 0-random restriction (i.e., a full assignment) to
Vn,imax(n)−1 (resp. Wn,imax(n)−1). Let ρn,i ≡ ρn,imax(n) and σn,i ≡ σn,imax(n) for i ≥ imax(n)+1.
For simplicity, we may identify ρn,i (resp. σn,i) with the composite restriction ρn,1 · · · ρn,i to
Vn,0 (resp. σn,1 · · ·σn,i to Wn,0) for each n and i.

5. Let f = {fn}n∈N, where fn : {0, 1}n → Σn is a random function defined as fn(z) = ρn,imax(n)(Fz).
Let g = {gn}n∈N, where gn : {0, 1}n × {0, 1}n → {0, 1} is a random function defined as
gn(z, x) = σn,imax(n)(Gz,x).
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6. Define F = {Fn}n∈N, where Fn : {0, 1}n × Σn × {0, 1}n, as follows:

Fn(z, y, x) =

{
gn(z, x) if y = fn(z)

0 otherwise.

7. Define A as follows: On input (〈M,d〉, x, 1T 2c

), where M is an oracle machine, d ∈ N,
x ∈ {0, 1}∗, and T ∈ N, the oracle A returns the value in {0, 1,⊥} determined according to
the following procedure:

1: Let i := 1
c log log T .

2: Construct a depth d+ 2 circuit C corresponding to the quantified formula

∃w1 ∈ {0, 1}|x|∀w2 ∈ {0, 1}|x|, . . . , Qdwd ∈ {0, 1}|x|,MO(x,w1, w2, . . . , wd),

where Qd = ∃ if d is an odd number; otherwise, Qd = ∀.
First, we construct a depth-d circuit that represents the above-mentioned quantified
formula whose leaf corresponds to MO(x,w1, w2, . . . , wd) for some w1, w2, . . . , wd,
where we truncate w1, w2, . . . , wd into a string of length T because we will execute
M in only T steps. Then, we replace each leaf with a DNF formula of width 2T
to obtain the circuit C, where each term corresponds to one possible choice of F
such that MF+A(x,w1, w2, . . . , wd) halts with an accepting state after execution
in T steps. In other words, we arbitrarily consider functions f ′ = {f ′n}Tn=1 and
g′ = {g′n}Tn=1, where f ′n : {0, 1}n → Σn and g′n : {0, 1}n × {0, 1}n → {0, 1}, define
an oracle F ′ in the same manner as F , and execute MF

′+A(x,w1, w2, . . . , wd) in
T steps. If M queries (z, y, x) to F ′, then we add literals to the corresponding term
in the following manner:

add literals


(Fz 6= y) if f ′(z) 6= y

(Fz = y) and (Gz,x = 0) if f ′(z) = y and g′(z, x) = 0

(Fz = y) and (Gz,x = 1) if f ′(z) = y and g′(z, x) = 1

By the construction, the above-mentioned quantified formula is satisfied when MF+A

is executed in T steps iff C returns 1 when it is restricted by ρ1,imax(1), . . . , ρT,imax(T )

and σ1,imax(1), . . . , σT,imax(T ). We can also easily verify that the width of C is at most

2T , and the internal size of C is at most 2T+1.
3: If C|ρ1,i,...,ρT,i ≡ b for some b ∈ {0, 1}, then return b; otherwise, return “⊥”.

To verify that A is not circular on recursive calls for A, it is sufficient to check the following:

Lemma 9.1.19. For each input, the value of A(〈M,d〉, x, 1T 2c

) is determined only by ρn,j and σn,j
for n ≤ T and j ≤ 1

c log log T (= i).

Proof. We show the lemma by induction on T . We consider the execution of (〈M,d〉, x, 1T 2c

). We
remark that A first makes a depth d+ 2 circuit C based on M , and C is independent of the value
of F .
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We assume that M makes some valid query (〈M ′, d′〉, x′, 1T ′2
c

) to A recursively on constructing
C. Since the length of such a query is at most T , we have T ′2

c ≤ T . If we let i′ = c−1 log log T ′,
then we have

i′ =
1

c
log log T ′ ≤ 1

c
log log T

1
2c =

1

c
log log T − 1.

By the induction hypothesis, the recursive answer of A is determined by only ρn,j and σn,j for
n ≤ T ′ and j ≤ i − 1, and so is C. The lemma holds because the answer of A is determined by
restricting C by ρn,j and σn,j for n ≤ T and j ≤ i.

Note that we may omit the subscripts ε, c, and d from Oε,c,d.

Hardness of Learning

First, we show the hardness of learning.

Theorem 9.1.20. For arbitrary parameters ε(n), c, and d such that Ω(1) ≤ ε(n) ≤ n/ω(log2 n)
and c ≥ max{3, 26(d+2)/ε(n)} (for sufficiently large n), the following event occurs with probability
1 over the choices of O := Oε,c,d: a concept class CO defined as

CO = {Fn(z, y, ·) : n ∈ N, z ∈ {0, 1}n, y ∈ Σn}

is not weakly PAC learnable (with confidence error at most 1/3) on D by nonuniform t(n) =

2
n

ε(n) logn -time algorithms, where D = {Dn}n∈N is a class of example distributions such that each

Dn contains all uniform distributions over subsets S ⊆ {0, 1}n with |S| ≥ 2
(1− 4(d+2)

cε(n)
)·n

.

To show Theorem 9.1.20, we use the following lemma.

Lemma 9.1.21. Let U be a universe of size N , and let Z ⊆ U be an arbitrary subset of size
M (≤ N). Let S ⊆ U be a random subset of size n. Then, for any γ ∈ (0, 1), we have

Pr
T

[∣∣∣∣|S ∩ Z| − M

N
n

∣∣∣∣ > γ · M
N
n

]
< 2e−2γ2·(M

N
)2·n.

We defer the proof of Lemma 9.1.21 to the end of this section. Now, we present the formal
proof of Theorem 9.1.20.

Proof of Theorem 9.1.20. For any choice of O and z ∈ {0, 1}n, we define a subset G∗z ⊆ {0, 1}n as

G∗z = {x ∈ {0, 1}n : ρn,imax(n)−1(Gz,x) = ∗}.

We let U∗z denote a uniform distribution over the elements in G∗z. For z ∈ {0, 1}n, we define a
function gz : {0, 1}n → {0, 1} as gz(x) = g(z, x) (= Fn(z, fn(z), x) ∈ CO).

We say that z ∈ {0, 1}n is a “hard” index if z ∈ Vn,imax(n)−1 and |G∗z| ≥ 2
(1− 4(d+2)

cε(n)
)·n

. We show
that fz is hard to learn on example distribution U∗z for a hard index z.

First, we estimate the probability that such a hard index exists.

Claim 9.1.22. If ε(n) ≥ Ω(1) and c ≥ 26(d+ 2)/ε(n), then we have

Pr
O

[there exists no hard index in {0, 1}n] ≤ 2−2Ω(n)
.
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Proof. Since ε(n) ≥ Ω(1), we have t(n) ≤ 2n and imax(n) ≤ 1
c log n for sufficiently large n. Thus,

we have that for sufficiently large n,

p(n)imax(n) ≥ t(n)−
11(d+2)

c
logn = 2

− 11(d+2)n logn
cε(n) logn ≥ 2−

11
26
n,

and

q(n)imax(n) ≥ t(n)−
3
c

logn = 2
− 3n logn
cε(n) logn ≥ 2−

3
26
n.

By Lemma 9.1.21, for any z ∈ {0, 1}n, we get

Pr

 ∑
z∈Vn,imax(n)−1

|G∗z| <
1

2
·
|Vn,imax(n)−1| · 2n

22n
|Wn,imax(n)−1|

 < 2 exp
(
−Ω(p(n)2imax(n)q(n)imax(n)) · 22n

)
≤ 2 exp

(
−Ω(2−

22
26
n · 2−

3
26
n · 22n)

)
≤ 2−2Ω(n)

.

If the above-mentioned event does not occur, then there exists z ∈ Vn,imax(n)−1 such that

|G∗z| ≥
|Wn,imax(n)−1|

2n+1
= Ω(q(n)imax(n) · 2n) = Ω(2

n− 3(d+2)n
cε(n) ).

Thus, |G∗z| ≥ 2
n− 4(d+2)n

cε(n) for sufficiently large n ∈ N, and such z is a hard index. �

For Theorem 9.1.20, we show that for every nonuniform t(n)-time learning algorithm L and
every sufficiently large n ∈ N,

Pr
O

[
∀z ∈ {0, 1}n and ∀D ∈ Dn, Pr

L,S

[
LO,gz(S)→ hO s.t. Pr

x∼D
[hO(x) = gz(x)] ≥ 1

2
+ δn

]
≥ 2

3

]
≤ 2−2Ω(n)

,

(9.4)

where δn = t(n)−1/4 (≥ n−ω(1)), and S is a sample set of size at most t(n) generated according to
EXgz ,D.

If Eq. (9.4) holds, then we can derive Theorem 9.1.20 as follows. Since any nonuniform t(n)-
time algorithm can be described by O(t(n))-bits, by the union bound, the event in Eq. (9.4) does
not hold for all nonuniform t(n)-time algorithms and all sufficiently large n ∈ N with probability

at least 1 − 2−2Ω(n) · 2O(t(n)) = 1 − 2−2Ω(n)
over the choice of O. By the Borel–Cantelli lemma,

with probability 1 over the choice of O, it holds that for all sufficiently large n ∈ N, there is no
nonuniform t(n)-time algorithm L satisfying that

∀z ∈ {0, 1}n and ∀D ∈ Dn, Pr
L,S

[
LO,gz(S)→ hO s.t. Pr

x∼D
[hO(x) = gz(x)] ≥ 1

2
+ δn

]
≥ 2

3
.

Thus, it suffices to show Eq. (9.4).

For z ∈ {0, 1}n, x ∈ {0, 1}n, and a sample set S, we use the notation LO,gz(S)(x) to refer to the
following procedure: (1) execute LO,gz(S); (2) if L outputs some hypothesis h within t(n) steps,
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then execute hO(x). For z ∈ {0, 1}n, we define events Iz and Jz (over the choice of O) as follows:

Iz =

(
Pr
L,S,x

[
F(z, fn(z), x′) is queried for some x′ ∈ {0, 1}n during LO,gz(S)(x)

]
≥ δ4

n

)
Jz =

(
Pr
L,S

[
LO,gz(S)→ hO s.t. Pr

x
[hO(x) = gz(x)] ≥ 1

2
+ δn within t(n) steps

]
≥ 2

3

)
,

where S is selected according to EXgz ,U∗z , and x is selected according to U∗z .

We assume that z ∈ {0, 1}n is a hard index. Then, we have |G∗z| ≥ 2
(1− 4(d+2)

cε(n)
)·n

; thus, U∗z must
be contained in Dn. Therefore, the left-hand side of Eq. (9.4) is bounded above by

Pr
O

[ ∧
z:hard

Jz

]
≤ Pr
O

[ ∧
z:hard

Jz ∨ Iz

]

≤ Pr
O

[( ∧
z:hard

Iz

)
∨

( ∨
z:hard

Jz ∧ ¬Iz

)]

≤ Pr
O

[ ∧
z:hard

Iz

]
+ Pr
O

[ ∨
z:hard

Jz ∧ ¬Iz

]
. (9.5)

Here, we let P1 and P2 represent the first and second terms of Eq. (9.5), respectively. We derive
the upper bounds on P1 and P2 as the following claims, which immediately imply Eq. (9.4).

Claim 9.1.23. P1 = PrO [
∧
z:hard Iz] ≤ 2−2Ω(n)

.

Claim 9.1.24. P2 = PrO [
∨
z:hard Jz ∧ ¬Iz] ≤ 2−2Ω(n)

.

Proof of Claim 9.1.23. First, we fix random restrictions except for ρn,imax(n) and use π to denote
the composite restriction. Note that all the hard indices are determined at this stage. Assume that
there exists a hard index of length n, and let zπ ∈ {0, 1}n be the lexicographically first hard index.
Then, we can divide ρn,imax(n) into two random selections as follows. First, we randomly select
unassigned values of fn(z) except for fn(zπ) (let π′ denote the corresponding random restriction).
Then, we select the remaining value of fn(zπ) from Σn uniformly at random.

We remark that π determines g and G∗z for all z ∈ {0, 1}n. Now, we construct a randomized
oracle machine A to compute fn(zπ) based on L, g, G∗z, π, π′, and additional oracle access to V,
where V(y) returns 1 if y = fn(zπ) (otherwise, returns 0).

On input zπ and oracle access to V, A executes L in t(n) steps for a target function gz and an
example distribution U∗z (note that examples and membership queries are simulated by g and G∗z);
if L outputs some hypothesis h, then compute h(x) for x ∼ U∗z , where A answers the queries of L
and h to O as follows:

F(z, y, x): If z = zπ, then A queries y to V; if V returns 1, then return gn(z, x)
(otherwise, return 0). In other cases, A can correctly answer F(z, y, x) because it is
determined by π and π′.

A(〈M,d〉, x, 1T 2c

): Since A executes L only t(n) steps, we can assume that the size
of h is at most t(n) and it is evaluated in time O(t(n)2). Thus, we can assume that
T 2c = O(t(n)2) and for sufficiently large n,

i =
1

c
log log T =

1

c
log logO(t(n))1/2c−1 ≤ 1

c
log log t(n)1/2c−2 ≤ 1

c
log log t(n)− c− 2

c
,
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which is strictly smaller than imax(n)(= 1
c log log t(n)) because c ≥ 3. By Lemma 9.1.19,

the answer does not depend on ρn,imax(n). Thus, A can correctly simulate A by π and
π′ in this case.

