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Abstract 

  

The state of knowledge of hydro-environmental impact due to the development and 

climate variation in a particular river basin is significant for sustainable environmental 

management of the basin. Reliable climate datasets and frameworks play vital roles in 

conducting hydro-environmental impact assessment through the application of regional 

hydrological models. However, due to the financial constraints of the Kingdom of Cambodia, 

the sparse and uneven distribution of hydro-meteorological gauge stations in the Tonle Sap 

Lake (TSL) Basin hinders the development of reliable hydrological models and accurate 

simulations of the hydrological impacts of anthropogenic activities and climate change. The 

TSL Basin in Cambodia is the largest freshwater body in Southeast Asia and one of the most 

productive ecosystems in the world, playing a crucial role in livelihood and sustainable 

development in Cambodia and the Lower Mekong region. Despite its significant value, the 

lake ecosystem is widely under threat from climate change together with anthropogenic 

activities inside and outside the TSL basin. Although these impacts could be attributed to 

multiple driving factors such as the influence of the Mekong mainstream and anthropogenic 

activities inside the lake, limited information is available regarding hydro-environmental 

impacts from the tributary basins of the TSL. This necessitates a comprehensive 

hydrological assessment of the TSL tributary basins, owing to land-use change, population 

growth, and climate change, for environmental conservation of the TSL Basin. 

 

The overall objective of this study is to develop a feasible method or framework for 

estimating streamflow and sediment load in data-sparse or poorly gauged basins of the Tonle 

Sap Lake, for sustainable management and conservation of the lake ecosystems. First, a 

comprehensive framework was used to determine an ideal alternative meteorological dataset 

for hydrological modeling, considering the spatiotemporal characteristics of each climate 

dataset and ensuring a reliable estimate of streamflow and evapotranspiration. Next, a new 

regionalization method was proposed to estimate sediment load in ungauged catchments, 

considering spatiotemporal variability and the sediment load relation to rainfall 

characteristics of individual catchments. Finally, the application of the above two mentioned 

methods for hydro-environmental impact assessment, owing to decadal climate variation 

and basin development during the last few decades. 
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In the beginning, a comprehensive framework was introduced to assess seven gridded 

precipitation and air temperature products by statistically comparing these datasets with 

gauge-based datasets and applying the Soil and Water Assessment Tool (SWAT) model for 

daily streamflow and evapotranspiration (ET) simulations over the TSL Basin. The 

precipitation data from Asian Precipitation-Highly Resolved Observational Data Integration 

Towards Evaluation of Water Resources (APHRODITE), European Centre for Medium-

Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5), Tropical Rainfall Measuring 

Mission (TRMM) and Integrated Multi-satellitE Retrievals for Global Precipitation 

Measurement (GPM) (IMERG) were found to have high correlations with rain-gauged data 

and the lowest estimation errors, and the Southeast Asia-Observation (SA-OBS) and 

Climate Prediction Center (CPC) were found to match the observed air temperature data 

well. In addition, the results of the hydrological simulation showed that the rainfall data from 

APHRODITE, TRMM and IMERG, combined with SA-OBS-based air temperature data, 

provided improved estimations of daily streamflow and mean runoff depth. The ET 

estimated using the TRMM and IMERG datasets showed a better temporal and spatial 

pattern agreement with ET from Moderate Resolution Imaging Spectroradiometer (MODIS) 

and Global Land Evaporation Amsterdam Model (GLEAM). This suggests that TRMM and 

IMERG, in conjunction with SA-OBS air temperature, are reliable for providing streamflow 

through the SWAT model application and other water balance components. This 

comprehensive evaluation framework was found to be effective in selecting reliable gridded 

meteorological datasets for hydrological simulation in data-sparse river basins, especially 

when large uncertainty existed in the spatiotemporal distribution of rainfall. These findings 

also showed that statistical comparisons with gauge data and hydrological evaluation of 

streamflow are not enough to justify the reliability of each gridded dataset.  

 

Although satellite-based or gridded meteorological data could serve as the hydrological 

model inputs, model outputs (i.e., streamflow or sediment load) need to be optimized using 

ground-based observation. However, model calibration or validation cannot be performed 

in the ungauged catchment (e.g., the catchment is not monitored in terms of water level or 

sediment concentration). To solve this problem, a common method known as 

regionalization, in which model parameters from well-monitored catchments are transferred 

to ungauged, was used to estimate hydrological variables such as streamflow and sediment 

load. Therefore, a novel Sediment-Response Similarity (SRS) regionalization method has 

been proposed, using the SWAT model and Self-Organizing Map clustering technique to 
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overcome the limitation of the critical attributes of a catchment favoring sediment similarity, 

which usually exists in the conventional regionalization approaches. It considered the 

spatiotemporal variations of sediment response and its relationship with rainfall 

characteristics as a catchment attribute and showed the potential to ideally determine 

hydrological and sediment similarities between gauged and ungauged catchments. The 

results indicated the comprehensive performance of the SRS regionalization method for 

estimating sediment load in the ungauged catchments. The SRS approach obtained an 

estimation error reduction of up to 7%, compared with the Physical Similarity 

regionalization method. The SRS regionalization method proposed in this study is a global 

alternative method for estimating sediment, as well as other hydrological variables and 

rainfall-driven phenomena such as streamflow and nutrient transport, in ungauged 

catchments.  

 

Eventually, the above two frameworks were used to quantify the impacts of climatic 

variability and land-use change on streamflow and sediment load in the TSL Basin during 

the last few decades. Climate analysis showed an increasing trend in the basin temperature 

and a downward trend in rainfall between 2001 and 2020. The results of the land-use change 

analysis revealed that there was a substantial decrease found in forest cover, in which 

cumulative loss of natural forest area was around 45% or the area decreased from 37,052 in 

1995 to 20,408 km2 in 2018. On the other hand, the cropland area increased by about 23% 

from around 30,400 to 37,324 km2 in 1995 and 2018, respectively. The hydrological analysis 

depicts that the early rainy season flows of the TSL Basin were lower (max. 26% decrease) 

for 2011-2020 compared to the 2001-2010 time horizons. However, after the wet monsoon 

season, the streamflow was observed to receive some increases due to the rise in rainfall 

amount during September and November. A similar change in the seasonal pattern forced 

by climate variability was found between flow and sediment load. The land-use change had 

a positive and negative impact on streamflow sediment loading during the rainy and dry 

seasons, respectively. The streamflow and sediment load were seen to increase by up to 5.83 

and 19.57%, respectively between May and November, while a decrease of up to 4.54 and 

5.80%, respectively was found between December and April. The basin streamflow and 

sediment load showed a greater impact from climate variation than land-use change. Based 

on the results found in this study, climate variability and land-use change have noticeable 

impacts on streamflow and sediment load, suggesting that planning and management of their 
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impacts are crucial for the sustainable management of water resources and lake ecosystem 

conservation in the TSL Basin. 

 

The feasible framework developed in this research would serve as a central approach 

in estimating streamflow and sediment load in data-sparse or poorly gauged basins. Besides 

that, the study also contributes a basic methodology to estimate other hydro-meteorological 

parameters of interest. For a similar purpose, this methodology can be applied as well in 

other river basins around the world. 

 

 



 

vii 
 

Table of Contents 

 

Preface .................................................................................................................................... i 

Acknowledgments ................................................................................................................. ii 

Abstract ................................................................................................................................ iii 

Table of Contents ................................................................................................................ vii 

List of Tables ......................................................................................................................... x 

List of Figures ....................................................................................................................... xi 

List of Appendices .............................................................................................................. xvi 

List of Abbreviations ....................................................................................................... xviii 

List of Symbols .................................................................................................................. xxii 

List of Units ...................................................................................................................... xxiv 

Chapter 1 Introduction ..................................................................................................... 1 

1.1. Background and research motivations .................................................................... 1 

1.2. Research objectives, scope and limitation .............................................................. 3 

1.3. General research framework ................................................................................... 4 

1.4. Dissertation organization ........................................................................................ 6 

Chapter 2 Evaluation of daily gridded meteorological datasets for hydrological 

modeling in data-sparse basins .............................................................................................. 8 

2.1. Introduction ............................................................................................................. 8 

2.2. Materials and methods .......................................................................................... 12 

2.2.1. Study area ...................................................................................................... 12 

2.2.2. Gridded precipitation and temperature datasets ............................................ 14 

2.2.3. Performance evaluation of gridded datasets of rainfall and temperature ...... 19 

2.2.4. Performance evaluation based on the hydrological model application ......... 20 

2.3. Results and discussion .......................................................................................... 27 

2.3.1. Performance of precipitation datasets............................................................ 27 

2.3.2. Spatial distribution of mean annual precipitation .......................................... 32 

2.3.3. Performance of temperature datasets ............................................................. 33 

2.3.4. Evaluation of performance based on the streamflow simulation .................. 35 

2.3.5. Evaluation of performance based on ET throughout the TSL Basin ............. 39 

2.4. Conclusion ............................................................................................................ 43 

Chapter 3 Sediment load estimation using a novel regionalization sediment- response 

similarity method for ungauged catchments ........................................................................ 45 



 

viii 
 

3.1. Introduction ........................................................................................................... 45 

3.2. Materials and methods .......................................................................................... 49 

3.2.1. Hydrological model setup .............................................................................. 49 

3.2.2. Regionalization methods ............................................................................... 49 

3.2.3. Self-organizing map ...................................................................................... 53 

3.2.4. Study area ...................................................................................................... 55 

3.2.5. Hydrological model ....................................................................................... 57 

3.2.6. Data collection and pre-processing ............................................................... 57 

3.2.7. Model calibration, validation and evaluation ................................................ 59 

3.3. Results and discussion .......................................................................................... 60 

3.3.1. Interpretation of sub-catchment descriptors and clusters for each 

regionalization method ................................................................................................. 60 

3.3.2. Evaluation of the performance of regionalization methods........................... 64 

3.3.3. The application of the proposed regionalization method in ungauged 

catchments of the TSL basin ........................................................................................ 70 

3.4. Conclusion ............................................................................................................ 73 

Chapter 4 Decadal climatic variability, land-use change and hydro-environmental 

impact assessment ............................................................................................................... 74 

4.1. Introduction ........................................................................................................... 74 

4.2. Materials and methods .......................................................................................... 76 

4.2.1. Study area ...................................................................................................... 76 

4.2.2. Hydrological model ....................................................................................... 77 

4.2.3. Data collection and pre-processing ............................................................... 77 

4.2.4. Lake surface extension .................................................................................. 79 

4.3. Results and discussion .......................................................................................... 80 

4.3.1. Spatiotemporal climatic variability ............................................................... 80 

4.3.2. Land-use/Land cover change analysis ........................................................... 83 

4.3.3. Impact of climate variability.......................................................................... 86 

4.3.4. Impact of land-use change on streamflow and sediment load ....................... 90 

4.4. Conclusion ............................................................................................................ 95 

Chapter 5 Summary of the research ............................................................................... 97 

5.1. Summary of research results ................................................................................. 97 

5.2. Contributions of research results .......................................................................... 99 

5.3. Future challenges ................................................................................................ 100 



 

ix 
 

References ......................................................................................................................... 101 

Appendices ........................................................................................................................ 122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 
 

List of Tables 

 

Table 2.1. The total drainage area, delineated area and land-use of each tributary 

basin………………………………………………………...…..……....….13 

Table 2.2. Description of precipitation and temperature datasets used in the study... ..14 