A repeats the above-mentioned executions of L and its hypothesis n/δ4
n times. If A queries y such

that V(y) = 1 at some trial, then A outputs y (= fn(zπ)) and halts (otherwise, A outputs ⊥).
By the construction, A can correctly simulate L and its hypothesis h for a target function gz

and an example distribution U∗z . It is easy to verify that the number q of the queries of A to V is
bounded as q ≤ (n/δ4

n) ·O(t(n)2) ≤ O(n) · t(n)3.
Assume that ∧z:hardIz holds. Then, L or h queries (zπ, fn(zπ), ·) to F with a probability of at

least δ4
n for each trial. Since A repeats this trial n/δ4

n-times, the failure probability of A is at most
(1− δ4

n)n/δ
4
n < 2−n. Thus, we have

Pr
O,A

[
AV(zπ) = fn(zπ)

∣∣π, π′,∧z:hardIz
]
≥ 1− 2n. (9.6)

Meanwhile, even under the condition on π and π′, the value of fn(zπ) is selected from Σn at random
independently of A. Thus, we can also show that

Pr
O,A

[
AV(zπ) = fn(zπ)

∣∣π, π′,∧z:hardIz
]
≤ q

`(n)
=
O(n)

t(n)
= n−ω(1). (9.7)

Eq. (9.7) contradicts Eq. (9.6). This indicates that there exists no hard index in this case. By
Claim 9.1.22, we conclude that

P1 = Pr
O

[ ∧
z:hard

Iz

]
≤ Pr
O

[there exists no hard index in {0, 1}n] ≤ 2−2Ω(n)
.

�

Proof of Claim 9.1.24. We fix z ∈ {0, 1}n arbitrarily, and we let O′ denote a partial choice of O
except for the values of g(z, x), where x ∈ G∗z. Then, we have

Pr
O

[¬Iz ∧ Jz] = E
O′

[
Pr
O

[
¬Iz ∧ Jz|O′

]]
.

We remark that gz is a truly random (partial) function on G∗z, even under the condition on O′.
Assume that z is a hard index, and ¬Iz ∧ Jz occurs. Let N = |G∗z|. Since z is a hard index,

N ≥ 2
(1− 4(d+2)

cε(n)
)·n ≥ 2Ω(n) holds.

By Markov’s inequality and ¬Iz, we have

Pr
L,S

[
Pr
x

[
F is asked (z, fn(z), ·) during LO,gz(S)(x)

]
≤ 4δ3

n

]
≥ 1− δn

4
.

By Jz, we also get

Pr
L,S

[
LO,gz(S)→ hO s.t. Pr

x
[hO(x) = gz(x)] ≥ 1

2
+ δn within t(n) steps

]
≥ 2

3
.

By the two above-mentioned inequalities, there exist a sample set S and a random string r for L
such that
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• LO,gz(S; r) outputs some hypothesis hO in time t(n) without querying (z, fn(z), ·) to F ;

• Prx∼U∗z [hO(x) queries (z, fn(z), ·) to F ] ≤ 4δ3
n; and

• Prx∼U∗z [hO(x) = fz(x)] ≥ 1
2 + δn.

If L and h do not query (z, fn(z), ·) to F and they halt in t(n) steps, then the answers by O do
not depend on σn,imax(n), i.e., the values of gz(x) for x ∈ G∗z, as seen in the proof of Claim 9.1.23.
In other words, they are totally determined by O′. Thus, we can replace O with O′ in these cases
(where we assume that O′ returns an error on an undefined input).

Now, we show that a truth table τ ∈ {0, 1}N of gz on G∗z has a short description (under the
condition on O′), which yields the upper bound on P2 because a random function does not have
such a short description with high probability.

Let Bz ⊆ G∗z be the subset consisting of x such that hO(x) queries (z, fn(z), ·) to F . By the
second property, we have |Bz| ≤ 4Nδ3

n. We consider the following reconstruction procedure for τ .
First, we execute LO

′,gz(S; r) to obtain hO
′
. Note that if we obtain all answers for membership

queries by L as auxiliary advice Q (of length at most t(n)), then we can remove external access to
gz from L. Next, we execute hO

′
(x) on each input x ∈ G∗z \ Bz. By combining these predictions

with auxiliary advice SB = {(x, gz(x)) : x ∈ Bz}, we also obtain a partial truth table τ̃ ∈ {0, 1}N
(1/2 − δn)-close to τ ∈ {0, 1}N . If we obtain err ∈ {0, 1}N defined as erri = τi ⊕ τ̃i as auxiliary
advice, then we can reconstruct τ from τ̃ and err.

Therefore, we can reconstruct τ from L, S, r, Q, SB, and err under the condition on O′. Since
the Hamming weight of err is at most N · (1/2 + δn), err is represented by a binary string of length
at most (1−Ω(δ2

n)) ·N by lexicographic indexing among binary strings of the same weight. Hence,
τ has a short description of length at most

O(t(n)) + 4δ3
n(n+ 1) ·N + (1− Ω(δ2

n)) ·N ≤ O(t(n)) +
(
1− Ω(δ2

n)
)
·N.

Since τ is a truly random string even under the condition on O′, we have

Pr
O

[
z is hard and ¬Iz ∧ Jz|O′

]
≤ 2O(t(n))+(1−Ω(δ2

n))·N

2N

≤ 2O(t(n))−Ω(t(n)−1/2)·N

≤ 22O(n/ logn)−2Ω(n−n/ logn)

≤ 2−2Ω(n)
.

This implies that PrO [z is hard and ¬Iz ∧ Jz] ≤ EO′ [PrO [z is hard and ¬Iz ∧ Jz|O′]] ≤ 2−2Ω(n)
for

any index z. Note that the number of indices is at most 2n. Thus, by taking the union bound, we
conclude that

P2 = Pr
O

[ ∨
z:hard

Jz ∧ ¬Iz

]
≤ 2n · 2−2Ω(n)

= 2−2Ω(n)
.

�
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Average-Case Easiness of Σp
d

Next, we show the average-case easiness of Σp
d.

Theorem 9.1.25. For any parameters ε(n), c, and d such that Ω(1) ≤ ε(n) ≤ n/ω(log2 n) and
c ≥ max{3, 26(d + 2)/ε(n)} (for sufficiently large n), the following event occurs with probability
1 over the choice of O := Oε,c,d: for all tuples of a polynomial-time oracle machine M? and a
polynomial-time randomized oracle sampling machine S?, there exists a deterministic polynomial-
time errorless heuristic oracle machine with a failure probability of at most n−2 for the distributional
Σp
d problem (LOM ,DOS ), defined as follows: (DOS )n ≡ SO(1n) for each n ∈ N and

LOM = {x ∈ {0, 1}∗ : ∃w1 ∈ {0, 1}|x|∀w2 ∈ {0, 1}|x|, . . . , Qdwd ∈ {0, 1}|x|,MO(x,w1, w2, . . . , wd)},

where Qd = ∃ if d is an odd number; otherwise, Qd = ∀.

By a simple padding argument on the instance size and the argument in [Imp95, Proposition
3], we obtain the following corollary to Theorem 9.1.25.

Corollary 9.1.26. Let ε(n), c, and d denote the same parameters as in Theorem 9.1.25. With

probability 1 over the choice of O := Oε,c,d, the event DistΣp
d
O ⊆ AvgPO occurs.

Theorem 9.1.17 immediately follows from Theorem 9.1.20 and Corollary 9.1.26 by selecting
ε(n) = 1/a(n) and sufficiently large c for ε−1 and d.

Proof of Theorem 9.1.25. For each n, let Tn be the maximum value of n2c , the 2c-th power of the
time for S? to generate an instance of size n, and the 2c-th power of the time to execute M? on
input of size n. Let in = c−1 log log Tn.

Now, we construct an errorless heuristic algorithm BO that is given x ∈ {0, 1}n as input and

returns a value of A(〈M,d〉, x, 1T 2c
n ). Note that BO(x) = LOM (x) unless A(〈M,d〉, x, 1T 2c

n ) outputs
“⊥”. Thus, we will show the inequality

Pn,M,S := Pr
O,S

[
A(〈M,d〉, x, 1T 2c

n ) = “⊥” where x← SO(1n)
]
≤ O

(
1

n4

)
. (9.8)

Then, by applying Markov’s inequality, we have

Pr
O

[
Pr
S

[
BO(x) = LOM (x) where x← SO(1n)

]
≥ 1

n2

]
≤ O

(
1

n2

)
,

and the theorem follows from the Borel–Cantelli lemma and the countability of (M,S).

To show Eq. (9.8), we first show that the instance x ∈ {0, 1}n is determined only by ρn′,j
for n′ ≤ Tn and j ≤ in − 1 with a probability of at least 1 − O(n−4). Then, we will show that

A(M,x, 1T
2c
n ) returns MO(x) with a probability of at least 1−O(n−4) under the condition that x

is determined only by ρn′,j for n′ ≤ Tn and j ≤ in − 1.
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By the same argument as the proof of Theorem 9.1.14, the first probability is bounded above
by

T 1/2c

n O

(
max

t−1(T
1/2c
n )≤n′≤T 1/2c

n

{p(n′), q(n′)}

)
= O

(
T 1/2c

n q(t−1(T 1/2c

n ))
)

= O
(
T 1/2c

n · (T 1/2c

n )−3(d+2)
)

= O((T 1/2c

n )−(3d+5))

= O(n−4),

where the last equation holds because Tn ≥ n2c .

By the same argument as the proof of Theorem 9.1.14, the second probability that A returns
“⊥” under the condition that the given instance x ∈ {0, 1}n is determined only by ρn′,j for n′ ≤ Tn
and j ≤ in − 1 is at most

O

(
T 2
n max
t−1(Tn)≤n′≤Tn

{p(n′)1/(d+2)`(n′)2, q(n′)1/(d+2) · 22}
)

= O

(
T 2
n max
t−1(Tn)≤n′≤Tn

t(n′)−3

)
= O(T−1

n )

= O(n−4),

where the last equation holds because Tn ≥ n2c ≥ n4.

Oracle Separation between Learning and Distributional PH

Theorem 9.1.27. For any function ε such that ω(1) ≤ ε(n) ≤ n/ω(log2 n) and an arbitrary small
constant δ ∈ (0, 1), there exists an oracle O such that (1) DistPHO ⊆ AvgPO and (2) SIZEO[n]

is not weakly PAC learnable with membership queries in time 2
O( n

ε(n) logn
)

on D, where D is an
arbitrary class of example distributions such that Dn contains all uniform distributions over subsets
S ⊆ {0, 1}n with |S| ≥ 2(1−ε(n)−(1−δ))·n.

Proof sketch. Let c = 3. We construct an oracle O, as in Section 9.1.4, where we set the parameters
as follows:

t(n) = 2
n

ε(n)·logn , p(n) = t(n)−ε(n)δ , `(n) = t(n)2, q(n) = t(n)−ε(n)δ , and imax(n) = c−1 log log t(n).

Then, the hardness of learning follows by the same argument as the proof of Theorem 9.1.20, where
we can select the lower bound of G∗z for a hard index z as

|G∗z| ≥ 2n−1 · q(n)imax(n) ≥ 2
(1− 1

3ε(n)1−δ
)n+1 ≥ 2(1−ε(n)−(1−δ))n,

for sufficiently large n. The average-case easiness of DistPH also holds by essentially the same
argument as the proofs of Theorems 9.1.14 and 9.1.25.
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Proof of Lemma 9.1.21

Proof of Lemma 9.1.21. We can identify a random choice of n elements from U with n consecutive
random choices of one element from U , where the chosen element is removed from U . We remark
that these n choices are dependent on the previous choices, and we cannot directly apply the
Chernoff bound. Instead, we apply the martingale theory. The basic background can be founded
elsewhere [MU05].

For each i ∈ N, let Xi be a random variable that returns 1 if the i-th chosen element is contained
in S and 0 otherwise. Let m =

∑n
i=1Xi. Then, the statement in the lemma is written as follows:

Pr
X1,...,Xn

[∣∣∣∣m− M

N
n

∣∣∣∣ > γ · M
N
n

]
< 2e−2γ2·(M

N
)2·n.

For each i ∈ N ∪ {0}, we define Zi as

Zi =
M −

∑i
k=1Xk

N − i
n.

First, we show that these Z0, Z1, . . . , Zn constitute a martingale.

Claim 9.1.28. The sequence of Z0, Z1, . . . , Zn is a martingale with respect to X1, . . . , Xn.

Proof. It is sufficient to show that for each i, E[Zi+1|X1, . . . , Xi] = Zi.
FixX1, . . . , Xi−1 arbitrarily, where i ≤ n. LetX =

∑i
k=1Xk. IfX = M , then E[Zi+1|X1, . . . , Xi] =

0 = Zi. Even when X < M , the same equation holds as follows:

E[Zi+1|X1, . . . , Xi] = n ·
[
M −X − 1

N − i− 1
· Pr[Xi+1 = 1|X] +

M −X
N − i− 1

· Pr[Xi+1 = 0|X]

]
= n ·

[
M −X − 1

N − i− 1
· M −X
N − i

+
M −X
N − i− 1

· (N −M)− (i−X)

N − i

]
= n · (M −X)(N − i− 1)

(N − i− 1)(N − i)

= n · M −X
N − i

= Zi.

�

Thus, the sequence of Z0, Z1, . . . , Zn is a martingale (with respect to themselves).
For each i ≤ n, under the condition on X1, . . . , Xi−1, we have

M −
∑i−1

k=1Xk − 1

N − i
n ≤ Zi ≤

M −
∑i−1

k=1Xk

N − i
n.

Thus, we can show that

Zi − Zi−1 ≤
M −

∑i−1
k=1Xk

N − i
n−

M −
∑i−1

k=1Xk

N − i+ 1
n

=
M −

∑i−1
k=1Xk

(N − i)(N − i+ 1)
n,
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and

Zi − Zi−1 ≥
M −

∑i−1
k=1Xk − 1

N − i
n−

M −
∑i−1

k=1Xk

N − i+ 1
n

=
M −

∑i−1
k=1Xk − (N − i+ 1)

(N − i)(N − i+ 1)
n

Therefore, if we define a new random variable Bi as

Bi =
M −

∑i−1
k=1Xk − (N − i+ 1)

(N − i)(N − i+ 1)
n,

then we get

Bi ≤ Zi − Zi−1 ≤ Bi +
n

N − i
.

Now, we apply the Azuma-Hoeffding inequality for Z0, . . . , Zn. Then, for any real value λ ≥ 0, we
have

Pr [|Zn − Z0| > λ] < 2 exp

(
− 2λ2∑n

i=1( n
N−i)

2

)

≤ 2 exp

(
−2λ2(N − n)2

n3

)
.

Note that Zn =
M−

∑n
i=1Xi

N−n n = M−m
N−n n and Z0 = M

N n. If we assume that |m − M
N n| > γMN n, then

it is not hard to verify that

|Zn − Z0| > γ · Mn2

N(N − n)
.

Therefore, by applying the above-mentioned inequality for λ = γ · Mn2

N(N−n) , we conclude that

Pr

[∣∣∣∣m− M

N
n

∣∣∣∣ > γ · M
N
n

]
≤ Pr

[
|Zn − Z0| > γ · Mn2

N(N − n)

]

< 2 exp

−2( γMn2

N(N−n))2(N − n)2

n3


= 2 exp

(
−2γ2 · (M

N
)2 · n

)
.

9.2 Errorless vs. Error-Prone Average-Case Complexity

In this section, we study the difference between the two definition of “average-case easiness,” er-
rorless and error-prone1 average-case easiness, through the lens of relativization. Remember that,

1It is originally called the “heuristic” complexity, and the term “error-prone” is due to the follow-up work [HS22].
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in both formulations, an efficient algorithm needs to output a correct answer with high probability
over a choice of random instances sampled from distribution D. The difference is in the requirement
when the algorithm cannot solve an instance. In the errorless setting, the algorithm is not allowed
to output a wrong answer; instead, it is allowed to output a special symbol ⊥, which represents
the failure of the algorithm. In the error-prone setting, an algorithm is allowed to output a wrong
answer, provided that the error probability of the algorithm is small. Below, we present further
background on these formulations.

The difference between the two notions originates from two different motivations of studying
average-case complexity. On one hand, Levin [Lev86] laid the foundation of the theory of average-
case complexity of NP and introduced the notion of average-case polynomial-time, which is equiv-
alent to errorless heuristic schemes [Imp95; BT06a]. The motivation of Levin is to clarify which
distributional NP problems are hard, as some NP-complete problems are indeed easy on average
with respect to natural distributions. Levin proved the distributional NP-completeness of a problem
called the tiling problem. Although Levin’s theory is applicable to both of the average-case notions,
it is more natural to consider the notion of errorless average-case easiness in this context: Practical
heuristic algorithms, such as SAT solvers, can be considered as errorless heuristics. A SAT solver
is usually guaranteed to output the correct answer if it halts, but the solver may “fail” on some
instances, i.e., may require a long time to halt on some instances. Levin’s theory demonstrates that
some distributional NP problems are hard and are unlikely to be solved by such heuristic algorithms.
On the other hand, the errorless notion is not (necessarily) appropriate for discussing the security
of cryptographic primitives. The foundational work of Blum and Micali [BM84] and Yao [Yao82]
demonstrated that error-prone average-case hardness of some distributional NP problems is useful
to build cryptographic primitives. Closing the gap between the errorless and error-prone average-
case notions would unify the two motivations of studying average-case complexity. In his influential
paper, Impagliazzo [Imp95] explicitly raised this question as an important research direction. The
question can be formally stated as follows.

Question 9.2.1. Is DistNP ⊆ HeurP equivalent to DistNP ⊆ AvgP?

Here, AvgP (resp. HeurP) denotes the class of distributional problems solvable on average by a
polynomial-time algorithm in the errorless (resp. error-prone) setting; see Section 2.2 for a formal
definition. We remark that DistNP denotes the class of distributional NP problems, i.e., DistNP =
{(L,D) : L ∈ NP and D ∈ PSamp}.

Giving an affirmative answer to Question 9.2.1 is necessary for basing the security of cryptogra-
phy on the worst-case hardness of NP. An additional motivation was recently provided by Hirahara
and Santhanam [HS22]: they identified a deep connection between the question of errorless versus
error-prone average-case complexities and the question of constructing an instance checker for NP,
which is another long-standing and important open question raised in the seminal work of Blum
and Kannan [BK95].

Despite its importance, there does not seem to be an effective method for addressing this
question, so it is natural to ask whether there is a technical barrier. This meta-approach is often
considered in computational complexity theory and is useful for excluding hopeless proof techniques
from consideration. For example, proof techniques that are captured by standard frameworks, such
as relativization [BGS75], natural proofs [RR97], and algebrization [AW09], are known to be in-
capable of resolving the P versus NP question. However, to the best of our knowledge, there is
no barrier for the question of errorless versus error-prone average-case complexities. In fact, Im-
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pagliazzo [Imp95; Imp11] raised the open question of presenting a relativization barrier to Question
9.2.1.

Question 9.2.2. Is there an oracle O such that DistNPO * AvgPO and DistNPO ⊆ HeurPO?

One of the main contributions of this section is to resolve this decade-old open question affir-
matively. Before presenting the details of our results, we review the recent progress in complexity
theory that demonstrates the notable power of the errorless average-case easiness of NP by relativiz-
ing proof techniques. Along the way, we provide additional questions related to errorless versus
error-prone average-case complexities. We refer to the possible world in which DistNP ⊆ AvgP
(resp. DistNP ⊆ HeurP) but P 6= NP as errorless Heuristica (resp. error-prone Heuristica). In any
relativized errorless Heuristica, the following computational tasks regarding worst-case complexity
are proved to be feasible.

Errorless Heuristica I: Approximating Complexity (Meta-Complexity) Meta-complexity
is a field that studies the computational complexity of determining computational complexity. One
central meta-computational problem is MINKT, which is the problem of determining the t-time-
bounded Kolmogorov complexity of x for given x ∈ {0, 1}∗ and t ∈ N. Another well-studied
problem is MCSP; for an input x ∈ {0, 1}2n (regarded as the truth table of a function), MCSP is
the problem of determining the minimum size of the n-input circuit whose truth table corresponds
to x, i.e., the circuit complexity of x.

Hirahara [Hir18] revealed that the approximation versions of the aforementioned problems are
efficiently solvable in the worst case based on the errorless average-case easiness. Hirahara’s theorem
is stated as follows.

Theorem 9.2.3 ([Hir18]). If DistNP ⊆ AvgP, then there exist a function σ(s, n) =
√
s · polylog(n)

and a constant ε > 0 such that GapσMINKT ∈ pr-ZPP and GapεMCSP ∈ pr-BPP. Furthermore,
these results are relativized.2

Errorless Heuristica II: PAC Learning In Chapter 3, we proved that the worst-case require-
ments in learning are performed based on only the average-case easiness of NP under a natural
computational assumption on example distributions.

Theorem 9.2.4 (3.1.1, simplified). If DistNP ⊆ AvgP, then P/poly is PAC learnable in polynomial
time on all unknown P/poly-samplable example distributions. Furthermore, this result is relativized.

For simplicity, in this section we fix the confidence error to 1/3 (i.e., the learner outputs a good
hypothesis with probability at least 2/3 over the choice of samples and randomness for the learner)
because the confidence parameter is easily boosted by the standard repetition technique [HKLW88].

Errorless Heuristica III: No Auxiliary-Input Cryptography The aforementioned results
are sufficient to break the security of any efficiently computable auxiliary-input cryptographic prim-
itive, as observed in [ABX08; HS17], which is yet another notable consequence of DistNP ⊆ AvgP
because an adversary for an auxiliary-input primitive needs to succeed in breaking all primitives
in the family, and this task is not captured directly as a distributional NP problem. Nevertheless,
we can efficiently break any auxiliary-input cryptographic primitive in errorless Heuristica.

2A subsequent result [Hir20b] improved the approximation errors using a potentially non-relativizing proof tech-
nique of [BFP05].
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Theorem 9.2.5. If DistNP ⊆ AvgP, then there is no auxiliary-input one-way function. Further-
more, this result is relativized.

The three theorems mentioned above demonstrate that several fascinating tasks concerning
worst-case requirements can be performed in errorless Heuristica. By contrast, there is no result
which shows the feasibility of a similar task in error-prone Heuristica. Thus, there are two possi-
bilities: the errorless condition is essential in the aforementioned results, or they can be extended
by similar (especially, relativizing) proof techniques. Determining which is correct is important to
understand the capability and limitation of the technique for the worst-case to average-case reduc-
tion within NP developed by Hirahara [Hir18]. Particularly, a significant line of work [IL90; LP20;
ACMTV21; LP21c; LP21a; IRS22; LP22] shows the characterization of a one-way function (OWF)
based on the error-prone average-case hardness of several central problems in meta-complexity, in-
cluding GapMINKT and GapMCSP. Therefore, if Hirahara’s reduction can be extended to error-
prone average-case analogues of these problems, then OWFs is characterized by the worst-case
hardness of meta-computational problems. Despite many efforts, however, extending Hirahara’s
reduction is currently open. Proving Theorems 9.2.3, 9.2.4, and 9.2.5 in error-prone Heuristica
is one natural and necessary approach for this research direction, where we consider the stronger
assumption that DistNP ⊆ HeurP (instead of the non-existence of OWFs) and attempt to solve
easier problems such as breaking auxiliary-input cryptography.

Question 9.2.6. Do Theorems 9.2.3, 9.2.4, and 9.2.5 also hold in error-prone Heuristica, i.e.,
under the assumption that DistNP ⊆ HeurP? Or, is there any barrier for such research directions?

In this section, we address these questions and study the difference between the errorless average-
case complexity and the error-prone average-case complexity from the perspective of relativization.

Our main contribution is the oracle construction for separating the error-prone average-case
hardness and the errorless average-case hardness for distributional NP problems. Furthermore,
the proposed oracle also separates the error-prone average-case hardness and (i) the hardness of
approximating complexity (i.e., the lower bound of meta-complexity), (ii) the hardness of PAC
learning, and (iii) the existence of auxiliary-input cryptographic primitives. Therefore, the proposed
oracle exhibits the relativization barrier for Question 9.2.6.

We remark several points before presenting the result. When we consider the adversary defined
as (a family of) circuits for some cryptographic primitives (e.g., auxiliary-input primitives and
hitting set generators), we regard a size function s(n) of an adversary as a function in the length of
a hidden seed instead of output of the primitive for simplicity. In addition, we regard a time-bound
function of a learning algorithm as a function in the length of examples, i.e., the input size to the
target function. In this section, we consider GapMINKT with a relaxed (i.e., easier) requirement
than one discussed in [Hir18; Hir20b], in the sense that we do not consider the time-bound in “no”
cases. In other words, we only need to distinguish efficiently generated strings from strings no short
program can generate even in time-unbounded settings. The relaxed formulation strengthens our
separation result because it shows the hardness of such a relaxed version of GapMINKT.

Definition 9.2.7 (GapMINKT). For a function σ : N×N→ N, GapσMINKT is a promise problem
(ΠY ,ΠN ) defined as ΠY =

{
(x, 1s, 1t) : Kt(x) ≤ s

}
and ΠN =

{
(x, 1s, 1t) : K(x) > s+ σ(s, |x|)

}
.

Now, we present the main theorem.

Theorem 9.2.8. For any constant a > 0, there exists an oracle O relative to which the following
hold:
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• (Error-prone average-case easiness of NP) DistNPO ⊆ HeurPO.

• (Errorless average-case hardness of NP) DistNPO * AvgSIZEO[2an/ logn].

• (Lower bound of meta-complexity) GapσMINKTO /∈ pr-SIZEO[2an/ logn] for any σ(s, n) =
o(s)·polylog(n). In addition, for each ε ∈ [0, 1], there exists δ ∈ (0, 1) such that GapεMCSPO /∈
pr-SIZEO[2n

δ
].

• (Worst-case hardness of learning on uniform distributions) SIZEO[n] is not weakly
PAC learnable with membership queries (MQ) on the uniform distribution by nonuniform
O(2an/ logn)-time algorithms. Furthermore, there exists a polynomial s(n) such that SIZEO[s(n)]
is not weakly PAC learnable with MQ on the uniform distribution by nonuniform 2n/nω(1)-
time algorithms.

• (Average-case hardness of distribution-free learning) There exists a polynomial s(n)
such that SIZEO[s(n)] is not weakly PAC learnable on average in the BFKL model with respect
to all unknown example distribution and a fixed samplable distribution over SIZEO[s(n)] by
nonuniform O(2an/ logn)-time algorithms. Furthermore, SIZEO[n] is not weakly PAC learnable
on average in the BFKL model with respect to all unknown example distribution and a fixed
samplable distribution over SIZEO[n] by nonuniform O(2n

ε
)-time algorithms for some constant

ε > 0.

• (Auxiliary-input cryptographic primitives) There exist a hitting set generator (HSG),
an auxiliary-input one-way function (AIOWF ), an auxiliary-input pseudorandom generator
(AIPRG), and an auxiliary-input pseudorandom function (AIPRF ) against SIZEO[2an/ logn].