Table 2.3. Summary of required data used for SWAT model setup………………... .23 

Table 2.4. Performance of statistical indices for maximum and minimum temperatures 

at the monthly time scale……………………………………………....…...35 

Table 3.1. The total drainage area, gauged area, and land-use of each catchment of the 

TSL and 3S basins………………………………………………………….56 

Table 3.2. Summary of required data used for SWAT model setup and calibration.. ..58 

Table 3.3. Results of statistical indices during the model calibration and cross-validation 

for the sediment load at the gauging station of each catchment……..….…66 

Table 3.4.  Significance test (student-t) for improvement in NSE and R2………….…69 

Table 4.1. Summary of required data used for SWAT model setup and calibration…78 

Table 4.2. Summaries of land cover classes in the TSL Basin from 1995 to 2018…...85 

 

 

 

 

 

 



 

xi 
 

List of Figures 

 

Figure 1.1. Location map of the Tonle Sap Lake in Cambodia. The inset indicates the 

location of the TSL Basin in the Lower Mekong River and the Indochina 

Peninsular…………………………………………………………………...2 

Figure 2.1. Location map of the TSL Basin. The dash-line box shows a 0.25 × 0.25℃ 

grid cell. The rainfall and temperature stations are the same in the Siem Reap 

tributary basin. A total of 156 grid cells are covering the whole TSL Basin 

area. The inset indicates the location of the TSL Basin in the Indochina 

Peninsular…………………………………………….……………………13 

Figure 2.2. Schematic representation of the hydrologic cycle in the SWAT model 

(Arnold et al., 1998)……………………………………………………….21 

Figure 2.3.  The general sequence of processes used by SWAT to model the land phase 

of the hydrologic cycle (Arnold et al., 1998)……………………………...22 

Figure 2.4. In-stream processes are modeled by the SWAT model (Arnold et al., 

1998)……………………………………………………………………….23 

Figure 2.5. The general framework of SWAT-CUP. There are five different methods of 

parameter uncertainty: Sequential Uncertainty Fitting Version 2 (SUFI-2), 

Particle Swarm Optimization (PSO), Generalized likelihood Uncertainty 

Estimation (GLUE), Parameter Solution (ParaSol), and Markov chain Monte 

Carlo (MCMC)……………………………………………………...……..25 

Figure 2.6. Spatial distribution of mean bias error (a-f), root mean square error (g-l), 

correlation coefficient (m-r), and modified index of agreement (s-x) between 

gridded products and gauged observation at monthly time scale during 19985 

– 2011 (1998 and 2001– 2011 for TRMM and IMERG, respectively). The 

circles denote rainfall gauging stations located in the TSL Basin…………..28 

Figure 2.7. Comparison of long-term mean monthly rainfall averaged for all the gauging 

stations located in each tributary basin from 2001 to 2011. The number of 

gauging stations used for averaging monthly rainfall was included in each 

plot…………………………………………………………………………29 

Figure 2.8. Scatter plots of observed and interpolated monthly rainfall in each tributary 

basin from 1985 to 2011 (1998 and 2001 to 2011 for TRMM and IMERG, 

respectively). For the basin with multiple gauging stations (Figs. 2.6 and 2.7), 

the monthly rainfall was obtained as the arithmetic mean for all gauging 



 

xii 
 

stations located in the basin. The blue dash lines are 1:1 line, and the red solid 

lines denote linear regressions……………………………………………..30 

Figure 2.9. Spatial distribution of mean annual rainfall of APHRODITE (a), CFSR (b), 

ERA5 (c), SA-OBS (d), TRMM (e), IMERG (f) and gauged observation (g) 

over the TSL Basin for the period from 2001 to 2011. The areal average (for 

gridded datasets) and the arithmetic mean (for gauging stations) of the mean 

annual precipitation were included at the top left corner of each map……...32 

Figure 2.10. Comparison of mean monthly averaged daily maximum (top) and minimum 

(bottom) temperatures at individual stations from 19985 – 2011…………..34 

Figure 2.11.  Daily observed (black solid line) and simulated (red dashed line) flow of the 

Sen tributary basin during calibration and validation periods from 1995 to 

2002 (1998 and 2001 to 2002 for TRMM and IMERG, respectively) and 2003 

to 2011, respectively. The secondary plots (blue solid line) indicate daily 

rainfall corresponding to each product. The black dashed line marks the end 

of the calibration period and the beginning of the validation period………..36 

Figure 2.12. Comparison of observed and simulated mean annual runoff depth in the 

calibration (top) and validation (bottom) periods. The mean runoff depth for 

each tributary basin and the total represents the runoff from the delineated 

area of each tributary basin and all of the delineated basin area, 

respectively………………………………………………………..……….38 

Figure 2.13. Comparison of the spatial distribution of long-term mean annual ET of 

APHRODITE (a), ERA5 (b), TRMM (c), IMERG (d) MODIS(e) and 

GLEAM (f) over the TSL Basin. The mean was calculated based on the long-

term mean annual ET from 2001 to 2011. The mean annual ET of each dataset 

was mentioned at the top left corner of each map………………………….40 

Figure 2.14.  Scatter plots of tributary basin-averaged monthly simulated ET with MODIS-

ET (red diamond) and GLEAM-ET (blue circle) for the individual dataset 

from 2001 to 2011. Each plot represents monthly ET averaged over each 

tributary basin excluding flooded areas…………………………………….41 

Figure 3.1.  Flowchart of physical similarity (PS) and the sediment-response similarity 

(SRS) parameter transfer schemes. Numbers 1 and 2 denote the two-phase 

approach of parameter transfer of the SRS systematic procedure. The top 

dash-box denotes the general procedure of the SWAT model setup………..50 



 

xiii 
 

Figure 3.2. a) Schematic diagram of the self-organizing map. b) Unified distance matrix 

(U-matrix). In b), the number shown on the map denotes clusters. Colors 

denote the relative distance between the grids numbered on each axis……..54 

Figure 3.3. Location map of the TSL River and 3S River Basins showing the water-level 

and sediment monitoring stations. The gauging stations of Sen, Chinit, 

Sekong and Srepok catchments are for both water-level and sediment 

monitoring, and they are termed “gauged catchments” while others are only 

for water-level measurement. The inset shows the location of the TSL and 3S 

River Basins in the Lower Mekong River Basin and Indochina 

Peninsular.....................................................................................................55 

Figure 3.4. (A) Area-weighted values of CUSLE (a-d), KUSLE (e-h) and slope percentage 

(i-l) for the physical similarity regionalization method. (B) Coefficient of 

variation of rainfall (m-p), coefficient of variation of sediment load (q-t) and 

correlation coefficient between rainfall and sediment load (u-x) for the 

sediment-response similarity regionalization method……………………...61 

Figure 3.5. a) Physical similarity sub-catchment clusters, b) Physical similarity donor 

and receiver sub-catchments for Chinit catchment as a pseudo ungauged 

catchment, c) Sediment-response similarity sub-catchment clusters, and d) 

Sediment-response similarity donor and receiver sub-catchments for Chinit 

catchment as a pseudo ungauged catchment……………………………….63 

Figure 3.6. Comparison of daily sediment loads at the gauging station of each catchment 

showing observed (i.e., LOADEST-based), calibrated, PS-derived, and SRS-

derived sediment loads……………………………………………………..65 

Figure 3.7. Scatter plots of monthly observed sediment load with calibrated (circles), PS-

derived (squares) and SRS-derived (triangles) sediment loads at the gauging 

station of each catchment. The red dash lines are 1:1 line, and the blue solid 

lines denote linear regressions……………………………………………..67 

Figure 3.8. Observed and simulated the mean monthly sediment load at the gauging 

station of each catchment. Simulated results are based on the calibration, PS 

and SRS methods. The shaded area denotes the maximum and minimum 

standard errors of upper and lower bounds from the above-mentioned four 

simulation schemes………………………………………………………...68 

Figure 3.9. Comparison of annual calibrated, PS- and SRS-derived sediment loads at the 

gauging station of each catchment. The annual sediment load for each 



 

xiv 
 

catchment represents the sediment load from the gauged area of each 

corresponding catchment…………………………………………………..69 

Figure 3.10. Annual total sediment load into Tonle Sap lake. The total load is the 

summation of load from 11 catchments. The years shown are hydrological 

years (from May 1, of the year indicated to April 30, of the following year, 

for the period 2001–2011)………………………………………………….71 

Figure 3.11. Seasonal variation of total sediment load into Tonle Sap lake between 2001–

2011. The total load was calculated as per the description in Figure 3.10…..72 

Figure 4.1. Location map of the TSL Basin. The green circle denotes the station 

monitoring the water level in the lake area. The inset indicates the location of 

the TSL Basin in the Indochina Peninsular………………………………...76 

Figure 4.2. Temporal trends and variability of basin-scale seasonal and annual maximum 

(top) and minimum (bottom) temperatures from 1990 to 2020. The rainy and 

dry seasons are from May to October and November to April, respectively. 

The dashed lines denote temporal trends…………………………………...80 

Figure 4.3. a) Temporal trends and variability of basin-scale MAM (March-April-May) 

rainfall, SON (September-October-November) rainfall, and annual rainfall 

from 2001 to 2017. b) Comparison of long-term mean monthly rainfall 

between the 2001–2009 and 2010–2017 periods…………………………..81 

Figure 4.4. Spatial distribution of long-term mean MAM and SON rainfall between the 

2001-2010 and 2011-2020 periods. The full name of MAM and SON are as 

per the description in Figure 4.3. The areal average of the mean rainfall is 

included at the top left corner of each map…………………………………82 

Figure 4.5. Land-use map of 1995, 2002, 2010 and 2018 of the TSL Basin……………84 

Figure 4.6. a) Temporal trends and variability of annual, MJJ (May-June-July) and SON 

(September-October-November) flow volume into the lake. b) Comparison 

of long-term mean monthly streamflow between the 2001–2010 and 2011–

2020 periods. The flow was calculated from the total area of the TSL basin 

excluding the flooded area…………………………………………………86 

Figure 4.7. a) Monthly timer series and b) Annual maximum of surface water extent in 

the Tonle Sap basin based on the processing of MODIS images, and measured 

water level in the lake at Kampong Luong station over 2001–2020.  c) 

Monthly time series of total streamflow from 11 tributary basins and lake 

volume. Refer to Figure 4.1 for the location of the Kampong Luong station. 