The lower bound in the oracle separation is considerably stronger than the polynomial lower
bound and holds for the nonuniform computation model. We remark that Theorem 9.2.8 shows
strong evidence that profoundly new techniques are necessary for further improvements of the main
results in Chapters 3 and 4, as discussed in Sections 3.1 and 4.3.5.

It is worthy of note that Wee [Wee06] constructed an oracle relative to which DistNP * HeurP,
and no AIOWF exists against P/poly, which is the opposite separation of one of our results.
Combined with Wee’s result, our results show that auxiliary-input cryptography and the error-
prone average-case hardness of NP are incomparable by any relativizing proof.

Furthermore, since DistNPO ⊆ HeurPO is sufficient to break any one-way function, we can imme-
diately derive the strong oracle separation between OWF and subexponentially and nonuniformly
secure AIOWF, which improves the previous oracle separation between OWF and (polynomially
and uniformly secure) AIOWF in [Tre10; Nan21b].3

Corollary 9.2.9. For any constant a > 0, there exists an oracle O relative to which the following
hold:

• (Nonexistence of OWF) There exists no infinitely-often one-way functions.

• (Subexponentially and nonuniformly secure AIOWF) There exist an auxiliary-input
one-way function secure against SIZEO[2an/ logn].

3In fact, a central idea in this section is not so much involved with the improvement in Corollary 9.2.9. The
novelty of our result lies in improving the easiness part from the nonexistence of OWF to DistNP ⊆ HeurP.
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9.2.1 Related Work

Other related oracle separation results are mentioned in Section 9.3. Hirahara and Santhanam
[HS22] also addressed the errorless complexity versus error-prone complexity problem, and they
showed that the equivalence between a non-adaptive errorless to error-prone reduction for NP and
an average-case instance checker for NP. They also discussed Question 9.2.1 for other classes of
distributional problems such as DistPH and Dist(UP ∩ coUP) and showed that Dist(UP ∩ coUP) ⊆
AvgP if and only if Dist(UP ∩ coUP) ⊆ HeurP, i.e., they resolved Question 9.2.1 for the subclass
UP ∩ coUP of NP.

9.2.2 Proof Ideas

We present ideas behind our oracle separation. Again, the oracle construction is based on the
one presented by Impagliazzo [Imp11], in which the worst-case hardness and the errorless average-
case easiness are separated for NP. First, we briefly review the idea and subsequently present
its adjustment for the separation between the errorless average-case hardness and the error-prone
average-case hardness for NP. For simplicity, we only consider the uniform distribution as the
distribution over instances (instead of all sampleable distributions) and a lower bound for P/poly
(instead of SIZE[2an/ logn]) in this section.

Oracle Separation between NP * P/poly and DistNP ⊆ AvgP

We briefly review the oracle O in [Imp11] with a slight modification for applying the standard
switching lemma (as discussed in Section 9.1). The oracle O consists of two oracles V and A and a
hidden internal random function f : {0, 1}n → {0, 1}m(n), where V represents a verification oracle
for the NP relation R(x, f(x)) which makes NP worst-case hard, and A represents a restrictive NP
oracle which makes NP average-case easy while retaining the worst-case hardness. The NP oracle
A is given a description of a nondeterministic oracle machine M , an input x, and a time bound
T (of the form 1T

4
to prevent the circular call for A), simulates MV,A(x) in T time, and returns

the answer, where we allow A to use only partial values of f on randomly selected positions. If
the execution is determined only by the partial information, then A returns the result; otherwise,
A returns ⊥. In the actual construction, we introduce a structure in f by multiple applications of
random restrictions in the selection of f to address the issue on query access to A by M . Then, for
a given time bound 1T

4
, we only apply from the first to iT := 2−1 log log T -th random restrictions.

The average-case easiness of NP follows from the switching lemma for DNFs, where we regard
each f(y)i as a binary variable for each input y and position i (assigned in the random selection
of f) and MV,A(x) (executed in T time) as a m(n) · T -DNF formula. By contrast, the worst-case
hardness is shown by considering the NPV,A problem L = {〈x, i〉 : ∃y s.t. V(x, y) = 1 and yi = 1}
(remember that L is indeed in UPV,A ∩ coUPV,A). Particularly, any polynomial-size circuit C can
only access up to the 2−1 log log poly(n) = O(log log n)-th random restriction. Therefore, if there
still remain many unassigned values in the O(log log n)-th random restriction, then C should guess
such values at random to find the witness f(x) for L, which implies the worst-case hardness.

The aforementioned oracle yields the errorless average-case easiness because A returns ⊥ in the
case in which the simulation of the given nondeterministic machine is not determined by the random
restrictions. Therefore, a natural idea to separate the errorless and error-prone complexities is that
we make A return a wrong answer in such cases. To implement this idea, the following concerns
should be addressed. First, how should the answer from A be determined in such cases? Note that
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A cannot use the values of f assigned at higher levels in the structure to identify the wrong answer
because it causes a circular problem, i.e., the DNF representing MV,A(x) is not determined only by
up to the (iT − 1)-th random restriction anymore. Second, how should a distributional problem be
determined for the errorless average-case hardness? Particularly, Hirahara and Santhanam [HS22]
showed the equivalence between the errorless average-case easiness and the error-prone average-case
easiness of UP∩ coUP by relativizing proof techniques. Thus, we cannot hope to prove the errorless
average-case hardness for the same UP∩coUP problem L under the error-prone average-case easiness
of NP.

First Attempt for DistNP * AvgP/poly and DistNP ⊆ HeurP

The answer to the first question is relatively simple: we make A always answer 0. The intuition
behind this is that an oracle machine given 1 as an answer from A (for some NP-type statement)
can also obtain the witness for this assertion by the self-reducibility of NP; otherwise, the oracle
machine can detect the error of A and output ⊥. Thus, any error-prone algorithm can be translated
into an errorless algorithm when A answers 1 as a wrong answer at some stage. By contrast, if A
answers 0, i.e., declares “no witness,” then there seems no efficient way to detect this error. Thus,
we let A always answer 0, and this choice is indeed crucial in the proof.

By contrast, the answer to the second question is less obvious. Our approach is to construct
a hitting set generator (HSG) instead of determining a distributional problem directly. A HSG
(against P/poly) is a (family of) efficiently computable function G : {0, 1}n → {0, 1}m(n) which
stretches the seed (i.e., m(n) > n) and hits any language recognized by a polynomial-size circuit.
Specifically, if a polynomial-size circuit C accepts more than half of the strings in {0, 1}m(n), then
C also accepts G(x) for some x ∈ {0, 1}n (for infinitely many n ∈ N). Constructing a HSG for
the errorless average-case hardness is a natural approach because it immediately yields a natural
distributional NP problem (ImG,Uniform) that is hard on average in the errorless setting, and
Hirahara [Hir20a] demonstrated the equivalence between the errorless average-case hardness of PH
and the existence of PH-computable HSGs.

A first attempt to construct a HSG is that we regard the random function f : {0, 1}n →
{0, 1}m(n) as a generator, where we let m(n) > n. Now, we replace the verification oracle V
with F defined as F(x, i) = f(x)i because the generator requires direct access to f for com-
puting its values. Then, we define the candidate GF ,A : {0, 1}n → {0, 1}m(n) for a HSG as
GF ,A(x) = F(x, 1) ◦ · · · ◦ F(x,m(n)) (= f(x)). However, this generator G is not a HSG, and
G can be broken efficiently by using the partial information of f efficiently obtained from A, in-
formally as follows: For each random restriction, an expected fraction of unassigned values in f
is n−ω(1). Thus, for a given string y ∈ {0, 1}m(n), we can easily detect the case of y = G(x) for a
large fraction of x ∈ {0, 1}n by asking an NP-type query to A such as “Is there x ∈ {0, 1}n such
that G(x) is partially consistent with y?” because the answer tends to be fixed to 1 only by the
random restriction in A if such an x exists. After applying the random restrictions ω(1) times, the
aforementioned strategy is sufficient for detecting all the cases of y ∈ ImG. Thus, some different
approach is required.

We remark that we can now regard executing a nondeterministic MF ,A(x) in T time as a T -DNF
formula (instead of an m(n) · t-DNF) because F accesses only one entry in f for each query.
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Our Construction: Random Restriction with Masks

To construct a HSG, we introduce a new type of random restrictions, random restriction with masks,
which is crucial to solve Question 9.2.2. A random restriction with masks to f : {0, 1}n → {0, 1}m(n)

with parameter p ∈ [0, 1] (i.e., the unset probability) is performed as follows: First, we select a
random subset S1 ⊆ {0, 1}n of size p · 2n and then apply a standard random restriction with unset
probability p to a variable set {f(x)i : x ∈ {0, 1}n \ S1 and i ∈ [m(n)]}, i.e., the random set S1

performs as a “mask” that prevents restriction. This variant of random restriction is extended to
multiple applications inductively as follows: Let Si be the random subset (i.e., the mask) selected
in the i-th random restriction with masks to f . Next, the (i+ 1)-th restriction (with parameter p)
is performed by selecting a random subset Si+1 ⊆ Si of size p · |Si| and applying random restriction
to variables except for Si+1.

We consider a modified oracle in which the oracle construction is the same as previously men-
tioned except that we apply random restrictions with masks instead of the standard random re-
strictions. For now, we select the unset probability p(n) = n− logn. This choice is sufficient for
a HSG against P/poly and the statement that DistNP * AvgP/poly. Note that p(n) should be
selected more carefully according to the size complexity of the adversary in the formal argument
(for the detail, see Section 9.2.3).

Specifically, we randomly select the aforementioned oracles F and A by selecting the internal
random function f : {0, 1}n → {0, 1}m(n) with log n applications of random restrictions with masks
for each n ∈ N (after applying random restrictions, we also select the remaining values of f at
random). For each n ∈ N, let Sn,logn ⊆ {0, 1}n be the random mask selected in the log n-th

restriction. Then, we have |Sn,logn| = p(n)logn · 2n = 2n−(logn)3
. Thus, there exist exponentially

many z ∈ Sn,logn ⊆ {0, 1}n (we call these hard indices) such that no value in f(z) is assigned by

the log n-th restriction. Remember that for a query (M,x, 1T
4
), the oracle A applies only up to the

iT := 2−1 log log T -th random restriction. Since any polynomial-size adversary C can make a query
only with T = poly(n), C can only access up to the O(log log n)-th restrictions. Therefore, any
polynomial-size adversary cannot obtain any information about f(z) from A for each hard index z,
and oracle access to F(z, i) = f(z)i is indistinguishable from access to a random function for such
adversaries.

The aforementioned argument is sufficient for constructing a HSG. In fact, by defining the
generator G as GF ,A(x) = F(x, 1) ◦ · · · ◦ F(x,m(n)), we can show that G is a HSG against
P/poly by a similar argument as in Section 9.1. Furthermore, the random restriction method
with masks has another advantage: even if we select exponentially large m(n), it still provides
hard indices z such that A does not reveal any information of f(z) to polynomial-size adversaries.
Specifically, by letting m(n) = 2n · n (i.e., the length of the truth table of a mapping from n-bit
to n-bit), we can prepare an auxiliary-input oracle F : {0, 1}n×{0, 1}n → {0, 1}n such that F(z, ·)
is (computationally) indistinguishable from a random oracle for subexponentially many hard z’s.
Therefore, F (·, ·) is an AIOWF because it is known that a random oracle is also a OWF with
probability 1 over the choice of the random oracle [cf. IR89; GT00]. Furthermore, by the technique
presented in [Zim98], we can construct an AIPRG based on the auxiliary-input analog of a random
oracle with less security loss than the general methods to convert OWFs into PRGs [e.g. HILL99].
In the formal proof of Theorem 9.2.8, we first construct such an AIPRG and subsequently show the
related hardness notion (e.g., HSGs and the hardness of learning) to prevent security loss. Note
that the aforementioned argument does not yield standard cryptographic primitives such as OWFs
because the set of hard indices is selected at random, and there is no efficient sampling algorithm
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that selects a hard index with high probability.

A random restriction with masks assigns fewer variables than a standard random restriction.
Therefore, the remaining problem is whether the error-prone average-case easiness is preserved in
the modified oracle construction. This issue can be addressed by the choice of the answer (i.e., 0)
from A when the simulation is not determined by random restrictions. The proof is outlined as
follows.

For convenience, we regard that a random restriction with masks is performed as follows: (i) a
standard random restriction is applied to remaining variables at the stage, (ii) the random subset
Si+1 ⊆ Si is selected in the same manner, and (iii) the values in f(z) are returned to unassigned
for each z ∈ Si+1. Let us call the first step (resp. the second and third steps) a restriction (resp.
reverse) step. The random restriction in the restriction step is merely a standard one. Thus, by the
standard switching lemma, we can show that the value of a T -DNF φ (representing the execution of
a nondeterministic machine in T time) is determined with high probability at this stage. Therefore,
it is sufficient to show that the answer from A rarely changes in the reverse step.

For simplicity, we use the notation ∗ to refer to the cases in which the DNF φ is not fixed by
the random restriction. Then, there are 3× 3 = 9 possibilities about the change in the state on the
restricted φ, i.e., from {0, 1, ∗} (in the restriction step) to {0, 1, ∗} (in the reverse step). Obviously,
we do not need to consider the following 3 cases: {0} → {0}, {1} → {1}, and {∗} → {∗}. Since
we cancel some assignments in the reverse step, the following 4 cases do not occur: {∗} → {0, 1},
{0} → {1}, and {1} → {0}. Furthermore, because A answers 0 in the case of ∗, we do not need to
consider the case of {0} → {∗}. Therefore, the remaining case is only {1} → {∗}.