 

xv 
 

In a) and c) the discontinued lines denote missing data on water level and lake 

volume, respectively during this period………………………………..…..88 

Figure 4.8. a) Temporal trends and variability of annual, MJJ- and SON-total sediment 

load. b) Comparison of long-term mean monthly total sediment load between 

the 2001–2010 and 2011–2020 periods. The full name of MJJ and SON are 

as per the description in Figure 4.6. The total sediment load was calculated 

from the total area of the TSL basin excluding the flooded area……………89 

Figure 4.9. Impacts of land-use change on a) annual and b) long-term monthly 

streamflow under 2002, 2010, and 2018 land cover scenarios……………..90 

Figure 4.10. Impacts of land-use change on a) annual and b) long-term monthly sediment 

load under 2002, 2010, and 2018 land cover scenarios……………………..91 

Figure 4.11. Comparison of runoff depth change during June-July-August (top) and 

January-February-March (bottom) response to forest area loss under 2002, 

2010 and 2018 land cover scenarios. Forest area change refers to a relative 

loss of forest cover to the total area of the corresponding tributary 

basin………...……………………………………………………………...93 

Figure 4.12 Same as Figure 4.11 but for sediment yield change………………………...94 



 

xvi 
 

List of Appendices 

 

Figure A1. Map of the delineated basin area of each tributary basin. The hatched area 

denotes the gauging area of each tributary basin in the TSL basin………...122 

Figure A2.  The average number of rain gauges per grid cell used for creating the 

APHRODITE dataset. The number of gauges used in APHRODITE (green 

square) is not necessarily the same as the number of rainfall stations (red 

circle, same as Figure 2.1) in each grid cell because of the different time 

coverage of rainfall data and data availability at each station. Each green 

square is plotted at the center of the grid cell……………………………...122 

Figure A3. Schematic and equation of bilinear interpolation method………………...123 

Table A1. Equations and optimal values of statistical indices…………………...…..124 

Table A2. The selected parameters and their initial range setting for calibration using 

SWAT-CUP………………………………………………………………125 

Table A3. Performance ratings of recommended statistics for streamflow 

simulation………………………………………………………………...126 

Table A4. The mean value of each statistical index was calculated for thirty-one gauging 

stations……………………………………………………………………126 

Figure A4. Comparison of monthly rainfall averaged for all the gauging stations included 

in each tributary basin from 1998 to 2011 for TRMM, 2001 to 2011 for 

IMERG and 1985 to 2011 for other products and observations…………...127 

Figure A5. Comparison of monthly mean daily maximum (TMX) and daily minimum 

(TMN) temperatures of individual stations from 19985 – 2011. The different 

colors of solid- and dash-lines denote the maximum and minimum 

temperature, respectively, of different datasets…………………………...129 

Figure A6. Monthly observed and simulated flow of each tributary basin in the 

calibration period. The beginning of the flow simulation depended on the 

flow data availability of each tributary basin……………………………...130 

Figure A7. Same as Figure A6 but for the validation period. Due to discontinued 

monitoring stations in Mongkol Borey and Baribo tributary basins, the flow 

simulations were validated from 2003 to 2004 and 2005, respectively. The 

flow data of the Siem Reap tributary basin was missing in the year 2005, thus; 

the model was validated from 2003 to 2004 and 2006 to 2010……………131 



 

xvii 
 

Table A5. The performance of statistical indices in the calibration and validation 

periods……………………………………………………………………132 

Figure A8. Comparison of tributary basin-averaged monthly evapotranspiration (ET) of 

the individual dataset from 2001 to 2011. The tributary basin-averaged 

monthly ET is the average monthly ET from all delineated sub-basins in each 

tributary basin excluding flooded areas…………………………………...133 

Table A6. The RMSE (mm/month) between SWAT-based ET and satellite-based ET 

over each tributary basin excluding flooded areas………………………...135 

Figure A9. The relative attribution of evapotranspiration to the total precipitation for the 

individual product between 2001 and 2011 over the TSL Basin excluding 

flooded areas……………………………………………………………...136 

Figure A10. Comparison of simulated mean annual runoff depth between 2001 and 2004. 

The mean runoff depth represents the runoff from the whole drainage area of 

each tributary basin and the whole TSL Basin excluding the flooded 

areas………………………………………………………………………136 

Table A7. CUSLE and KUSLE values of different land use and soil types, respectively...137 

Box A1. The self-organizing map………………………….………………………138 

Figure A11. Comparison of daily observed (solid black) and simulated (dash blue) flows 

in Sekong and Srepok catchments. The calibration and validation periods 

were from 2005 to 2008 and 2009 to 2011, respectively………………….139 

Table A8. Results of statistical indices obtained during the model calibration and 

validation for the flow at the gauging stations of Sekong and Srepok 

catchments………………………………………………………………..139 

Table A9. The values of flow-calibrated parameters of each tributary basin. These fitted 

values were obtained from model optimization in Chapter 2……….…….140 

Table A10. The selected flow and sediment parameters and their calibrated values of the 

Chinit catchments. These fitted values were obtained from model 

optimization from 2005 to 2008………………………………………….141 

Table A11. Same as Table A10 but for the Sen catchment……………………………142 

Table A12. Same as Table A10 but for the Sekong catchment………………….……143 

Table A13. Same as Table A10 but for the Srepok catchment…………..……………144 

Figure A12. Figure A12. a) Physical similarity donor and receiver sub-catchments for Sen 

catchment as a pseudo ungauged catchment and b) Sediment-response 

similarity donor and receiver sub-catchments for Sen catchment as a pseudo 



 

xviii 
 

ungauged catchment. The number shown on the map denotes the 

corresponding donor and receiver sub-catchments……………………….145 

Figure A13. Same as Figure A12 but for the  Sekong catchment………………………146 

Figure A14. Same as Figure A12 but for the Srepok catchment………………………146 

Figure A15. The estimated error of sediment simulation compared with observed data at 

the gauging station of each catchment……………………………………147   

Figure A16. a) Sub-catchment clusters based on rainfall and sediment response, using the 

tentative estimate of model parameters by the arithmetic mean method in the 

first phase of the SRS procedure. b) Sub-catchment clusters based on rainfall 

and sediment response after updating the model parameters in the second 

phase of the SRS procedure. See phases 1 and 2 of the SRS procedure in 

Figure 3.1. In b), the red cross-marks shown on the clustering maps denote a 

different cluster number of corresponding sub-catchments compared with 

that in a)…………………………………………………………………..147 

Figure A17. Receiver sub-catchments of the actual ungauged catchment of the TSL basin. 

Refer to Figure 3.3 for the location of Chinit, Sen, Sekong and Srepok 

catchments………………………………………………………………..148 

Figure A18. Definitions of the active catchment area calculation components and flooded 

area in the Chinit catchment. Refer to Figure 3.1 for the location of the Chinit 

catchment………………………………………………………………...148 

Table A14. Equations for calculating sediment load in the ungauged catchments of the 

TSL Basin………………………………………………………………...149 

Figure A19. Long-term mean annual sediment load of each catchment excluding the 

flooded areas from 2001–2011…………………………………………...149 

Figure A20. Long-term mean annual sediment yield of each catchment of the TSL basin 

excluding the flooded areas from 2001–2011…………………………….150 

Figure A21. Comparison of long-term mean annual sediment yield of Sekong and Srepok 

catchments with all catchments of the TSL basin. The annual sediment yield 

was calculated from the gauged area of each catchment from 2001–

2011............................................................................................................150 

Table A15. The performance of statistical indices in the calibration and validation 

periods for study in chapter 4……………………………………………..151 

Figure A22. Processing steps of the MODIS images for estimating inundated areas in the 

TSL Basin adopted from Frappart et al. (2018)…………………………...151 



 

xix 
 

Table A16. Summaries of natural forest cover (i.e.,  i.e., forest, evergreen broadleaf and 

mixed forest) in each tributary basin from 1995 to 2018. Area [%] and 

Change [%] refer to the percentage area shared with the total area of the 

tributary basin and the relative change compared to the 1995 land cover area, 

respectively.………………………………………….…………………..152 



 

xx 
 

List of Abbreviations 

 

2-D Two-Dimensional  

3S Sekong, Sesan and Srepok 

AM Arithmetic Mean 

APHRODITE Asian Precipitation-Highly Resolved Observational Data 

Integration Towards Evaluation of Water Resources 

ASTER Advanced Spaceborne Thermal Emission and Reflection 

Radiometer 

CFSR  Climate Forecast System Reanalysis 

CHIRPS  Climate Hazards Group Infrared Precipitation with Station 

CMORPH Climate Prediction Center Morphing algorithm 

CPC  Climate Prediction Center 

CRRS Catchment Runoff-Response Similarity 

DEM Digital Elevation Model 

DPR Dual-Frequency Precipitation Radar 

ECMWF European Centre for Medium-Range Weather Forecasts 

ENSO El Niño Southern Oscillation  

ERA5 European Centre for Medium-Range Weather Forecasts (ECMWF) 

Reanalysis v5 

ET Evapotranspiration 

FAO  Food and Agricultural Organization of the United Nations 

GES DISC Goddard Earth Sciences Data and Information Services Center 

GIS Geographic Information System 

GLEAM Global Land Evaporation Amsterdam Model 

GLUE Generalized likelihood Uncertainty Estimation 

GMI Global Precipitation Measurement Microwave Imager 

GPCC Global Precipitation Climatology Center 

GPM Global Precipitation Measurement 

GSMaP Global Satellite Mapping of Precipitation 

GTS Global Telecommunication System 

HRU Hydrological Response Unit 

IMERG Integrated Multi-satellitE Retrievals for Global Precipitation 

Measurement 



 

xxi 
 

IMERG-E Integrated Multi-satellitE Retrievals for Global Precipitation 

Measurement Early run 

IMERG-F Integrated Multi-satellitE Retrievals for Global Precipitation 

Measurement Final run 

IMERG-L Integrated Multi-satellitE Retrievals for Global Precipitation 

Measurement Late run 

JAXA Japan Aerospace Exploration Agency 

LC Land Cover 

LMRB Lower Mekong River Basin 

Loa PDR Lao People's Democratic Republic 

LOADEST LOAD ESTimator 

MCMC Markov Chain Monte Carlo 

MODIS Moderate Resolution Imaging Spectroradiometer 

MRC Mekong River Commission 

MRC-WQMN Mekong River Commission-Water Quality Monitoring Network 

MUSLE Modified Universal Soil Loss Equation 

NASA  National Aeronautics and Space Administration 

NCEP National Centers for Environmental Prediction 

NOAA American National Oceanic and Atmospheric Administration 

ParaSol Parameter Solution 

PERSIANN-CDR Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks-Climate Data Record 

PET Potential Evapotranspiration 

PGF  Princeton University Global Meteorological Forcing 

PS Physical Similarity approach 

PSO Particle Swarm Optimization 

RG  Regression approach 

RISH Research Institute for Sustainable Humanosphere 

RNMI Royal Netherlands Meteorological Institute 

SA-OBS  Southeast Asia-Observation  

SOM Self-Organizing Map 

SPX Spatial Proximity approach 

SRS Sediment-Response Similarity 

SUFI-2 Sequential Uncertainty Fitting version 2 



 

xxii 
 

SWAT  Soil and Water Assessment Tool 

SWAT-CUP  Soil and Water Assessment Tool-Calibration and Uncertainty 

Programs 

TRMM  Tropical Rainfall Measuring Mission 

TSL Tonle Sap Lake 

TSS Total Suspended Solids 

U-matrix Unified distance matrix 

UNESCO United Nations Educational, Scientific and Cultural Organization 

USA United States of America 

USLE Universal Soil Loss Equation 

WFD WATer and global CHange Forcing Data 

WMO World Meteorological Organization 

 

 

 

 

 

 

 



 

xxiii 
 

List of Symbols 

 

% Percentage 

°C Degree Celsius 

∞ Infinity 

°E Degree East 

°N Degree North 

CA Catchment attribute value  

CUSLE Universal Soil Loss Equation Land Cover and Management Factor 

EVI Enhanced Vegetation Index 

KUSLE Universal Soil Loss Equation Soil Erodibility Factor 

LSWI Land Surface Water Index 

MAM March-April-May 

MBE Mean Bias Error 

md Modified index of agreement 

MJJ May-June-July 

N number of data at daily time series 

NSE Nash-Sutcliffe Efficiency 

O  Observed mean daily precipitation or temperature 

O
i
 Observed daily precipitation or temperature of the ith day 

iP  Predicted daily precipitation or temperature of the ith day 

P  Predicted mean daily precipitation or temperature 

PBIAS Percent Bias 

meanQ  Mean daily streamflow 

obsQ  Observed streamflow of the ith day 

simQ  Simulated streamflow of the ith day 

R Correlation coefficient 

R2 Coefficient of determination 

RMSE Root Mean Square Error 

SON September-October-November 

Tmax Maximum temperature 

Tmin Minimum temperature  



 

xxiv 
 

List of Units 

 

km Kilometer 

km2 Square kilometer 

km3 Cubic kilometer 

m  Meter 

m3 Cubic meter 

m3/s Cubic meter per second 

mm Millimeter 

mm/month Millimeter per month 

Mt Million ton 

Mt/year Million tons per year 

ton/km2 Ton per square kilometer of land area 

 



 

1 
 

Chapter 1 Introduction 

 

This chapter first explains why this research is important and the research motivations 

then list specific objectives to be performed in subsequent chapters, and finally outlines the 

dissertation. 

 

1.1. Background and research motivations 

 

The state of knowledge of hydro-environmental impact due to the development and 

climate variation in a particular river basin is significant for sustainable environmental 

management of the basin. Reliable climate datasets and frameworks play vital roles in 

conducting hydro-environmental impact assessment through the application of regional 

hydrological models. However, the sparse hydro-meteorological stations in the river basin 

located in developing countries like Cambodia hinder the development of reliable 

hydrological models and accurate simulations of the assessment of the hydro-environmental 

impact in the basin (Ang and Oeurng, 2018; Heng et al., 2020; Sao et al., 2020; Touch et al., 

2020). Therefore, the hydro-environmental impact assessment of a particular river basin 

owing to climate change and basin development has not been fully understood. The hydro-

environmental impact assessment could serve as a scientific report and be beneficial for 

adaptation policies for sustainable water resource management and ecosystem conservation 

of the river basin.  

 

The Tonle Sap Lake (TSL) in Cambodia is the largest freshwater body in Southeast Asia 

and one of the most productive ecosystems in the world (Uk et al., 2018), playing a crucial 

role in livelihood and sustainable development in Cambodia and the Lower Mekong region 

(Shivakoti and Bao, 2020). The lake is an integral part of the Mekong River Basin, which 

flows through six riparian countries: China, Myanmar, Thailand, Lao People's Democratic 

Republic (PDR), Cambodia, and Vietnam (Figure 1.1). At the same time, the high 

productivity and rich biodiversity in the TSL have been maintained through “flood pulses”, 

which are seasonal inundation during the monsoon floods of the Mekong River (Kummu et 

al., 2014; Uk et al., 2018). This unique reverse flow through the Tonle Sap River brings in 

a huge mass of water, sediments, nutrients and migratory fish. The productivity of TSL and 

the state of the ecosystem are critical for several people who are dependent on fisheries for 

their livelihood. People living in floating villages are directly impacted by changes in the 
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environmental condition of the lake due to their high reliance on the fisheries (Shivakoti and 

Bao, 2020). Similarly, the fertile floodplains in TSL and its basin are important for many 

farming communities for growing rice, vegetables, and cropland. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Location map of the Tonle Sap Lake in Cambodia. The inset indicates the 

location of the TSL Basin in the Lower Mekong River and the Indochina Peninsular.   
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Recent studies have revealed that the lake has been confronting various environmental 

changes. For example, Kallio and Kummu (2021) reported that the maximum inundation 

area of the TSL during the rainy season showed a decreasing trend of 128 km2 per year. 

Wang et al. (2020) reported an increasing trend of sediment concentration in the lake based 

on the analysis of satellite images. Fish catches have also revealed a decline in various fish 

species over time (Ngor et al., 2018). Although these changes could be attributed to multiple 

driving factors such as the influence of the Mekong mainstream and anthropogenic activities 

inside the lake, limited information is available regarding hydro-environmental impacts 

from the tributary basins of the TSL (Ang and Oeurng, 2018; Kummu et al., 2014). This 

necessitates a comprehensive hydrological assessment of the TSL tributary basins, owing to 

land-use change, population growth, and climate change, for environmental conservation of 

the TSL Basin. 

 

1.2. Research objectives, scope and limitation 

 

This research aims to develop a feasible method or framework for estimating streamflow 

and sediment load in data-sparse or poorly gauged basins of the Tonle Sap Lake, for 

sustainable management and conservation of the lake ecosystems. 

 

 The specific objectives of the study are: 

 

(1) To determine an ideal alternative meteorological dataset for hydrological modeling in 

data-sparse or poorly gauged catchments, considering the spatiotemporal characteristics 

of each climate dataset and ensuring a reliable estimate of streamflow and 

evapotranspiration. 

(2) To develop a new regionalization method to estimate sediment load in ungauged 

catchments, considering spatiotemporal variability and the sediment load relation to 

rainfall characteristics of individual catchments. 

(3) To apply the above two mentioned-methods for hydro-environmental impact 

assessment, owing to decadal climate variation and basin development during the last 

few decades. 
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The scope and limitations of this study are listed below: 

 

• The study was conducted exclusively in Tonle Sap Lake, Cambodia for two main 

reasons. First is the viability of the research, meaning that some ground-based data 

are accessible for analysis. Second is the eager need for hydro-environmental 

information on the TSL’s tributaries for lake ecosystem conservation. 

• Only (11) gauging stations in each tributary were considered because of data 

availability, thus, the catchment area of each tributary was modeled based on the 

gauged area. Approximately 50% of the total catchment area was gauged and 

modeled for streamflow.  

• For Objective 1, only seven potentially promising gridded precipitation and air 

temperature datasets were selected for analysis including their spatio-temporal 

representations and hydrological quantification performances. 

• For Objective 2, due to data shortage, the sediment concentration data from two 

catchments outside the TSL Basin were used for proposing a new regionalization 

method for sediment load estimation in ungauged catchments. 

• A number of global and regional datasets were used in this study. Topography or 

elevation data (90-m resolution) download from  NASA Shuttle Radar 

Topographic Mission (SRTM). Land-use distribution was obtained from the Mekong 

River Commission (MRC) and SERVIR-Mekong. Information on soil types was 

obtained from a 1:250,000 scale map created by the MRC. 

 

1.3. General research framework  

 

This section describes the overall framework of the research. The study procedure can 

be divided into three steps (Figure 1.2). Detailed methodologies of each step are introduced 

in the subsequent chapters. 

 

The first step is the data pre-processing. Raw data obtained from different sources were 

pre-processed before they can be used for each analysis. Gauged data of hydro-meteorology 

include water level/discharge, rainfall, air temperature and sediment concentration. These 

datasets were processed manually, except for sediment data which a sediment estimation 

tool was used to get daily sediment load data. Information on topography, land use/cover 
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and soil type is based on global and regional datasets. They were processed with the aid of 

geographic information system (GIS) software. Land cover and management factor and soil 

erodibility factor were determined based on the Universal Soil Loss Equation (USLE) 

obtained from their databases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. General research framework. 

 

 The second step is the methodology study (i.e., estimating streamflow and sediment 

load in data-sparse catchments). 

• First, several gridded meteorological datasets were evaluated for hydrological 

modeling – especially for streamflow and evapotranspiration simulation. The linear 

interpolation method was used to interpolate gridded climate data to the ground-

based location of observation for comparing the spatiotemporal characteristics of 
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each climate product to the gauged data. Then, the outstanding meteorological 

datasets were selected as the climate input data into the hydrological model for 

streamflow and ET simulations.  

• Next, a new regionalization method was developed to estimate sediment load in 

ungauged catchments. The new method was compared with the conventional 

approach and eventually was applied to estimate sediment load in ungauged 

tributaries of the TSL Basin due to its superior performance to the conventional 

method.  

 

The third step is the application of the above two mentioned-methods for hydro-

environmental impact assessment, owing to decadal climate variation and basin 

development. First, the decadal climatic variation was analyzed during the last few decades. 

Then, the contribution of climate variation to streamflow and sediment change was 

investigated by comparing streamflow and sediment in different time horizons. Finally, four 

different land-use change scenarios were analyzed and input into the hydrological modeling 

for streamflow and sediment load impact assessment.      

 

1.4. Dissertation organization 

 

There are, in total, five chapters present to constitute this dissertation. Each chapter is 

briefly described below. Chapters 2 to 4 present the main research results of this study. 

 

• Chapter 1 begins with the background information and research motivation by 

describing some facts and the importance of climate datasets and a framework for 

conducting the hydro-environmental impact assessment in a particular river basin. 

After pointing out research needs and challenges in the target river basin, it indicates 

specific objectives to be obtained in this research work. Lastly, it outlines the 

dissertation chapter by chapter, such that readers can take things in at a glance. 

• Chapter 2 focuses on the evaluation of alternative meteorological datasets for 

hydrological modeling in the data-sparse basins. Different gridded or satellite-based 

climate datasets were evaluated by comparing them with the available gauged data 

at different spatiotemporal scales. Next, the ideal gridded products were selected and 

input into the hydrological modeling for streamflow and evapotranspiration 
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simulations. The simulated streamflow of each climate dataset was compared with 

observed data, while the simulated ET was compared with the reanalysis and 

satellite-based ET for evaluation. Finally, the best alternative climate datasets were 

found and further used for the next work in Objectives 2 and 3 (i.e., Chapters 3 and 

4). 

• Chapter 3 focuses on estimating sediment load in ungauged catchments. A new 

regionalization method was proposed to simulate sediment load in ungauged 

catchments and its performance was also compared with a conventional approach. 

The new regionalization method considers spatiotemporal variability and the 

sediment load relation to rainfall characteristics of individual catchments as the 

catchment’s attributes. Due to the outperformance of the new method over the 

traditional one, it was used to estimate the sediment load in ungauged tributaries of 

the TSL Basin.   

• Chapter 4 brings altogether two methodologies or frameworks from the previous 

chapters for the application to hydro-environmental impact assessment, owing to 

climate variation and basin development during the last few decades. First, the 

decadal climatic variation (i.e., temperature and precipitation) was analyzed from 

2001 to 2020, covering extreme events (i.e., flooding and drought) occurring over 

the TSL Basin. Then, the impact of climate variation on streamflow and sediment 

load was investigated by comparing streamflow and sediment load of the 2001-2010 

to 2011-2020 periods. Finally, four different land cover (LC) scenarios (i.e., 

LC_1995, LC_2002, LC_2010 and LC_2018) were analyzed and input into the 

hydrological modeling for streamflow and sediment load impact assessment.     

• Chapter 5 presents a summary of research results and contributions. It lists a set of 

remaining challenges for future research at the end. 
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Chapter 2 Evaluation of daily gridded meteorological datasets for hydrological 

modeling in data-sparse basins 

 

The study in this chapter attempts to determine an ideal alternative meteorological 

dataset for hydrological modeling in data-sparse catchments. The final output of this section 

is the target of Objective 1. This model was carried on to Chapter 4 for application in hydro-

environment impact assessment. 

 

2.1.  Introduction  

 

Reliable climate datasets play vital roles in conducting hydro-environmental impact 

assessment through the application of regional hydrological models. However, due to the 

financial constraints of the Kingdom of Cambodia, the sparse and uneven distribution of rain 

gauge stations in the TSL Basin hinders the development of reliable hydrological models 

and accurate simulations of the hydrological impacts of anthropogenic activities and climate 

change. For example, some studies attempted to simulate the daily streamflow exclusively 

for the TSL Basin (Oeurng et al., 2019) and its tributary basins (Ang and Oeurng, 2018; 

Heng et al., 2020; Sao et al., 2020; Touch et al., 2020) using the Soil and Water Assessment 

Tool (SWAT) model. The limited agreement of simulated and observed streamflow values 

was shown in these studies, and it was mainly attributed to data sparsity and limited available 

information on the spatio-temporal variations of meteorological variables. Considering the 

current sparse monitoring network of the meteorological conditions in Cambodia, 

particularly over the TSL Basin, alternative reliable climate datasets are highly necessary. 