We show that the case of {1} → {∗} rarely occurs as follows. Since the T -DNF formula φ is
satisfied in the restriction step, there must exist a satisfied term τ of size T . If φ becomes unfixed
in the reverse step, then τ is also unfixed. This event occurs only if there exists z ∈ {0, 1}n such
that some variable f(z)i is contained in τ (for some i), and z is selected on the choice of the
random subset in the reverse step. Since τ covers at most T indices z in literals, this probability
is at most T · p(n) = T · n− logn. Particularly, for solving a NP problem by A, we only need to
simulate a nondeterministic machine in poly(n) times, so we can let T = poly(n). Therefore, the
error probability that the answer from A is changed in the reverse step is negligible.

Based on the ideas above, we complete the proof of Theorem 9.2.8 in the subsequent sections.
In Section 9.2.3, we present the oracle construction. In Section 9.2.4, we show the average-case
easiness of NP in the error-prone setting. In Section 9.2.5, we show the existence of AIPRG and
the other hardness statements, including the average-case hardness of NP in the errorless setting
and the hardness of learning.

9.2.3 Oracle Construction

In this section, we formally present the oracle construction.

For each p ∈ [0, 1] and set S of variables taking binary values, we define a p-random restriction ρ
to S as a partial assignment ρ : S → {0, 1, ∗} (where ∗ represents “unassigned”) randomly selected
as follows: for each x ∈ S,

ρ(x) =


∗ with probability p

0 with probability (1− p)/2
1 with probability (1− p)/2.
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For every restriction ρ to S and function f defined on S, we let f |ρ denote the restricted function
obtained by applying a partial assignment to f according to ρ.

Let a > 0 be a parameter. The oracle construction is the following.

Construction. Oa = F + A, where each oracle is randomly selected according to the following
process:

1. Let t(n) = 2an/ logn be the upper bound on the time of nonuniform adversaries and c = 7a.

2. Define functions p and imax as p(n) = t(n)−6 and imax(n) = 1
c log log t(n). Here, p is a pa-

rameter of random restriction, and imax is the number of applications of random restrictions.

3. For each n ∈ N, define a set Vn,0 of variables taking binary values as follows:

Vn,0 = {Fz,x,` : z, x ∈ {0, 1}n, ` ∈ [n]}.

4. For each n ∈ N, let Sn,0 = {0, 1}n.

5. For each n ∈ N and i ∈ [imax(n) − 1], we inductively (on i) select a p(n)-random restriction
ρ∗n,i to Vn,i−1 and a random subset Sn,i ⊆ Sn,i−1 of size p(n) · |Sn,i−1|. Then, we define a
restriction ρn,i to Vn,i−1 and a subset Vn,i ⊆ Vn,i−1 as follows:

ρn,i(z, x, `) =

{
∗ if z ∈ Sn,i
ρ∗n,i(z, x, `) otherwise

Vn,i = ρ−1
n,i(∗)

(
= ρ∗n,i

−1(∗) ∪ {Fz,x,` : z ∈ Sn,i}
)
.

We also define ρn,imax(n) as a full assignment to Vn,imax(n)−1 selected uniformly at random.
Let ρn,i ≡ ρn,imax(n) for each i ≥ imax(n) + 1. We use the notation ρn,≤i to represent the
composite restriction ρn,1 · · · ρn,i to Vn,0 for each n and i.

6. Define F = {Fn}n∈N, where Fn : {0, 1}n×{0, 1}n×[n]→ {0, 1}, as Fn(z, x, `) = ρn,≤imax(n)(z, x, `).

7. Define A as follows: On input (M,x, 1T
2c

), where M is a nondeterministic oracle machine,

x ∈ {0, 1}∗, and T ∈ N, the oracle A(M,x, 1T
2c

) returns 0 or 1 according to the following
procedure:

1: Let iT := 1
c log log T .

2: Construct a T -DNF φ on variables in Vn,0 representing the execution of MF+A(x)
in T steps, where the top-most OR corresponds to the nondeterminism on a possible
choice of F (say, F ′) and an accepting path of MF

′+A(x), and each term performs
verification whether M ’s at most T queries (say, (z1, x1, `1), . . . , (zq, xq, `q) for some
q ≤ T ) are consistent with the actual choices of F , i.e., for each i ∈ [q], the term
contains Fzi,xi,`i if F ′(zi, xi, `i) = 1; otherwise, ¬Fzi,xi,`i as a literal.
3: If φ|ρ1,≤iT ,...,ρT,≤iT

≡ b for some b ∈ {0, 1}, then return b, otherwise, return 0.

We can verify that A is well-defined (i.e., not circular on recursive calls for A) as follows.

Proposition 9.2.10. For each input, the value of A(M,x, 1T
2c

) is determined only by ρn,j (equiv-
alently, ρ∗n,j and Sn,j) for n ≤ T and j ≤ iT (remember that iT = 1

c log log T ).
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Proof. We show the proposition by induction on T . Remember that, on input (M,x, 1T
2c

), the
oracle A first makes a T -DNF φ based on M independently of the values of F .

Suppose that M makes some query (M ′, x′, 1T
′2c

) to A for constructing φ. Since the length of
such a query is at most T , we have T ′2

c ≤ T and

iT ′ =
1

c
log log T ′ ≤ 1

c
log log T

1
2c =

1

c
log log T − 1 = iT − 1.

By the induction hypothesis, the answer of A(M ′, x′, 1T
′2c

) is determined by only ρn,j for n ≤ T ′

and j ≤ iT − 1, and so is φ. Then, A determines the answer by restricting φ by ρn,j for n ≤ T and

j ≤ iT . Therefore, A(M,x, 1T
2c

) is determined only by ρn,j for n ≤ T and j ≤ iT .

When the parameter a is clear from the context, we omit the subscript a from Oa.

9.2.4 Error-Prone Average-Case Easiness of NP

In this section, we show the error-prone average-case easiness of NP.

Theorem 9.2.11. With probability 1 over the choice of Oa, DistNPOa ⊆ HeurPOa holds.

First, we introduce several notations. For each choice of O, we define the oracle A∗ in the same
manner as A except we apply ρ1,≤iT−1ρ

∗
1,iT

, . . . , ρT,≤iT−1ρ
∗
T,iT

to φ instead of ρ1,≤iT , . . . , ρT,≤iT .
Note that A∗ executes a given nondeterministic machine M with access to A (rather than A∗) to
construct the corresponding DNF φ. We can verify that A∗ is well-defined (i.e., not circular) in the
same manner as Proposition 9.2.10.

Now, we show that A and A∗ do not differ considerably.

Lemma 9.2.12. For each input (M,x, 1T
2c

) to A, we have that

Pr
O

[
A(M,x, 1T

2c

) 6= A∗(M,x, 1T
2c

)
]

= O(T−4).

Proof. Let i := iT = (1/c) log log T . For all n ≤ T and j ≤ i − 1, we fix ρ∗n,j , Sn,j , and ρ∗n,i
arbitrarily; let CT denote this condition. Notice that the DNF formula φCT constructed by A and
A∗ is determined only by CT because all answers to recursive calls for A are determined by CT
as in Proposition 9.2.10. Let φ′CT = φCT |ρ1,≤i−1,...,ρT,≤i−1

. Then, the value of A(M,x, 1T
2c

) (resp.

A∗(M,x, 1T
2c

)) is determined by φ′CT |ρ1,i,...,ρT,i (resp. φ′CT |ρ∗1,i,...,ρ∗T,i).
For any DNF formula φ and a restriction ρ, there are the following three cases: (i) φ|ρ ≡ 0,

(ii) φ|ρ ≡ 1, or (iii) φ|ρ does not become a constant (we write this case as φ|ρ ≡ ∗). Following
this case analysis, there exist 32 = 9 cases on (φ′CT |ρ∗1,i,...,ρ∗T,i , φ

′
CT
|ρ1,i,...,ρT,i). However, since each

ρn,i is a subrestriction of ρ∗n,i (i.e., ρn,i assigns values only to variables that are also assigned by
ρ∗n,i), the following 4 cases do not occur: (0, 1), (1, 0), (∗, 0), and (∗, 1). Further, in the cases of
(0, 0), (1, 1), (∗, ∗), and (∗, 0), the answers by A∗ and A do not differ because A∗ and A return 0 in
the case of ∗. Thus, we only need to consider the case of (1, ∗).

By the aforementioned argument, the probability in the lemma is expressed as follows:

Pr
O

[
A(M,x, 1T

2c

) 6= A∗(M,x, 1T
2c

)
]

= E
CT

[
Pr

S1,i,...,ST,i

[
φ′CT |ρ1,i,...,ρT,i ≡ ∗

∣∣∣CT , φ′CT |ρ∗1,i,...,ρ∗T,i ≡ 1
]]
.
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To bound the probability in the right-hand side for each condition, we consider the case in which
φ′CT |ρ∗1,i,...,ρ∗T,i ≡ 1. Then, we can select a term τ in φ′CT such that τ |ρ∗1,i,...,ρ∗T,i ≡ 1. For each n ≤ T ,

define Zn ⊆ {0, 1}n as

Zn = {z ∈ {0, 1}n : ∃(x, `) ∈ {0, 1}n × [n] s.t. a variable Fz,x,` is contained in τ}.

Since φ′CT is a T -DNF, |Zn| ≤ T for each n ≤ T . Furthermore, for any n ∈ N such that imax(n) ≤ i−
1, we have that Zn = ∅ because all such variables must be assigned by ρn,≤i−1. If φ′CT |ρ1,i,...,ρT,i ≡ ∗,
then τ |ρ1,i,...,ρT,i ≡ ∗ must hold. This event occurs only if

⋃
n≤T (Sn,i ∩ Zn) 6= ∅ holds. Since each

Sn,i is selected from Sn,i−1 uniformly at random, this probability is bounded above by

Pr

⋃
n≤T

(Sn,i ∩ Zn) 6= ∅

 ≤∑
n≤T

Pr [Sn,i ∩ Zn 6= ∅]

≤
∑

n≤T :imax(n)≥i

|Zn| · |Sn,i|/|Sn,i−1|

≤ O(T ) ·
∑

n:t−1(T )≤n≤T

p(n)

≤ O(T 2 · t(t−1(T ))−6)

= O(T−4).

Thus, we conclude that

Pr
O

[
A(M,x, 1T

2c

) 6= A∗(M,x, 1T
2c

)
]

= E
CT

[
Pr

S1,i,...,ST,i

[
φ′CT |ρ1,i,...,ρT,i ≡ ∗

∣∣∣CT , φ′CT |ρ∗1,i,...,ρ∗T,i ≡ 1
]]

≤ O(T−4).

Furthermore, we can show the average-case easiness of NP under the oracle access to A∗ (instead
of A). This part is almost same as the proof in Section 9.1 of the average-case easiness of PH in
the errorless setting.

Lemma 9.2.13. Let M be a tM (n)-time nondeterministic oracle machine and S be a randomized
polynomial-time oracle sampling machine. We assume that S(1n) takes at most tS(n) time to
generate an instance of length n. Then, the following event occurs with probability 1 over the
choice of O: for any n ∈ N,

Pr
x←SO(1n)

[
MO(x) 6= A∗(M,x, 1T

2c

)
]
≤ O(n−4),

where T = max{n2c , tM (n)2c , tS(n)2c}.

Proof. Fix n ∈ N arbitrarily. Let T = max{n2c , tM (n)2c , tS(n)2c} and iT = c−1 log log T .
We first show that the instance x ∈ {0, 1}n generated by SO(1n) is determined by only ρn′,j for

n′ ≤ T and j ≤ iT − 1 with probability at least 1 − O(n−5). Then, we show that A∗(M,x, 1T
2c

)
returns MO(x) with probability at least 1 − O(n−5) under the condition that x is determined by
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only ρn′,j for n′ ≤ T and j ≤ iT − 1. If we assume these, then by the union bound, we have the
lemma as

Pr
O,x←SO(1n)

[
MO(x) 6= A∗(M,x, 1T

2c

)
]
≤ O(n−5) +O(n−5) = O(n−5) (= O(n−4)).

Now, we show the first claim. Since tS(n) ≤ T 1/2c , the answers of A to queries made by SO(1n)
are determined by only ρn′,j for n′ ≤ T 1/2c and j ≤ iT − 2. Under an arbitrary condition on
restrictions ρn′,j for n′ ≤ T 1/2c and j ≤ itS(n)1/2c ≤ iT −2, the output SO(1n) is determined by only

ρn′,j for n′ ≤ T and j ≤ iT − 1 unless S queries (z, x, `) ∈ ∪n′≤T 1/2cρ∗n′,iT−1
−1(∗) to F . Note that,

if n′ ∈ N satisfies n′ < t−1(T 1/2c), then we have imax(n′) < c−1 log log(T 1/2c) = c−1 log log T − 1 =
iT − 1. Thus, ρ∗n′,iT−1

−1(∗) = ∅. Otherwise, each element in ρ∗n′,iT−1
−1(∗) is selected from Vn′,iT−2

independently with probability p(n′). Since SO(1n) accesses to A at most T 1/2c times, such a
conditional probability is bounded above by

T 1/2c max
t−1(T 1/2c )≤n′≤T 1/2c

p(n′) = T 1/2cp(t−1(T 1/2c))

= T 1/2ct(t−1(T 1/2c))−6

= (T 1/2c)−5

≤ n−5,

where the inequality holds because T ≥ n2c .
Next, we show the second claim. Under the condition that the given instance x ∈ {0, 1}n

is determined by only ρn′,j for n′ ≤ T and j ≤ iT − 1, the T -DNF formula φ constructed in

A∗(M,x, 1T
2c

) is determined only by ρn′,j for n′ ≤ T and j ≤ iT −1. Then, applying the restriction
ρn′,j for n′ ≤ T and j ≤ iT under this condition is regarded as a p(n′)-random restriction to
Vn′,iT−1 for each n′ ≤ T , where we can ignore small n′ such that n′ < t−1(T ) because imax(n′) <
c−1 log log T = iT for such n′. By applying the switching lemma (particularly, the baby switching
lemma) for T -DNF [H̊as86], the probability that φ does not become a constant is at most

O

(
T max
t−1(T )≤n′≤T

p(n′)

)
= O

(
T · t(t−1(T ))−6

)
= O(T−5)

= O(n−5),

where the last equation holds because T ≥ n2c ≥ n. Remember that A∗ always returns the correct
answer whenever φ becomes constant. Therefore, the second claim holds.