Furthermore, getting ground-based data at a good spatial-temporal resolution is very 

challenging in developing countries, and the data sometimes cannot be freely accessed by 

public users due to data sharing policy. Gauge observations are subject to limitations, such 

as reporting time delays and sparse gauge networks (Bai & Liu, 2018). The open-accessed 

or satellite-based datasets, on the other hand, can support near-real-time monitoring or 

forecasting and be merged with the in-situ observations to improve the data quality. 

 

We can find various studies globally that utilize regional and global gridded 

meteorological datasets to serve as alternative inputs for hydrological model simulations for 

hydro-environmental assessments and water resource management (Fuka et al., 2014; Ur 
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Rahman et al., 2020; Zhao et al., 2022). In recent years, many different gridded rainfall and 

temperature datasets based on observation, satellite measurement, or reanalysis have been 

evaluated for their performance in climate and hydrological studies targeting different river 

basins (Tan et al., 2021). For instance, Xu et al. (2016) compared WATer and global CHange 

(WATCH) Forcing Data (WFD) and Asian Precipitation-Highly Resolved Observational 

Data Integration Towards Evaluation of Water Resources (APHRODITE) data with ground-

based precipitation data for flood simulation in the Xiangjiang River Basin, China. They 

found that APHRODITE data had a better correlation with gauged precipitation and a 

relatively high flow prediction accuracy than WFD precipitation data. The satellite-based 

precipitation data, Tropical Rainfall Measuring Mission (TRMM), is among the best-

performing datasets with lower bias from the interpolated rain-gauge observations (Duan et 

al., 2016). Similarly, Satgé et al. (2020) evaluated different 23 gridded precipitation datasets 

and revealed that TRMM precipitation data showed relatively better performance for both 

daily and monthly time-step. Having compared with the gauged dataset, Amjad et al. (2020) 

found that European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 

v5 (ERA5) and Integrated Multi-satellitE Retrievals for Global Precipitation Measurement 

(GPM) (IMERG) had minor estimation errors and high correlation for daily and monthly 

timescales analysis. Another study similarly found that among five satellite-precipitation 

products, TRMM and IMERG showed the best performance when compared with ground-

based monitored data (Islam et al., 2020). Zhang et al. (2020) demonstrated that the 

combination of air temperature and precipitation from Climate Forecast System Reanalysis 

(CFSR) and the Climate Hazards Group Infrared Precipitation with Station (CHIRPS), 

respectively, provided satisfactory performance in streamflow simulation. Moreover, Fuka 

et al. (2014) found that for five watersheds representing different hydro-climate regimes, the 

hydrological model simulation of river flow driven by the CFSR precipitation and 

temperature data provided results as good as those obtained using observation-based weather 

data. Aslam et al. (2020) compared the maximum and minimum temperatures over a data-

scarce transboundary river basin of India and Pakistan, obtained from the Climate Prediction 

Center (CPC) and Princeton University Global Meteorological Forcing (PGF) datasets with 

the ground-based observation. They found that CPC had a better performance regarding 

station-based time series analysis. Ge et al. (2019) analyzed the performance of the newly 

developed meteorological dataset, Southeast Asia-Observation (SA-OBS), in climatological 

means and surface air temperature trends of the Indochina Peninsula on a yearly and seasonal 
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basis, and SA-OBS product was found to have a good overall agreement with observation 

and reanalysis datasets. 

Despite these studies, it is challenging to select one superior product conclusively owing 

to the peculiar characteristics and uncertainties in each dataset depending on the data 

generation algorithm used, the factors inherent to study regions such as climate and 

topography, and the quality and quantity of the observed data used in developing the datasets 

(Fu et al., 2016; Lauri et al., 2014; Sun et al., 2014; Vu et al., 2012; Worqlul et al., 2014). 

Furthermore, a limited number of studies have evaluated climate data sources covering the 

Southeast Asia region, especially for the Mekong River Basin. Gunathilake et al. (2020) 

evaluated six different gridded precipitation products and showed that IMERG had a good 

performance in simulating the streamflow in the Upper Nan River Basin, Northern Thailand. 

Four different high-resolution gridded precipitation datasets were evaluated in the 

Philippines and it was shown that TRMM has the least bias errors and most closely 

resembles the rainfall distribution observed at gauged stations (Peralta et al., 2020). 

Similarly, the TRMM was found to be the best-performing dataset among five different 

precipitation products in Malaysia (Ayoub et al., 2020). Over the Mekong River Basin, most 

of these studies have validated gridded datasets by only focusing on the mainstream of the 

Mekong River Basin (e.g., Lauri et al., 2014; Try et al, 2022; Try et al., 2020). Try et al. 

(2020) validated the river discharges using five different gridded precipitation datasets—

APHRODITE, TRMM, Global Satellite Mapping of Precipitation (GSMaP), Global 

Precipitation Climatology Center (GPCC), and Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-

CDR)—at four gauging stations along the mainstream of the Mekong River in Lao PDR and 

Cambodia. Similarly, Lauri et al. (2014) utilized two temperature datasets (CFSR and ERA-

Interim) and five precipitation products (TRMM 3B42 v6, TRMM 3B42 v7, APHRODITE, 

CFSR, and ERA-Interim) to evaluate river flow simulation at five gauging stations along 

the mainstream of the Lower Mekong River. Furthermore, Try et al. (2022) employed GPCC 

precipitation to study on identification of the spatio-temporal and fluvial-pluvial sources of 

flood inundation in the Lower Mekong Basin, and the river discharges were validated at the 

Kratie gauging station located on the mainstream of Mekong River. No previous studies 

have assessed the spatio-temporal characteristics and quantitative accuracy of gridded 

hydro-meteorological datasets over the TSL Basin; hence, the performance of individual 

datasets in hydrological modeling, including other water balance components, has not been 

clarified yet. The majority of studies reviewed above rarely reported the evaluation of 
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alternative air temperature datasets for hydrological simulations. Accordingly, the 

assessment of air temperature data or the optimal data combinations (e.g., APHRODITE-

precipitation with CFSR-temperature) from different alternative climate products should 

also be considered in the validation schemes (Tan et al., 2021). Conventional statistical 

approaches using simple correlation or error analyses are often not enough to justify the 

variability and distribution of gridded precipitation data (Ahmed et al., 2019). For further 

studies, Bai and Liu (2018) suggested that hydrological evaluation of gridded products based 

only on streamflow simulations could not validate the reliability of gridded climate datasets, 

but other hydrological variables, such as evaporation and soil moisture, should be considered 

for more comprehensive evaluation. 

 

Previous studies (Ang and Oeurng, 2018; Oeurng et al., 2019; Uk et al., 2018) have 

highlighted the demand for more reliable hydrological assessment over the TSL Basin and 

the importance of identifying the factors that affect environmental and ecological changes 

in the TSL Basin. This study aimed to extensively evaluate alternative climate datasets for 

their reliability in representing spatio-temporal characteristics and estimating streamflow in 

the TSL Basin during the past decades, using robust statistical and hydrological modelling 

approaches. Seven potentially promising gridded precipitation and air temperature datasets 

for analysis were selected; these included APHRODITE, CFSR, TRMM, IMERG, ERA5, 

SA-OBS, and CPC. We presented a comprehensive framework to evaluate their spatio-

temporal representations and hydrological quantification performances for all the TSL 

tributary basins where meteorological stations are sparsely located. More specifically, we 

first compared these gridded products with the observed datasets based on the bilinear 

interpolation method and examined the suitability of each dataset in estimating the daily 

streamflow in the eleven TSL tributary basins. Furthermore, we evaluated each climate 

dataset by comparing satellite-based and model-derived actual evapotranspiration (ET) in 

the whole TSL Basin which further quantitatively validated the annual and seasonal rainfall 

amounts. This approach enabled us to avoid the selection of hydro-meteorological datasets 

with significant bias and uncertainty (e.g., deficient basin-wide rainfall) that could affect the 

accuracy of simulations of sediment erosion and nutrient transport despite parameter 

optimization, which could yield acceptable ranges for streamflow estimation irrespective of 

the dataset used. Finally, we identified the gridded datasets most reliable for hydrological 

and environmental impact assessments as well as the projections of future climate change 

impacts over the TSL Basin. 
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2.2.  Materials and methods 

2.2.1. Study area 

 

The TSL (the largest lake in Southeast Asia) is one of the most important natural 

resources in Cambodia (Kummu et al., 2008) and symbolically called “the heart of 

Cambodia”, covering over 45% (approximately 85,850 km2) of the national land surface 

area and approximately 5% of the total basin area being shared with Thailand (Figure. 2.1). 

The Tonle Sap Lake Basin consists of 11 major tributary basins and is connected to the 

Tonle Sap River, which flows to the mainstream of the Mekong River Delta. The seasonal 

flow direction reversal in the Tonle Sap River and the resultant inundation of the TSL 

floodplain during the flood season (between June and October) causes the lake's total surface 

area and water level to swell from approximately 2,600 km2 and 2 m to 12,000 km2 and 10 

m (Arias et al., 2014; Kummu et al., 2014; Oeurng et al., 2019), respectively. This creates a 

unique aquatic environment and a diverse and productive ecosystem (Arias et al., 2014; 

Kummu et al., 2014; Sabo et al., 2017). Kummu et al. (2014) estimated that 34% (29.1 

km3/year) of the water volume in the lake originates from the 11 tributary basins, 

approximately 53.5% (41.8 km3/year) comes from the Mekong River, and 12.5% (10.4 

km3/year) is from precipitation over the lake surface. The TSL Basin is covered by alluvial 

deposits composed of unconsolidated silt, sand, and gravel overlaying on the older bedrock 

(Tsukawaki et al., 1994). The climate in this region is characterized by two monsoon periods. 

High humidity conditions prevail and frequent-heavy rains are typically observed during the 

south-west monsoon season from mid-May to early October (rainy season), while the north-

east monsoon lasts from early November to March (dry season), bringing drier and cooler 

air (World Bank, 2011). The tributary basins predominantly consist of gently sloping 

lowlands with an elevation of less than 100 m above the mean sea level. The elevation 

increases to over 1700 m in the Cardamom Mountains to the southwest (see Figure. 2.1). 

The basin area, delineated area (a basin boundary representing the contributing area for a 

gauging station of streamflow, see Figure. A1), and land-use area of each tributary basin are 

summarized in Table 2.1. The total delineated area is 49.52 % (approximately 41,158 km2) 

of the total basin area. Most of the tributary basins (seven out of eleven) are predominantly 

forested land (> 50%), while agricultural land is dominant in the Mongkol Borey, Baribo, 

Dauntri, and Siem Reap tributary basins (Oeurng et al., 2019).  
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Figure. 2.1. Location map of the TSL Basin. The dash-line box shows a 0.25 × 0.25℃ 

grid cell. The rainfall and temperature stations are the same in the Siem Reap tributary 

basin. A total of 156 grid cells are covering the whole TSL Basin area. The inset indicates 

the location of the TSL Basin in the Indochina Peninsular. 

 

Table 2.1. The total drainage area, delineated area and land-use of each tributary basin  

No River Name Area (km2) 
Delineated area 

(km2 / %) 

Forest land 

 (%) 

Agricultural 

land (%) 

Urban land  

(%) 

1 Baribo 7,153.78 875.33 / 12.24 25.01 74.61 0.39 

2 Chikreng 2,713.90 1719.12 / 63.35 78.38 21.62 0.00 

3 Chinit 8,236.86 4055.91 / 49.24 62.70 37.26 0.04 

4 Dauntri 3,695.97 519.13 / 14.05 43.42 56.58 0.00 

5 Mongkol Borey 14,966.42 3964.94 / 26.49 14.67 85.14 0.19 

6 Pursat 5,964.77 4118.59 / 69.05 76.15 23.76 0.09 

7 Sangker 6,052.78 2596.69 / 42.90 53.76 46.09 0.14 

8 Sen 16,359.58 14129.33 / 86.37 85.37 14.61 0.02 

9 Siem Reap 3,618.98 609.75 / 16.85 26.28 73.57 0.15 

10 Sreng 9,986.27 6691.42 / 67.01 61.68 38.32 0.00 

11 Staung 4,357.39 1878.31 / 43.11 75.03 24.97 0.00 

  Total land area 83,106.70 41158.52 / 49.52 54.77 45.14 0.09 

  Tonle Sap Lake 2,743.80 - - - - 

 

A limited number of rainfall and water-level gauging stations are located in each 

tributary basin. Most monitoring stations are situated in the downstream areas (Figure. 2.1), 

while gauges are sparsely located in the upstream areas, particularly in the northeastern part 
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of the TSL Basin (Oeurng et al., 2019). Since a limited number of temperature monitoring 

stations are available in the TSL Basin, we used observed temperature data at five stations, 

including three located outside the basin to the east (Figure. 2.1). The daily observed rainfall 

and temperature data between 1985 and 2011, in which there is no missing value in these 

two datasets, were used as a benchmark to validate gridded meteorological data. 

 

2.2.2. Gridded precipitation and temperature datasets 

 

Among the available gridded precipitation and temperature datasets, we selected six 

datasets for precipitation and four datasets for air temperature (Table 2.2), namely 

APHRODITE, CFSR, TRMM, IMERG, ERA5, SA-OBS, and CPC, considering their fine 

temporal (daily) and spatial resolutions (0.1-0.5°) and potential applicability in Asian basins 

evaluated in previous studies (Amjad et al. (2020); Aslam et al., 2020; Fuka et al., 2014; Ge 

et al., 2019; Jiang et al., 2021; Lauri et al., 2014; Odusanya et al., 2018; Saha et al., 2014; 

Singh and Xiaosheng, 2019; Try et al., 2020; Vu et al., 2012; Xu et al., 2016b; Zhang et al., 

2020a). A brief description of each dataset is given in the following sections and summarized 

in Table 2.2. 

 

Table 2.2. Description of precipitation and temperature datasets used in the study 
Parameter Dataset* Spatial 

resolutio

n 

Temporal 

resolutio

n 

Time-

domain 

Spatial 

domain 

Data source Source 

institution* 

Precipitation APHRO

DITE 

0.25° Daily 1951-

2015 

Asia Observational RISH, Kyoto 

University 

 TRMM 0.25° Daily 1998-

Present 

50°N-S Satellite  NASA/GES 

DISC 

 IMERG 0.1° Daily Jun-2000 

- Present 

60°N-S Satellite NASA/GES 

DISC 

Precipitation 

& 

Temperature 

CFSR 0.30° Daily 1979-

2014 

Global 

land 

Reanalysis NCEP 

ERA5 0.25° Hourly 1979-

Present 

Global 

land 

Reanalysis ECMWF 

SA-OBS 0.25° Daily 1981-

2017 

South-

east Asia 

Observational RNMI 

Temperature CPC 0.5° Daily 1979-

Present 

Global 

land 

Reanalysis NCEP/CPC 

*APHRODITE: Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation, 

TRMM: Tropical Rainfall Measuring Mission, IMERG: Integrated Multi-satellitE Retrievals for GPM 

(GPM = Global Precipitation Measurement), CFSR:  Climate Forecast System Reanalysis, SA-OBS: 

Southeast Asia-Observational, RISH = Research Institute for Sustainable Humanosphere, NASA = National 

Aeronautics and Space Administration, GES DISC = Goddard Earth Sciences Data and Information 

Services Center, NCEP = National Centers for Environmental Prediction, ECMWF = European Centre for 

Medium-Range Weather Forecasts, RNMI = Royal Netherlands Meteorological Institute and CPC = 

Climate Prediction Center 
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2.2.2.1.  APHRODITE 

 

The APHRODITE rainfall dataset is primarily created with rainfall data observed 

via a rain-gauge-observation network over Asia (Yatagai et al., 2012). APHRODITE 

Version V1101 covers the period from 1951 to 2007, and its updated version (V1901) is 

available for the period between 1998 and 2015. We used both versions to cover the whole 

study period between 1985 and 2011, with daily temporal and spatial resolutions of 0.25° × 

0.25°. There are a total of 13 rainfall stations in the TSL Basin used to create the 

APHRODITE dataset, some of which were not used in our study due to inconsistent 

measurement periods (Figure. A2). The performance of the APHRODITE dataset was 

compared to that of other products in the discharge modelling study for the Mekong River 

Basin (Lauri et al., 2014), which indicated that the computed discharge based on 

APHRODITE is similar to the observation data. Another study for the lower Mekong River 

Basin showed that the APHRODITE dataset was suitable for rainfall-runoff and flood 

inundation modeling (Try et al., 2018). Guan et al. (2020) evaluated six different 

precipitation datasets using four hydrological models to simulate streamflow over the Upper 

Yellow River Basin, China and found that the APHRODITE dataset was one of the superior 

products.  

 

2.2.2.2.  CFSR 

 

CFSR was developed by the Environmental Modelling Center at the National Center 

for Environmental Prediction (NCEP). It is a fully coupled atmospheric model representing 

the interactions among Earth’s atmosphere, oceans, land, and sea-ice systems to provide the 

best prediction of the state of these coupled domains from 1979 to 2014 (Saha et al., 2014). 

The CFSR global atmospheric data have a spatial resolution of approximately 0.30° × 0.30° 

with daily resolution. CFSR Version 2 was used in this study. In addition, the CFSR dataset 

is commonly used in the SWAT modeling users’ group, as this dataset provides complete 

data for several climate variables (precipitation, air temperature, wind speed, solar radiation, 

and relative humidity) with a convenient data format that is compatible with SWAT model 

requirements (Zhang et al., 2020a). CFSR precipitation was found to reproduce an adequate 

flow in the Yangtze River Basin, China (Lu et al., 2019). The monthly coefficient of rainfall 

and air temperature determination was higher than 0.6 and 0.9, respectively, compared with 

the ground-based station data. Additionally, the air temperature of CFSR products could be 
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a promising alternative data source to serve as input into the hydrological model for 

streamflow simulation in the data-scarce river basins (Zhang et al., 2020b). 

 

2.2.2.3.  TRMM 

 

TRMM is a joint project between the North American Space Agency (NASA) and 

the Japan Aerospace Exploration Agency (JAXA) to study rainfall over the tropical region. 

The TRMM precipitation is estimated from a combination of multiple satellites and rain-

gauge analyses at a fine spatial resolution of 0.25° × 0.25° (Huffman et al., 2007). The 

3B42V7 product was adjusted by monthly rain gauge precipitation data from the GPCC and 

is superior to the TRMM 3B42RT V7. The number of rain gauges used in GPCC data is 

documented in earlier publications by Vu et al. (2018); however, there is only one station in 

TSL Basin that was used in interpolating the GPCC dataset during the study period. The 

TRMM-3B42V7 dataset from 1998 to 2011 with the daily resolution was used in this study. 

TRMM-3B42V7 precipitation data were compared with observed rainfall at 342 rain gauges 

over Malaysia (Tan et al., 2015). There was a tendency for TRMM-3B42V7 to yield accurate 

and unbiased rainfall estimations. TRMM, the Climate Prediction Center Morphing 

algorithm (CMORPH), and Global Satellite Mapping of Precipitation (GSMaP) Reanalysis 

were evaluated via a comparison with the rain gauge-based data over Central Vietnam 

(Trinh-Tuan et al., 2019), and TRMM was found to outperform the other datasets. Moreover, 

the TRMM precipitation was determined to be among the best-performing products that 

gave better streamflow simulation results than the other four gridded datasets over the Upper 

Yellow River Basin, China (Guan et al., 2020). Nhi et al. (2019) evaluated five gridded 

rainfall datasets in simulating streamflow and found that TRMM was one of the best datasets 

showing a better match to rain gauge data in simulating the streamflow in the upper Dong 

Nai river basin, Vietnam. 

 

2.2.2.4.  IMERG 

 

Following the success of TRMM, NASA and JAXA jointly launched the GPM 

observatory satellite on 28 February 2014 to provide more accurate precipitation data with 

fine spatiotemporal resolution using an algorithm combining information from the GPM 

satellite constellation from partner nations (Huffman et al., 2020; Liu, 2016). Recently, 

IMERG version 6 (V06) extended its temporal coverage to the TRMM era and provides 
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datasets from June-2000 to the present. GPM not only extended TRMM's spatial coverage 

but also carries advanced sensors such as the Dual-Frequency Precipitation Radar (DPR) 

and GPM Microwave Imager (GMI), which quantify precipitation more accurately, 

particularly for light and solid precipitation (Huffman et al., 2020). Like TRMM, monthly 

rain gauge precipitation data from the GPCC were used to adjust IMERG precipitation. 

Furthermore, there are three types of IMERG products. The Early run (IMERG-E) and Late 

run (IMERG-L) are available with a latency of 4 hours and 14 hours respectively (Huffman 

et al., 2020), which could serve as a potential data source for flood forecasting and real-time 

disaster management. The Final run (IMERG-F) is available approximately 4 months after 

observation, and it is mainly aimed for research purposes. The IMERG-F V06 dataset from 

2001 to 2011 with the daily temporal resolution and spatial resolution of 0.1° × 0.1° was 

used in this study. Lu et al. (2021) found that IMERG-F precipitation has a great potential 

for application to hydroclimatic research and water resources assessment in the complex 

climatic and topographic conditions, in Western China. Generally, the IMERG-F shows high 

accuracy and good performance in hydrological simulations with a high correlation 

coefficient (0.63) and low relative bias (0.92%) when compared with the ground 

observations (Wang et al., 2017). Gunathilake et al. (2020) statistically and hydrologically 

evaluated the capacity of different six satellite-based precipitation products in the Upper 

Nan River Basin, Northern Thailand, showing that IMERG-precipitation demonstrates good 

performance for future hydrometeorological applications in this region. Huang et al. (2019) 

evaluated the performance of IMERG-F during six extremely heavy precipitation events 

caused by powerful typhoons from 2016 to 2017, and they stated that the IMERG-F shows 

good capability in extreme rainfall events (i.e., typhoons, rainfall storm) applications. 

 

2.2.2.5.  ERA5 

 

ERA5 is the fifth-generation atmospheric reanalysis of the global climate by the 

European Centre for Medium-Range Weather Forecasts (ECMWF), and it provides hourly 

estimates of a large number of atmospheric, land, and oceanic climate variables from 1979 

to the present with a spatial resolution of 31 km (0.25°) (Hersbach et al., 2020). Tarek et al. 