Now, we derive the average-case easiness of NP from Lemmas 9.2.12 and 9.2.13 .

Proof of Theorem 9.2.11. We consider an arbitrary distributional NP problem (L,D) and assume
that L is specified by a tM (n)-time nondeterministic oracle machine M , and D is specified by
a randomized tS(n)-time oracle sampling machine S. Let T = max{n2c , tM (n)2c , tS(n)2c} as in
Lemma 9.2.13.

We construct an error-prone heuristic algorithm B for (L,D) as follows: On input x ∈ {0, 1}n,

B queries (M,x, 1T
2c

) to A and returns the same answer. In the following, we will verify that the
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error probability of B (over the choice of O and SO(1n)) is bounded above by O(n−4) for each input
size n. Then, by applying Markov’s inequality and the Borel–Cantelli lemma, the error probability
of B is bounded above by n−2 for all sufficiently large n with probability 1 over the choice of O.
Since the number of tuples (M,S) is countable, we can conclude that all distributional NP problems
have an error-prone heuristic algorithm with error probability at most n−2 with probability 1 over
the choice of O. Based on the argument in [Imp95, Proposition 3], this is sufficient for the statement
that DistNPO ⊆ HeurPO.

Therefore, it is sufficient to show that, for any n ∈ N,

Pr
O,x←SO(1n)

[
MO(x) 6= A(M,x, 1T

2c

)
]
≤ O(n−4).

Obviously, this event occurs only if (i)A(M,x, 1T
2c

) 6= A∗(M,x, 1T
2c

) or (ii)MO(x) 6= A∗(M,x, 1T
2c

)
occur. By Lemmas 9.2.12 and 9.2.13 and the union bound, we have

Pr
O,x←SO(1n)

[
MO(x) 6= A(M,x, 1T

2c

)
]

≤ Pr
O,x←SO(1n)

[
A(M,x, 1T

2c

) 6= A∗(M,x, 1T
2c

)
]

+ Pr
O,x←SO(1n)

[
MO(x) 6= A∗(M,x, 1T

2c

)
]

= O(T−4) +O(n−4) = O(n−4) +O(n−4) = O(n−4).

9.2.5 Errorless Average-Case Hardness of NP

In this section, we show the hardness part of our oracle separation. First, we show the existence of
AIPRG relative to Oa. Then we show the other hardness results, including the errorless average-
case hardness for NP, as corollaries.

We use the following theorem, which shows the existence of PRGs based on a random oracle.

Theorem 9.2.14 ([Zim98]). For each n ∈ N, let Rn : {0, 1}n → {0, 1}n be a random function
oracle, i.e., Rn is selected uniformly at random from {f : {0, 1}n → {0, 1}n}.

There exist a polynomial-time deterministic oracle machine G? and constants c ≥ 1 and b, ε > 0
satisfying the following: For any n ∈ N and x ∈ {0, 1}cn, GRn(x) generates a binary string of
length 4cn, and all oracle circuits C? of size 2bn satisfy that∣∣∣∣Pr

Ucn

[
CRn(GRn(Ucn)) = 1

]
− Pr
U4cn

[
CRn(U4cn) = 1

]∣∣∣∣ ≤ 2−εn,

with probability at least 1− 2n over the choice of Rn.

Furthermore, the result above is relativized, i.e., the above holds in the presence of an arbitrary
oracle O independent of the choice of Rn.

Now, we show the existence of AIPRG relative to Oa.

Theorem 9.2.15. Let a > 0 be an arbitrary constant. With probability 1 over the choice of Oa,
there exists an AIPRG GOa = {GOaz }z∈{0,1}∗ against SIZEOa [2εan/ logn] for some absolute constant

ε > 0, where GOaz : {0, 1}|z| → {0, 1}3|z| for each z ∈ {0, 1}∗.
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Proof. Let G? and c be the oracle machine and the constant in Theorem 9.2.14, respectively. Then,
we define an AIPRG G′ = {G′z}z∈{0,1}∗ as G′Oz (x) = GFz′ (x′)≤3|z|, where x ∈ {0, 1}|z|, z′ = z≤b|z|/cc,

x′ = x≤c|z′|, and Fz′ : {0, 1}|z
′| → {0, 1}|z′| is defined as Fz′(y) = F(z′, y, 1) ◦ · · · ◦ F(z′, y, |z′|). The

validity of the truncation is verified as that |x′| = c|z′| ≤ c · |z|/c = |z| = |x| and |GFz′ (x′)| =
4|x′| = 4c|z′| ≥ 4c(|z|/c− 1) ≥ 4|z| − 4c ≥ 3|z| for any z with |z| ≥ 4c.

Let ε = 1/2c and s(n) = 2εan/ logn. We show that G′ above is an AIPRG against SIZEO[s(n)].
Suppose there exists a family C = {Cn}n∈N of oracle circuits of size s(n) that breaks G′, i.e., for
any sufficiently large n ∈ N and any z ∈ {0, 1}n,∣∣∣∣Pr

Un

[
COn (z,G′Oz (Un)) = 1

]
− Pr
U3n

[
COn (z, U3n) = 1

]∣∣∣∣ > 1

poly(n)
.

Fix n ∈ N arbitrarily, and let n′ = bn/cc. We consider an arbitrary choice of O except for
the values of ρn′,imax(n′) (we write this condition as R for convenience). Fix z ∈ {0, 1}n such that
z′ = z≤n′ ∈ Sn′,imax(n′)−1 arbitrary (where S·,· is the random set in the oracle construction). We
refer to such z as a hard index.

Since the size of Cn is at most s(n) = 2
an

2c logn ≤ 2
a(bn/cc)

log(bn/cc) = t(n′) for sufficiently large n (where
t is the time-bound function in the oracle construction), the answers to queries by Cn of the form

A(M,y, 1T
2c

) do not depend on the values of Fz′ and are determined by condition R because
they are determined only by the restrictions ρ·,j for j ≤ c−1 log log T ≤ c−1 log log s(n)1/2c ≤
c log log t(n′) − 1 < imax(n′). Now, we consider an arbitrary choice of ρn′,imax(n′) except for the
values of Fz′ and denote this condition by R′. It is not hard to verify that Fz′ is selected uniformly
at random even under the conditions R and R′. Therefore, under the conditions R and R′, we can
identify the query access to O by C with the query access to another oracle O′ (determined only
by R and R′) and a random function oracle Fz′ that are selected independently of O′.

For any n ∈ N, let En be an event (over the choice of Fz′) that there exists a circuit C ′ of size
2bn
′
, where b represents the constant in Theorem 9.2.14, such that∣∣∣∣Pr
Un

[
C ′O(G

′Fz′
z (Un)) = 1

]
− Pr
U3n

[
C ′O(U3n) = 1

]∣∣∣∣
=

∣∣∣∣Pr
Un

[
C ′O

′,Fz′ (GFz′ (Un)) = 1
]
− Pr
U3n

[
C ′O

′,Fz′ (U3n) = 1
]∣∣∣∣ > 1

poly(n)
.

Then, by Theorem 9.2.14 (relative to O′), we have PrO[En|R,R′] ≤ 2−Ω(n). By the Borel–
Cantelli lemma, En occurs only for finitely many n’s with probability 1 over the choice of O
conditioned on R,R′ (i.e., the choice of Fz′). By taking the expectation over R,R′, we can show
that, with probability 1 over the choice of O, there is no family C ′ of 2bn

′
-size circuits satisfying

that for any sufficiently large n ∈ N, there exists a hard index z ∈ {0, 1}n such that∣∣∣∣Pr
Un

[
C ′O(G

′Fz′
z (Un)) = 1

]
− Pr
U3n

[
C ′O(U3n) = 1

]∣∣∣∣ > 1

poly(n)
.

However, the circuit C in the assumption violates this statement by embedding a hard index z as
auxiliary-input because the size is at most n + s(n) = O(2(a/2c)·n/ logn) = o(2bn

′
). Therefore, we

conclude that, with probability 1 over the choice of O, there is no such a circuit C of size s(n), and
G′ is an AIPRG against SIZE[s(n)].
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Now, we present the consequences of the existence of AIPRG. First, it is the well-established
that any PRG is also OWF [cf. Gol01, Proposition 3.3.8]. This result is trivially extended to the
case of auxiliary-input primitives, and the following holds.

Corollary 9.2.16. Let a > 0 be an arbitrary constant. With probability 1 over the choice of Oa,
there exists an AIOWF against SIZEOa [2εan/ logn] relative to Oa for some absolute constant ε > 0.

Since AIPRG implies HSG by regarding the auxiliary-input as a part of the hidden input to
HSG, we also obtain the existence of HSG.

Corollary 9.2.17. Let a > 0 be an arbitrary constant. With probability 1 over the choice of Oa,
there exists an HSG GOa = {GOan }n∈N against SIZEOa [2εan/ logn] for some absolute constant ε > 0,
where GOan : {0, 1}2n → {0, 1}3n for each n ∈ N.

Proof. It is easily observed that the proof of Lemma 8.4.1 is relativizing. The corollary immediately
follows from Corollary 9.2.16 and the relativized version of Lemma 8.4.1.

Furthermore, the existence of HSGs implies the errorless average-case hardness of NP, as ob-
served in [HS17] and the proof of Lemma 8.4.2.

Corollary 9.2.18. Let a > 0 be an arbitrary constant. With probability 1 over the choice of Oa,
DistNPOa * AvgSIZEOa [2

εan
logn ] for some absolute constant ε > 0.

Proof. Let GO and ε be the HSG and the constant in Corollary 9.2.17, respectively. Then, we
define the language LO as LO := ImGO. Obviously, LO ∈ NPO and (LO, {Un}n∈N) ∈ DistNPO.

Thus, it is sufficient to show that (LO, {Un}n∈N) /∈ Avg1/4SIZE
O[2

εan
4 logn ].

For contradiction, we assume that (LO, {Un}n∈N) ∈ Avg1/4SIZE
O[2

εan
4 logn ]. Then, there exists a

family C = {Cn}n∈N of O(2
εan

4 logn )-size oracle circuits for (LO, {Un}n∈N), i.e., for any sufficiently
large n ∈ N,

Pr
y∼{0,1}3n

[
CO3n(y) = ⊥

]
≤ 1/4

and for each y ∈ {0, 1}3n,

CO3n(y) ∈ {1l(y ∈ LO),⊥}.

Note that the size of C3n is at most O(2
εa·3n

4 log 3n ).

Next, we define an adversary C ′ for GO as follows: for a given y ∈ {0, 1}3n (i.e., the length of
seed is 2n), C ′O2n simulates CO3n(y), and if C3n returns 1 or ⊥, then C ′2n outputs 0; otherwise (i.e.,
if C3n returns 0), C ′2n outputs 1. Then, based on the aforementioned inequalities, it is not hard to
verify that for any sufficiently large n ∈ N,

Pr
y∼{0,1}3n

[
C ′O2n(y) = 0

]
≤ 1

4
+
|{GO(x) : x ∈ {0, 1}2n}|

|{0, 1}3n|
≤ 1

4
+

22n

23n
<

1

2
,

and for any x ∈ {0, 1}2n, we have CO3n(GO(x)) ∈ {1,⊥} and C ′O2n(GO(x)) = 0.

Therefore, C ′ succeeds in avoiding ImGO, and the size is bounded above by O(2
εan
logn ) =

O(2
εa(2n)
log(2n) ). This contradicts Corollary 9.2.17. Thus, we conclude that (LO, {Un}n∈N) /∈ Avg1/4SIZE

O[2
εan

4 logn ].
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Furthermore, based on the GGM construction [GGM86], we can translate AIPRGs into AIPRFs.
In the security proof, the seed length is preserved, and an adversary of size s(n) for the PRF is
translated into an adversary of size s(n) · poly(n) for the original PRG, where poly is a polynomial
depending on the computational cost of the PRG. This observation implies the following:

Corollary 9.2.19. Let a > 0 be an arbitrary constant. With probability 1 over the choice of Oa,
there exists an AIPRF fOa = {fOaz }z∈{0,1}∗ against SIZEOa [2εan/ logn] for some absolute constant

ε > 0, where fOaz : {0, 1}|z| × {0, 1}|z| → {0, 1} for each z ∈ {0, 1}∗.

In Section 5.2, we proved that the existence of AIPRF implies the average-case hardness of
distribution-free learning, where the complexity of the concept class depends on the complexity of
computing AIPRF. Thus, we obtain the following, where we apply the standard transformation
from nonuniform Turing machines to circuit families.

Corollary 9.2.20. There exist a polynomial s(n) and a constant ε > 0 such that for any a > 0,
SIZE[s(n)] is not PAC learnable on average in the BFKL model with respect to all unknown example
distributions and a fixed samplable distribution over SIZE[s(n)] by nonuniform O(2εan/ logn)-time
algorithms with probability 1 over the choice of Oa.

Proof. It is easily observed that the proof of Theorem 5.2.1 is relativizing. The corollary immedi-
ately follows from Corollary 9.2.19 and the relativized version of Theorem 5.2.1.

Without loss of generality, we can let s(n) = nb in above for some b > 0. By the simple padding
argument, where we stretch an n-bit example into an s(n)-bit example, the size complexity of the

target function becomes O(n) (for the input length s(n)) in above. Since 2s(n)1/(b+1)
= o(2εan/ logn),

we have the following:

Corollary 9.2.21. There exists ε > 0 such that for any a > 0, SIZE[n] is not PAC learnable on
average in the BFKL model with respect to all unknown example distribution and a fixed samplable
distribution over SIZE[n] by nonuniform O(2n

ε
)-time algorithms with probability 1 over the choice

of Oa.

The existence of AIPRF also implies the (worst-case) hardness of PAC learning SIZE[s(n)] on
the uniform distribution, as observed in [ABX08], where s(n) is a polynomial depending on the
complexity of computing the AIPRF. In our case, we can directly construct a hard-to-learn class
and show the hardness of learning SIZE[n].

Theorem 9.2.22. Let a > 0 be an arbitrary constant. With probability 1 over the choice of
Oa, SIZEOa [n] is not weakly PAC learnable with MQ on the uniform distribution by nonuniform
O(2εan/ logn)-time algorithms relative to Oa for some absolute constant ε > 0.

The proof of Theorem 9.2.22 is an analog of the proof of Theorems 9.1.12 and 9.1.20. For
completeness, we present the formal proof in Section 9.2.6.

Furthermore, Oliveira and Santhanam [OS17] showed the speedup phenomena in PAC learning
with MQ on the uniform distribution. One of their results is stated below.

Theorem 9.2.23 (speedup lemma [OS17]). For any polynomial s(n) and constant ε > 0, there
exists a polynomial s′(n) such that if SIZE[s(n)] is not weakly PAC learnable with MQ on uniform
distribution by nonuniform O(2n

ε
)-time algorithms, then SIZE[s′(n)] is not weakly PAC learnable

with MQ on uniform distribution by nonuniform 2n/nω(1)-time algorithms. Furthermore, this result
is relativized.
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Theorems 9.2.22 and 9.2.23 immediately imply the following.

Corollary 9.2.24. There exists a polynomial s(n) such that for any a > 0, SIZE[s(n)] is not
PAC learnable with MQ on the uniform distribution by nonuniform 2n/nω(1)-time algorithms with
probability 1 over the choice of Oa.

Finally, we mention the hardness of approximation problems in meta-complexity. The hardness
of GapMINKT follows from the existence of HSG in the same manner as Corollary 9.2.18.

Corollary 9.2.25. Let a > 0 be an arbitrary constant. With probability 1 over the choice of
Oa, GapσMINKTOa /∈ pr-SIZEOa [2εan/ logn] for any σ(s, n) = o(s) · polylog(n), where ε > 0 is an
absolute constant.

Proof sketch. Suppose that GapσMINKTO ∈ pr-SIZEO[2(ε/4)an/ logn] for some σ(s, n) = o(s) ·
polylog(n), where ε > 0 is the constant in Corollary 9.2.17. Then, there exists an O(2(ε/4)an/ logn)-
size oracle circuit C for GapσMINKTO. Based on C, we can construct an adversary for an ar-
bitrary HSG GO : {0, 1}2n → {0, 1}3n because, for each n ∈ N and x ∈ {0, 1}2n, it holds that
Kt,O(GO(x)) ≤ 2n + O(1) for a proper choice of t = poly(n) and Pry∼{0,1}3n [KO(y) ≥ 3n − 2 (>
2n + O(1) + σ(2n + O(1), n))] ≥ 3/4. It is not hard to verify that the size of the adversary based
on C is at most O(2(ε/4)3an/ log 3n). Thus, this contradicts Corollary 9.2.17.

Furthermore, [CIKK16] constructed a PAC learning algorithm for P/poly with MQ on the
uniform distribution based on an algorithm for GapMCSP (originally, the existence of natural
proofs). As the contraposition, we obtain the following from Corollary 9.2.24.

Corollary 9.2.26. Let a > 0 be an arbitrary constant. With probability 1 over the choice of Oa,
for each ε > 0, there exists δ > 0 such that GapεMCSPOa /∈ pr-SIZEOa [2n

δ
].

Theorem 9.2.8 follows from Theorems 9.2.11, 9.2.15, and 9.2.22 and Corollaries 9.2.16– 9.2.26
by selecting an appropriately large parameter in the oracle construction according to a > 0 in the
statement of Theorem 9.2.8.

9.2.6 Proof of Theorem 9.2.22

We present the formal proof of Theorem 9.2.22.

Proof of Theorem 9.2.22. For every choice of Oa, we define a concept class COa as

COa = {F|z|(z, ·, 1) : z ∈ {0, 1}∗}.

Then, we show that COa is not weakly PAC learnable with MQ on the uniform distribution by
nonuniform tL(n) = O(2(a/2)n/ logn)-time algorithms with probability 1 over the choice of Oa. Since
COa ⊆ SIZEOa [n], the theorem also holds.

Let ε(n) = n− logn. We fix n ∈ N arbitrarily. We consider an arbitrary nonuniform randomized
oracle machine (i.e., a learner) L. For each z ∈ {0, 1}n, we define Iz as an event (over the choice of
O) that L succeeds in learning fz(x) ≡ Fn(z, x, 1) ∈ COn in tL(n) time with advantage ε(n), i.e.,

Iz =

(
Pr
L

[
LO,MQfz (n)→ hO s.t. Pr

x
[hO(x) = fz(x)] ≥ 1/2 + ε(n) in tL(n) time

]
≥ 2/3

)
.
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We will show that PrO[∧z∈{0,1}nIz] ≤ 2−2Ω(n)
. For now, we assume this and show the hardness

of learning CO. Since any nonuniform tL(n)-time oracle machine has a binary representation of
length at most O(tL(n)) (for each n ∈ N), the event En that there exists a nonuniform tL(n)-time

oracle machine succeeds in learning COn is at most 2O(tL(n)) · 2−2Ω(n)
= negl(n) by the union bound.

By the Borel–Cantelli lemma, these events En occur only for finitely many n ∈ N with probability
1 over the choice of O. In such cases, there is no nonuniform tL(n)-time algorithm that succeeds
in weak learning for CO.

Now, we show that PrO[∧z∈{0,1}nIz] ≤ 2−2Ω(n)
. For any z, x ∈ {0, 1}n, we use a notation

LO(n)(x) to refer to the following procedure: We execute LO,MQfz (n) and if L outputs some
hypothesis h? in tL(n) time, then we also execute hO(x). For any z ∈ {0, 1}n, we define an event
Jz as the event (over the choice of O) that L or its hypothesis directly access a target function fz
by F , i.e.,

Jz =

(
Pr

L,x∼{0,1}n

[
F(z, x′, `) is queried for some (x′, `) ∈ {0, 1}n × [n] during LO(n)(x)

]
≥ ε(n)4

)
.

We say that z ∈ {0, 1}n is a hard index (relative to O) if z ∈ Sn,imax(n)−1. Then, we have that

Pr
O

 ∧
z∈{0,1}n

Iz

 ≤ Pr
O

 ∧
z∈{0,1}n:hard

Iz


≤ Pr
O

 ∧
z∈{0,1}n:hard

(Iz ∨ Jz)


≤ Pr
O

[ ∧
z:hard

Jz

]
+ Pr
O

[∃z : hard s.t. Iz ∧ ¬Jz] .

In the following, we show that each term is bounded above by 2−2Ω(n)
, which implies the theorem.

Claim 9.2.27. PrO [
∧
z:hard Jz] ≤ 2−2Ω(n)

.

Proof. Let N = |Sn,imax(n)−1|. For any choice of Sn,imax(n)−1, we can divide a random selection
of ρn,imax(n) into the following two steps without loss of generality: (i) select N random functions

x1, . . . , xN ∈ {0, 1}n2n uniformly at random (where we regard each xj as a truth table of a mapping
from n bits to n bits), and (ii) select a random bijection b : Sn,imax(n)−1 → {x1, . . . , xN} to assign
each value of F (z, ·, ·) as F (z, ·, ·) ≡ b(z) for each z ∈ Sn,imax(n)−1.

We consider an arbitrary choice of O except for the aforementioned bijection b and use the
notation C to refer to such a partial choice of O. We regard C as a condition on the choice of
O. We say that the partial choice C is bad if there are two distinct indices j1, j2 ∈ [N ] such that
xi1 = xi2 . Since x1, . . . , xN is uniformly and independently selected from 2n2n elements, by the
union bound, we obtain that

Pr
O

[C is bad ] ≤ N2 · 2−n2n ≤ 22n · 2−n2n = 2−Ω(2n).
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Thus, we have that

Pr
O

[ ∧
z:hard

Jz

]
= E

C

[
Pr
O

[ ∧
z:hard

Jz

∣∣∣∣∣C
]]

≤ E
C

[
Pr
O

[ ∧
z:hard

Jz

∣∣∣∣∣C
]∣∣∣∣∣C is not bad

]
+ Pr

O
[C is bad]

≤ E
C

[
Pr
b

[ ∧
z:hard

Jz

∣∣∣∣∣C
]∣∣∣∣∣C is not bad

]
+ 2−Ω(2n).

Therefore, it is sufficient to show that for every not bad condition C,

Pr
b

[ ∧
z:hard

Jz

∣∣∣∣∣C
]

= 2−2Ω(n)
.

To show the aforementioned bound, we assume that
∧
z:hard Jz holds under a not bad condition

C (notice that C determines all hard indices), i.e., for any hard index z ∈ {0, 1}n,

Pr
L,x∼{0,1}n

[
F(z, ·, ·) is queried during LO(n)(x)

]
≥ ε(n)4

By the standard probabilistic argument, we can reduce the upper bound from 1 − ε(n)4 to
2−2n on the probability that F(z, ·, ·) is not queried by L or its hypothesis by repeating LO(n)(x)
2n/ε(n)4 times. Then, by the union bound for all hard indices, there exists a random seed r ∈
{0, 1}tL(n)·2n/ε(n)4

such that for any hard index z, F(z, ·, ·) is queried during at least one execution
of LO(n)(x) by using the randomness r. We remark that all queries to O by L or its hypothesis are
determined by C except for F(z, ·, ·) for each hard index z. This is because L and its hypothesis
are executed in time O(tL(n)) = O(2(a/2)n/ logn) ≤ 2an/ logn = t(n) (for sufficiently large n), i.e., all
answers from A depend on only ρ·,j for j ≤ c−1 log log t(n)1/2c = c−1 log log t(n)− 1 < imax(n).

Therefore, by executing L with the randomness r and tracing queries to F , we can obtain a
deterministic inverter for b of the query complexity at most tL(n) · 2n/ε(n)4, where the inverter
simulates membership queries by using its input and its own query access to b. Particularly, the
inverter accesses b only for answering the queries of the form F(z′, ·, ·) for some z′ ∈ Sn,imax(n)−1.

However, by Lemma 9.1.11, such a bijection b is represented by 2 log
(
N
a

)
+log((N−a)!) bits, where

a = N/(tL(n) · 2nε(n)−4 + 1), when L and r are given. Thus, we obtain that

a ≥ 2n · p(n)imax(n)

O(tL(n)nε(n)−4)
≥ 2n · 2−

6an
logn
· 1
c

logn

O(2(a/2)n/ lognn4 logn+1)
≥ 2n · 2−

6
7
n

2O(n/ logn)
≥ 2Ω(n),

and

Pr
b

[ ∧
z:hard

Jz

∣∣∣∣∣C
]
≤
(
N
a

)2 · (N − a)! · 2O(tL(n)·2nε(n)−4)

N !

≤
(
N

a

)
· 1

a!
· 2O(2(a/2)n/ logn)

≤
(
Ne

a

)a
· 1√

2πa

( e
a

)a
· 22O(n/ logn)
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≤
(
e(tL(n) · 2nε(n)−4 + 1)

)a · ( e
a

)a
· 22O(n/ logn)

≤

(
2O(n/ logn)

a

)a
· 22O(n/ logn)

≤ 2−a · 22O(n/ logn)
= 2−2Ω(n)

.

�

Claim 9.2.28. PrO [∃z : hard s.t. Iz ∧ ¬Jz] ≤ 2−2Ω(n)
.

Proof. We consider an arbitrary choice of O except for values of ρn,imax(n) (we write this condition as
C). Note that hard indices are determined by the condition C, and for any hard index z ∈ {0, 1}n,
fz is a random function even under the condition C.

Suppose that z is a hard index, and ¬Iz ∧ Jz occurs. By Markov’s inequality, we derive the
following from ¬Iz:

Pr
L

[
Pr
x

[
F(z, ·, ·) is queried during LO,MQfz (n)(x)

]
≤ 4ε(n)3

]
≥ 1− ε(n)/4.

Since Jz holds, we also have

Pr
L

[
LO,MQfz (n)→ hO s.t. Pr

x
[hO(x) = fz(x)] ≥ 1/2 + ε(n) in tL(n) time

]
≥ 2

3
.

From the aforementioned two inequalities, there exists a random string r for L such that

• LO,MQfz (n; r) outputs some hypothesis hO in tL(n) time without querying (z, ·, ·) to F ;

• Prx[hO(x) queries (z, ·, ·) to F ] ≤ 4ε(n)3; and

• Prx[hO(x) = fz(x)] ≥ 1/2 + ε(n).

Since L and h are only executed in O(tL(n)) ≤ t(n) time (for sufficiently large n), any query

(M,x′, 1T
2c

) to A by L and h satisfies that T 2c ≤ t(n) and iT = c−1 log log T = c−1 log log t(n)−1 <
imax(n). Therefore, if L and h do not query (z, ·, ·) to F , then the answers from O do not depend
on ρn,imax(n), i.e., they are determined only by the condition C.