(2020) found that the performance of hydrological modelling based on ERA5 precipitation 

is equivalent to that based on the observed rainfall. Jiao et al. (2021) showed that ERA5 data 

is in good agreement with the annual and seasonal patterns of observed precipitation in 

China and have correlation coefficient values ranging from 0.79 to 0.94. ERA5 temperature 
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data was found to be consistent with the monthly observations, and the trend of ERA5-based 

temperature and observation data showed a strong linear relationship with the monthly 

observations (Zhu et al., 2021). 

 

2.2.2.6.  SA-OBS 

 

SA-OBS is an observational gridded dataset for precipitation and temperature in the 

Southeast Asia region based on the Southeast Asian Climate Assessment & Dataset 

(SACA&D) project (Van den Besselaar et al., 2017). The full dataset is estimated at a 0.25° 

× 0.25° spatial resolution from 1981 to 2017. Since SA-OBS is a newly developed daily 

gridded dataset for Southeast Asia, there are limited studies to evaluate the performance of 

this dataset. The daily precipitation and temperature data were collected from the 

meteorological institutes of Australia, Indonesia, Malaysia, the Philippines, Singapore, 

Thailand, and Vietnam. There are 1393 precipitation stations, including 365 stations with 

minimum and maximum temperatures and 274 stations with a daily mean temperature (Van 

den Besselaar et al., 2017). However, during the creation of SA-OBS, no gauged rainfall 

data were introduced from the TSL Basin or Cambodia; therefore, no data accuracy for this 

area has been clarified. Detailed information on gauged stations used in SA-OBS data 

generation can be found in the study by Van den Besselaar et al. (2017). A high correlation 

was found between station observations and the corresponding grid squares of SA-OBS 

(Van den Besselaar et al., 2017), while SA-OBS slightly underestimated high rainfall events 

(Singh and Xiaosheng, 2019).  

 

2.2.2.7.  CPC 

 

The CPC dataset has been developed by the American National Oceanic and 

Atmospheric Administration (NOAA), using optimal interpolation of quality-controlled 

gauge records of the Global Telecommunication System (GTS) network (Fan and Van den 

Dool, 2008), to provide global gridded daily temperature datasets covering the period from 

1979 to the present with a spatial resolution of 0.5° × 0.5°. Like SA-OBS, the gauged data 

was not introduced from the TSL Basin for CPC data creation, and more information on 

gauged stations used in interpolating CPC data is provided in the study by Vu et al. (2018). 

The daily hydrological evaluation results suggested that the CPC temperature combined with 

precipitation data is a more accurate option for estimating hydrological performance in the 
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Upper Mekong River Basin (Dinh et al., 2020). A similar or lower performance compared 

to that of other gridded datasets was observed in the downstream areas. Owing to their 

reliability, CPC temperature data were used as the reference data to assess the impact of 

climate change on the hydrology of a transboundary river between Bhutan and India (Zam 

et al., 2021). 

 

2.2.3. Performance evaluation of gridded datasets of rainfall and temperature 

  

The performance of individual gridded precipitation and temperature products was 

evaluated by comparing them to gauge-based datasets on the annual, monthly, and daily 

timescales from 1985 to 2011 for APHRODITE, ERA5, CFSR, CPC, and SA-OBS, and 

from 1998 or 2001 to 2011 for TRMM and IMERG, respectively. The bilinear interpolation 

method (Figure A3) was used to interpolate the gridded datasets to the 31 rainfall and five 

temperature ground-based station locations, based on the distance-weighted average of the 

four nearest grid values. Several previous studies have applied this grid-to-point 

interpolation method to compare gridded products with observation data (Bao and Zhang, 

2013; Bromwich and Fogt, 2004; Ebrahimi et al., 2017; Mayor et al., 2017; Meher and Das, 

2019). This simplified method with two-dimensional interpolation enables a more accurate 

comparison than the direct comparison between point observations and gridded data 

(Caroletti et al., 2019; Uddin et al., 2008). 

 

The accuracy of gridded datasets was quantified using four statistical indicators, 

listed in Table A1, i.e., mean bias error (MBE), root mean square error (RMSE), correlation 

coefficient (R), and modified index of agreement (md). MBE is a statistical index to assess 

the mean difference between two data products (interpolated and observed rainfall or 

temperature), and RMSE represents the standard deviation of the two datasets. The lower 

absolute values of MBE and RMSE indicate the better performance of the gridded dataset. 

R measures the degree of linear correlation between the interpolated and observed datasets. 

md is used as a standardized measure of the degree of model prediction error, which is the 

modified version of the index of agreement proposed by Willmott (1981) to detect additive 

and proportional differences in the data (Ahmed et al., 2019; Pereira et al., 2018; Willmott, 

1984). The higher values of R and md (closed to one) indicate the higher accuracy of gridded 

products in estimating precipitation and air temperature. The equation, range, and optimal 

value of each statistical index are presented in Table A1. 
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2.2.4. Performance evaluation based on the hydrological model application 

 

The comparison of hydro-meteorological data at individual locations has a particular 

limitation in assessing the basin-wide applicability of gridded datasets for hydrological 

simulations, mainly if the gauging stations are sparsely distributed within an area like the 

TSL Basin. Therefore, we evaluated the performance of selected gridded datasets in 

reproducing the streamflow of each tributary basin based on the SWAT model application, 

and the simulated daily streamflow was compared with the observed data. Furthermore, 

considering the equifinality issue in the hydrological model application under different 

combinations of gridded datasets and model parameters, we compared the simulated and 

satellite-based actual ET to confirm the accuracy of each dataset from the perspective of 

water balance as described in section 2.2.4.3. 

 

2.2.4.1.  Hydrological SWAT model 

 

Quantitative representation of rainfall and temperature by each gridded dataset was 

evaluated using the SWAT model, a widely used hydrological model to simulate streamflow, 

sediments, and other hydrological variables under diverse environments and scales (Arnold 

et al., 1998) (Figure 2.2). SWAT has gained international acceptance as a comprehensive 

watershed modeling tool (Gassman et al., 2007) and has been applied throughout the world, 

including the United States (Yuan and Forshay, 2021), Europe (Bärlund et al., 2007), 

Cambodia (Ang and Oeurng, 2018), Thailand (Shrestha et al., 2018), Lao PDR (Vilaysane 

et al., 2015), Vietnam (Vu et al., 2012), China (Hao et al., 2004), India (Kaur et al., 2004), 

Australia (Sun and Cornish, 2006), and Africa (Schuol and Abbaspour, 2006) among many 

others. No matter what type of problem is studied with SWAT, water balance is the driving 

force behind everything that happens in the watershed. To accurately predict the movement 

of pesticides, sediments, or nutrients, the hydrologic cycle as simulated by the model must 

conform to what is happening in the watershed. Simulation of the hydrology of a watershed 

can be separated into two major divisions. The first division is the land phase of the 

hydrologic cycle controls the amount of water, sediment, nutrient and pesticide loadings to 

the main channel in each subbasin. Figure 2.3 shows the general sequence of processes used 

by SWAT to model the land phase of the hydrological cycle. The second division is the 

water or routing phase (Figure 2.4) of the hydrologic cycle which can be defined as the 

movement of water, sediments, etc. through the channel network of the watershed to the 
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outlet. Once SWAT determines the loadings of water, sediment, nutrients and pesticides to 

the main channel, the loadings are routed through the stream network of the watershed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Schematic representation of the hydrologic cycle in the SWAT model (Arnold 

et al., 1998). 

 

SWAT requires topography, soil, and land-use information to account for 

heterogeneities and divide the greater basin into a group of sub-basins, which are further 

subdivided into several Hydrological Response Units (HRUs). Each HRU is created from a 

unique combination of land cover, slope, soil properties, and management practices. The 

surface runoff from each HRU is simulated based on the SCS curve number method  (USDA, 

1972), which requires a watershed coefficient (i.e., Curve Number (CN)) with daily rainfall 

defined at the centroid of the sub-basin as input. Detailed information on the SCS curve 

number method could be found in the official theoretical documentation (Neitsch et al., 

2011). The rainfall is obtained by applying the bilinear interpolation method to the specific 

daily gridded precipitation dataset, instead of the default SWAT model setting, which only 

uses rainfall data from the gauging station located closest to the centroid of each sub-basin 

(Arnold et al., 1998). Since the gridded precipitation data cannot be directly input into the 

SWAT model, the approach using interpolated areal precipitation was used, and some 
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studies also found the performance improvement of model calibration compared to the 

default method of the SWAT model (Abbas and Xuan, 2020; Masih et al., 2011). More 

details about SWAT can be found in the official theoretical documentation (Neitsch et al., 

2011) and the review paper by Gassman et al. (2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. The general sequence of processes used by SWAT to model the land 

phase of the hydrologic cycle (Arnold et al., 1998) 

 

Each dataset used for the SWAT model setup is summarized in Table 2.3. The 

topography data required to define flow accumulation, stream networks, and basin 

boundaries are based on a 90 m × 90 m resolution digital elevation model (DEM) from the 

NASA Shuttle Radar Topographic Mission (SRTM). Land-use distribution was obtained 

from the Mekong River Commission (MRC), which developed a land-use map based on 

satellite imagery collected from 1993 to 1999. Information on soil types was obtained from 

a 1:250,000 scale map created by the MRC that contains the required physical properties of 

each soil type based on the Food and Agriculture Organization/United Nations Educational, 

Scientific and Cultural Organization (FAO/UNESCO) 1988 classification scheme (Oeurng 
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et al., 2019). The daily rainfall and maximum/minimum air temperature data were obtained 

from individual gridded datasets. The streamflow in each tributary basin was calculated 

using rating curves developed by Kummu et al. (2014) from the observed water levels 

collected by the Department of Hydrology and River Works, Ministry of Water Resources, 

and Meteorology of Cambodia (Oeurng et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. In-stream processes are modeled by the SWAT model (Arnold et al., 1998). 

 

Table 2.3. Summary of required data used for SWAT model setup   

Data type Time 

period 

Temporal 

resolution 

Spatial 

Resolution 

Sources 

Topography 

(DEM) 
- - 90m http://srtm.csi.cgiar.org  

Land cover map 2002 - 250m Mekong River Commission  

Soil types map 2002 - 250m Mekong River Commission 

Total rainfall 

Maximum and 

minimum air 

temperatures 

1985-2011 Daily - Gridded datasets 

Water level 1995-2011 Daily - 

Department of Hydrology 

and River Works 

(Cambodia)  

http://srtm.csi.cgiar.org/
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2.2.4.2.  Model calibration, validation, and evaluation 

 

Model calibration was performed with the SWAT-Calibration and Uncertainty 

Programs (SWAT-CUP) (Abbaspour, 2015), and the performance of each gridded dataset 

in the hydrological model application was evaluated for the calibration and validation 

periods. Model calibration involves the modification of parameter values and comparison of 

the predicted output of interest to measured data until a defined objective function (i.e., 

Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), or the coefficient of determination 

(R2)) or optimum output is achieved. The purpose of model validation is to establish whether 

the calibrated model can predict the output compared to observed data for independent 

periods without making further adjustments to parameters that may adjust during the 

calibration process. Figure 2.5 shows that SWAT-CUP provides several methods for 

calibration to deal with parameter uncertainty, including the Sequential Uncertainty Fitting 

version 2 (SUFI-2) method (Nkonge et al., 2014; Wu and Chen, 2015), which was selected 

to provide more reasonable daily streamflow simulations at the outlet of each delineated 

drainage area (Table 2.1 and Figure. A1). Considering the availability of continuous 

discharge data in each tributary basin, the model parameters were calibrated with available 

streamflow data between 1995 and 2002, and simulation results were validated for the period 

between 2003 and 2011. Based on previous studies (Ang and Oeurng, 2018; Oeurng et al., 

2019; Sao et al., 2020; Sok et al., 2020; Vilaysane et al., 2015; Vu et al., 2012), 23 parameters 

were selected and calibrated using the SWAT-CUP model (Table A2) for each gridded 

precipitation dataset. 