In this case, we show that a truth table of fz has a short description under the condition C.
This implies the upper bound on the probability of this case because a random function does not
have such a short description with extremely high probability.

The short description of fz is obtained as follows. Let Bz ⊆ {0, 1}n be the subset consisting
of x such that hO(x) queries F(z, ·, ·). By the second property of the above, |Bz| ≤ 2n · 4ε(n)3

holds. We execute LO,MQfz (n; r) to obtain hO, and we write down all answers from the membership
query oracle MQfz in Q, i.e., Q is a binary string of length at most tL(n). By the first property
on r, the answers from O are determined by the condition C. Next, we execute the outputted
hypothesis hO(x) on each input x ∈ {0, 1}n \Bz. From these predictions and auxiliary information
fz(Bz) = {(x, fz(x)) : x ∈ Bz}, we obtain a function f̃ : {0, 1}n → {0, 1} defined as

f̃(x) =

{
hO(x) if x /∈ Bz
fz(x) if x ∈ Bz.
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Then, by the third property, f̃ is (1/2 − ε(n))-close to fz. We define e ∈ {0, 1}2n as ex+1 =
fz(x) ⊕ f̃(x), where we identify x ∈ {0, 1}n with an integer in [0, 2n − 1]. Then, the Hamming
weight of e is at most 2n · (1/2− ε(n)), and e is represented by a binary string ẽ of length at most
(1−Ω(ε(n)2))·2n by lexicographic indexing among binary strings of the same weight. Obviously, fz is
reconstructed from f̃ and ẽ. Therefore, based on the aforementioned constructions, fz is represented
only by L, r,Q, fz(Bz), and ẽ on the condition C. The total number of such representations is at
most

|L|+ tL(n) + tL(n) + (n+ 1) · |Bz|+ (1− Ω(ε(n)2)) · 2n ≤ O(tL(n)) +
(
1 + 4(n+ 1)ε(n)3 − Ω(ε(n)2)

)
2n

≤ O(tL(n)) +
(
1− Ω(ε(n)2)

)
· 2n.

Therefore, we have that for any condition C and any hard index z ∈ {0, 1}n,

Pr
O

[Iz ∧ ¬Jz|C] ≤ 2O(tL(n))+(1−Ω(ε(n)2))·2n

22n

≤ 22O(n/ logn)−Ω(n−2 logn)·2n

≤ 2−2Ω(n)
.

Thus, we conclude that

Pr
O

[ ∨
z:hard

Iz ∧ ¬Jz

]
= E

C

[
Pr
O

[ ∨
z:hard

Iz ∧ ¬Jz

∣∣∣∣∣C
]]

≤ E
C

 ∑
z∈{0,1}n

Pr
O

[z is hard and Iz ∧ ¬Jz|C]


≤ 2n · 2−2Ω(n)

= 2−2Ω(n)
.

�

9.3 Related Work and Map of the Relativized World

The study of oracle separations is initiated by Baker, Gill, and Solovay [BGS75] to identify the
barrier for resolving the P versus NP problem. The study of the average-case complexity is initi-
ated by Levin [Lev86], and later it was brushed up by Impagliazzo [Imp95], where he introduced
the notion of five worlds. In the same paper, Impagliazzo first addressed the question on the dif-
ference between the errorless complexity and the error-prone complexity. Each relativized world in
Impagliazzo’s five worlds is found in [BGS75; Imp11; Wee06; IR89; Bra83]. Specifically, Impagli-
azzo found a relativized heuristica in which DistNP ⊆ AvgP but NP * SIZE[2n

ε
] for some ε > 0,

and Wee found a relativized pessiland in which DistNP * HeurP, but neither AIOWF nor OWF
exists. Watson [Wat12] also constructed a relativized world in which there is no black-box worst-
case to average-case reduction for NP, but the reduction presented by Hirahara [Hir18; Hir20b] is
non-black-box and overcomes the barrier against black-box reductions. The work in Section 9.1
improved the oracle construction proposed by Impagliazzo to the tight worst-case hardness of NP
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Figure 9.1: Relativization Barriers in Heuristica and Pessiland

and also presented the relativized world in which DistNP ⊆ AvgP, but PAC learning P/poly with
MQ is sub-exponentially hard. Ko [Ko91] showed the relativized world in which P 6= NP, but a
gap variant of the problem called MINLT is efficiently solvable, which is sufficient for PAC learning
P/poly. Xiao [Xia09b] found the relativized world in which PAC learning P/poly with MQ is hard,
but there is no AIOWF. Ren and Santhanam [RS22] presented various relativization barriers on
the problems in meta-complexity, including the relativized world in which there is no efficient and
robust reduction from distributional NP problems to the GapMINKT oracle. They also found the
relativized world in which no AIOWF exists but GapMCSP and GapMINKT are hard (even in the
error-prone average case). Trevisan [Tre10] and Nanashima [Nan21b] presented the oracle separa-
tion between AIOWF and OWF, which was conceptually improved by the result in Section 9.2.
The relationships among these oracle separation results is visualized in Figure 9.1.
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Chapter 10

Conclusions and Future Directions

In this thesis, we presented new connections between learning, average-case complexity, and cryp-
tography, which provide new and clear insights into the gaps in our current knowledge between
the computational hardness of NP and the existence of one-way functions. Based on the main re-
sults, we propose several future directions, including the learning-theoretic approach towards basing
one-way functions on worst-case/average-case hardness of NP.

One of the most important open problems is, of course, to establish a non-relativized tech-
nique that breaks relativization barriers presented in Chapter 9. Additionally, it is also important
to obtain tight connections in the relativized world to understand more deeply the capability of
relativizing proof techniques. Although we identify the capabilities of relativizing techniques for
establishing worst-case-to-average-case reductions for PH (in Section 9.1) and weak learning un-
der the uniform example distribution in error-prone Heuristica (in Section 9.2), it remains unclear
whether other separation results are tight or not. Below, we present specific open problems, which
are classified into three realms, errorless Heuristica, error-prone Heuristica, and Pessiland.

Quest for Errorless Heuristica

An important open problem is to improve the size of hypotheses produced by a learner constructed
under the average-case errorless easiness of NP. Our learning strategy presented in Section 3.1
implies a weak learner that learns all s-size programs by O(sn)-size programs under example dis-
tributions samplable with advice complexity O(s) by using the standard hybrid argument instead
of the characterization result in [KL18] or distribution-specific boosting in [Fel10] (see [Hir22a, Ap-
pendix A] for more formal arguments). Improving the size of hypotheses fromO(sn) to s·n(log logn)−c

for a sufficiently large constant c > 0 implies excluding errorless Heuristica because of the NP-
hardness result (i.e., Theorem 2.6.5) in [Hir22a]. Proving the implication is consistent with the
currently known barrier results (i.e., the relativization barriers in [Imp11] and Section 9.1 and the
barrier against nonadaptive black-box reductions [BT06b]) because our reduction from worst-case
learning to average-case NP in Section 3.1 passes through a non-black-box technique [Hir18; Hir20b;
HW20], and the proof of Theorem 2.6.5 is provably non-relativizing. Any progress on this approach
(e.g., improving the approximation factor in the NP-hardness result and finding new barrier results)
is interesting and important for excluding Heuristica from the perspective of learning.

Another important open problem is whether non-trivial distribution-free learning is possible in
relativized Heuristica.
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Open Question. Can we show that P/poly (or SIZE[n]) is weakly PAC learnable in 2n/nω(1) time
under DistNP ⊆ AvgP by a relativizing proof? Or, is there any relativization barrier even for such
non-trivial learning in errorless Heuristica?

It is also interesting to find some learning-theoretic characterization of the average-case errorless
complexity of NP. Remember that, in Section 3.2, we present the characterization result in the
error-prone case by introducing conditional extrapolation. We conjecture that an errorless analogue
of the characterization result holds, which is naturally stated as follows:

Conjecture. The following are equivalent.

1. DistNP ⊆ AvgBPP.

2. (Errorless Conditional Extrapolation) For every samplable distribution families {Cn}n∈N
and {Dn}n∈N over binary strings, there exists a probabilistic polynomial-time algorithm Ext
such that for all n, k, ε−1, δ−1 ∈ N,

Pr
x∼Cn

[
Pr
Ext

[Ext(x; 1〈k,ε
−1,δ−1〉) = ⊥] > 1/4

]
≤ δ.

and for every x ∈ supp(Dn)

Pr
Ext

[Ext(x; 1〈k,ε
−1,δ−1〉) = ⊥] ≤ 1/4 =⇒ L1

(
Ext(x; 1〈k,ε

−1,δ−1〉),Nextk(x,Dn)
)
≤ ε.

The proof of Theorem 3.2.1 is needed to be modified to show the conjecture above because, in
the proof of Theorem 3.2.1, we need to execute a heuristic scheme for the search version of the
circuit SAT problem even on distributions on which the correctness of the heuristic scheme is not
guaranteed. However, we believe that changing the distribution in the proof to one on which the
heuristic scheme actually works is fine to show the conjecture above.

Quest for Error-Prone Heuristica

In Section 9.2, we present the relativization barrier against extending the currently known algo-
rithmic implications from the average-case errorless easiness of NP to the case of the average-case
error-prone easiness of NP. An important open question is to develop a non-relativized technique
to overcome the barrier result.

We also remark that several important questions remain on relativizing techniques. The oracle
separation in Section 9.2 heavily relies on the characteristics of DNFs (i.e., nondeterministic ma-
chines). Currently, it is unclear whether the proof proposed in Section 9.2 can be extended to a
general case of constant-depth circuits, even for depth-3 ∧-∨-∧-circuits (which corresponds to Πp

2).
By contrast, the oracle separation between the worst-case hardness and the errorless average-case
easiness for NP in [Imp11] is naturally extended for PH, as explicitly discussed in Section 9.1 by
considering the switching lemma for constant-depth circuits. Therefore, we pose the following open
question for the further research on the difference between the errorless and error-prone average-case
complexity.

Open Question. Is there any oracle O relative to which DistNPO * AvgPO/poly and DistPHO ⊆
HeurPO? Or, is there a relativizing proof which shows that DistPH ⊆ HeurP =⇒ DistNP ⊆
AvgP/poly?
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The fact that we failed to extend our results to PH might suggest the feasibility of proving
DistPH ⊆ HeurP =⇒ DistNP ⊆ AvgP/poly. Furthermore, we failed to improve our lower bound
2o(n/ logn) on the time complexity of errorless average-case algorithms to 2o(n). In this light, we
conjecture that the worst-case-to-average-case connection of Hirahara [Hir21b], which shows that
DistNP ⊆ AvgP =⇒ UP ⊆ DTIME(2O(n/ logn)), can be extended to the error-prone average-case
complexity by using a relativizing proof.

Conjecture. For every oracle O, if DistNPO ⊆ HeurPO, then UPO ⊆ BPTIMEO[2O(n/ logn)].

Another interesting open question is whether a unified and robust theory of learning can be
established based on the conditional extrapolation (Theorem 3.2.1) similarly as the unified theory
based on universal extrapolation in Chapter 4.

Quest for Pessiland

An important future direction is to investigate learning-theoretic consequences of the non-existence
of OWF that are not directly derived from Theorem 4.3.3. Particularly, an important example is
MINLT. By the NP-hardness result of MINLT (Theorem 2.6.5), proving the feasibility of MINLT
in the average-case setting in Theorem 4.2.2 under the non-existence of OWF implies excluding
Pessiland. This approach seems hopeful at present because of the non-relativizing proof in [Hir22a],
and such a breakthrough does not contradict our current knowledge. Generally, the description
length of hypotheses our learner produces heavily relies on the sample complexity. Therefore,
as in Theorem 4.3.4, improving the sample complexity (depending on the minimum description
length of the consistent hypothesis in this case) can be one approach for excluding Pessiland from
learning theory. Another approach is to generalize the feasibility of MINLT in the BFKL model
(Theorem 5.1.3) to more general average-case setting. It is also important to remove the additional
derandomization assumption in Theorem 5.1.3.

Another important question is to show reductions similar to Corollary 4.2.3 in more restricted
classes such as NC1 and AC0[p] instead of P/poly. In computational learning theory, several novel
learners have been developed for restrictive classes such as DNFs and AC0[p], but almost all the
learners require membership queries and work only under the uniform example distribution [LMN93;
KM93; Jac97; CIKK16; CIKK17]. By showing a result similar to Corollary 4.2.3 for such restrictive
classes, we can change the previous (somewhat theoretical) learners into more capable and practical
learners.

Other important question is to establish the robust learning theory in the case in which samples
are selected an unknown P/poly-samplable distribution (i.e., worst-case with respect to P/poly-
samplable distributions) under the non-existence of auxiliary-input one-way functions.

Open Question. Can we show the equivalence of the following by a relativizing proof? Or, is
there any oracle separation (i.e., the barrier against relativizing proofs)?

• The non-existence of auxiliary-input one-way function;

• Weak learning for P/poly with membership queries under all unknown P/poly-samplable dis-
tributions over samples;

• Agnostic learning under all unknown P/poly-samplable distributions over samples;

• Distributional learning for all unknown P/poly-samplable distributions.
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Note that either result, i.e., the equivalence or the oracle separation, will provide important
knowledge. Particularly, the former yields new clear insights into the dichotomy between learning
theory and cryptography along with this work, while the latter shows that the robustness of learning
in Corollary 4.2.3 is indeed the unique property of average-case learning. We remark that Xiao
[Xia10] presented a related oracle separation between weak learning and distributional learning,
but they considered not efficiently samplable distributions (over examples) in weak learning.
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