 

For evaluating model performance in watershed simulations, we employed three 

quantitative metrics, i.e., Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and 

coefficient of determination (R2), as shown in Table A1 (Moriasi et al., 2007). NSE indicates 

how well the result of a simulation fits the observed time series (Nash and Sutcliffe, 1970). 

PBIAS measures the average tendency of the simulated values to be larger or smaller than 

their observed counterparts (Gupta et al., 1999). R2 examines to what extent differences in 

one variable can be explained by the difference in a second variable. In other words, R2 

assesses how strong the linear relationship is between two variables. Furthermore, the 

performance ratings suggested by Moriasi et al. (2007) were applied to evaluate the SWAT 

model simulation's integrated performance (Table A3). 
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Figure 2.5. The general framework of SWAT-CUP. There are five different methods of 

parameter uncertainty: Sequential Uncertainty Fitting Version 2 (SUFI-2), Particle Swarm 

Optimization (PSO), Generalized likelihood Uncertainty Estimation (GLUE), Parameter 

Solution (ParaSol), and Markov Chain Monte Carlo (MCMC).  

 

2.2.4.3.  Evapotranspiration comparison 

 

SWAT determines the actual evapotranspiration (ET) from potential 

evapotranspiration (PET) using one of the three built-in empirical equations (Neitsch et al., 

2011)—Penman-Monteith (Allen et al., 1989; Monteith, 1965), Priestley-Taylor (Priestley 

and Taylor, 1972) and Hargreaves (Hargreaves and Samani, 1985). These three methods 

require different input variables. The Penmen-Monteith method requires solar radiation, air 

temperature, relative humidity, and wind speed, and the Priestley-Taylor method needs solar 

radiation, air temperature, and relative humidity. Considering limited data availability, we 

used the Hargreaves method, which requires precipitation and air temperature only (Neitsch 

et al., 2011). Once the PET is determined, ET must be calculated. SWAT estimates total ET 

from four components: canopy evaporation, transpiration, soil evaporation, and Revap-ET 

(Abiodun et al., 2018). SWAT models the movement of water into overlying unsaturated 

layers as a function of water demand for ET. This process has been termed “Revap” to avoid 

confusion with soil evaporation and transpiration (Neitsch et al., 2011). As SWAT calculates 
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the Revap separately, the Revap should be added for ET calculations (Abiodun et al., 2018; 

Fenta Mekonnen et al., 2018). More detailed information and a comprehensive outline of 

ET calculations in the SWAT model can be found in the theoretical manual of Neitsch et al. 

(2011) and the studies by Abiodun et al. (2018) and Fenta Mekonnen et al. (2018). 

 

The spatio-temporal variation of ET was obtained through SWAT model estimations 

driven by different precipitation products. Then, we compared this information to satellite-

based ET data for a more comprehensive evaluation of the gridded precipitation datasets. 

For this purpose, the SWAT model was applied to simulate daily ET together with 

streamflow for the whole drainage area of each tributary basin with the parameters 

previously calibrated for the delineated area of each tributary basin from 2001 to 2011. The 

simulated ET based on different gridded rainfall products was temporally and spatially 

aggregated to compare with satellite-based ET, i.e., ET from MODIS (Moderate Resolution 

Imaging Spectroradiometer) and GLEAM (Global Land Evaporation Amsterdam Model), 

at monthly and annual timescales for the whole basin, excluding the flooded areas.  

 

Satellite-based ET has been used to validate the application of hydrological models and 

assess water balance closure in several studies (Dash et al., 2021; Jin and Jin, 2020; López 

et al., 2017; Odusanya et al., 2018; Sirisena et al., 2020; Wong et al., 2021), but the satellite 

ET is rarely used for validating the gridded rainfall products. MODIS-ET provides 

evaporation from global terrestrial surfaces and transpiration from the vegetation canopy 

(Mu et al., 2011). The algorithm to estimate ET from MODIS data was initially developed 

by Cleugh et al. (2007). The MODIS-ET algorithms are based on the Penman-Monteith 

equation (Monteith, 1965). We used MOD16A2, which is available at an 8-day interval and 

a spatial resolution of 1 km over a period extending from 2000 to 2014. Mu et al. (2013) 

compared the MODIS-ET with observed ET across 46 sites from 2000 to 2006 and found 

that the average ET biases and mean absolute errors between ET observations and MODIS-

ET are -0.11 mm and 0.33 mm, respectively. Similarly, Kim and Hogue (2008) validated 

MODIS-ET at a point-scale by comparing MODIS-ET with measured ET at four monitoring 

stations from 2001 to 2004, and results showed that at the daily-time step MODIS-ET show 

a good correlation (R = 0.89) and low bias (0.34 mm) with measured ET. The actual 

GLEAM-ET data are estimated as the sum of evaporation and ET from three different land 

surface types, i.e., bare soil, short vegetation, and vegetation with a tall canopy (Miralles et 

al., 2011). The Priestley and Taylor equation (Priestley and Taylor, 1972) was adopted to 
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estimate evaporation in the GLEAM-ET algorithms. We used the daily ET of the GLEAM 

v3.2a dataset, spanning 41 years from 1980 to 2020 with a spatial resolution of 0.25° × 0.25°. 

The GLEAM-ET was validated at 91 in-situ sites in the United States and Australia between 

2011–2015, and it was found that the mean correlation coefficient and root mean square 

difference between GLEAM- and gauge-ET are 0.78 and 0.71mm, respectively (Martens et 

al., 2017). The GLEAM-ET was also validated in China using in-situ measurements at three 

different timescales. The results showed a high average correlation coefficient with in-situ 

observations at all sites, on daily (R = 0.71), monthly (R = 0.86), and annual (R = 0.79) time 

scales (Yang et al., 2017). 

 

2.3.  Results and discussion 

2.3.1. Performance of precipitation datasets 

 

The results of all statistical indices (MBE, RMSE, R, and md) applied for each station 

are presented in Figures 2.6 (a)-(x). The positive mean values of MBE in CFSR, ERA5, SA-

OBS, TRMM and IMERG indicate overestimation, while APHRODITE underestimated the 

observed data with a negative mean value of MBE (Table A4). The lower values of RMSE 

derived from APHRODITE (Figure 2.6 (g)), ERA5 (Fig. 2.6 (i)), TRMM (Figure 2.6 (k), 

and IMERG (l)) indicate that these datasets have a better performance than the other two 

products, except for the locations in the southwestern and western regions in the TRMM and 

IMERG, which are attributed to the overestimated rainfall over these areas. Figure 2.6 (m)-

(x) shows a better performance regarding the correlation coefficient (R) and modified index 

of agreement (md) in APHRODITE, ERA5, TRMM and IMERG-based rainfall. 

 

Figure 2.7 shows the mean monthly rainfall between 2001 and 2011 in each tributary 

basin, which was calculated by averaging the monthly rainfall observed or interpolated 

(bilinear interpolation) at all rain-gauge locations in the tributary basin. ERA5 and 

APHRODITE and the observed results showed a similar seasonal pattern to each other. 

CFSR tended to overestimate the mean monthly rainfall for most tributary basins throughout 

the year, and SA-OBS overestimated the mean monthly rainfall during the wet season 

(Figures 2.7 and A4). The TRMM and IMERG precipitation values overestimated the rain 

gauged values in four tributary basins (Dauntri, Mongkol Borey, Pursat, and Sangker), 

which is consistent with the higher spatial gradient of rainfall over the southwestern terrain 

(Figure. 2.9). 
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Figure. 2.6. Spatial distribution of mean bias error (a-f), root mean square error (g-l), 

correlation coefficient (m-r), and modified index of agreement (s-x) between gridded 

products and gauged observation at monthly time scale during 19985 – 2011 (1998 and 

2001– 2011 for TRMM and IMERG, respectively). The circles denote rainfall gauging 

stations located in the TSL Basin. 
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Figure 2.7. Comparison of long-term mean monthly rainfall averaged for all the gauging 

stations located in each tributary basin from 2001 to 2011. The number of gauging stations 

used for averaging monthly rainfall was included in each plot. 
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Figure 2.8. Scatter plots of observed and interpolated monthly rainfall in each tributary 

basin from 1985 to 2011 (1998 and 2001 to 2011 for TRMM and IMERG, respectively). 

For the basin with multiple gauging stations (Figs. 2.6 and 2.7), the monthly rainfall was 

obtained as the arithmetic mean for all gauging stations located in the basin. The blue dash 

lines are 1:1 line, and the red solid lines denote linear regressions. 
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Figure 2.8. Cont. 

 

Figure 2.8 shows the scatter plots between the interpolated monthly precipitation of 

each gridded product and the gauged observations for each tributary basin. The higher values 

of coefficient of determination (i.e., R2) in APHRODITE, TRMM, IMERG and ERA5 

indicate that these four datasets have a strong linear relationship with the observed monthly 

data, while CFSR and SA-OBS show lower correlations with the observed data. TRMM and 

IMERG show a good relationship with the observation data in eight tributary basins (the 

monthly R2 values are higher than 0.65), while the other three basins located over the 

southwestern terrain of the TSL (i.e., the Dauntri, Pursat, and Sangker tributary basins) 
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exhibit R2 values between 0.5 and 0.58 for TRMM and between 0.47 and 0.65 for IMERG. 

As seen in the scatter plots, IMERG outperformed TRMM in some tributaries, while the 

other tributaries showed equal or smaller correlation coefficients (Fig. 2.8). 

 

2.3.2. Spatial distribution of mean annual precipitation  

 

The spatial distribution of mean annual precipitation from 2001 to 2011 over the TSL 

Basin is shown using the respective gridded dataset (Figures 2.9 (a)-(f)) and data from all 

31 rain gauging stations (Figure 2.9 (g)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Spatial distribution of mean annual rainfall of APHRODITE (a), CFSR (b), 

ERA5 (c), SA-OBS (d), TRMM (e), IMERG (f) and gauged observation (g) over the TSL 

Basin for the period from 2001 to 2011. The areal average (for gridded datasets) and the 

arithmetic mean (for gauging stations) of the mean annual precipitation were included at 

the top left corner of each map. 
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The areal average of mean annual precipitation was 1246, 2145, 1762, 2250, 1851 

and 1766 mm for APHRODITE, CFSR, ERA5, SA-OBS, TRMM and IMERG, respectively. 

There were substantial differences in the areal average and spatial distribution of the mean 

annual precipitation between the six gridded products. APHRODITE revealed the smallest 

mean annual rainfall over the TSL Basin, while ERA5, TRMM and IMERG showed 

comparably similar annual rainfall and spatial distribution with larger rainfall over the hilly 

regions in the south and northeast, which are not visible in the observations (Figure 2.9 (g)), 

and smaller rainfall over the lower elevation zone extending from the northwest to the 

southeast, including the TSL. 

 

Although the overall spatial distribution of mean annual rainfall is similar between 

TRMM and IMERG, the rainfall at the edge of the basin in the south and northeast areas 

was noticeably smaller in IMERG than that of TRMM (Figure 2.8), which could be a source 

of improvement in correlation coefficient between gauged and IMERG precipitation in some 

tributaries (Figure 2.8). Despite both APHRODITE and SA-OBS datasets being based on 

the observation data, their spatial distributions are very different and reflect the different 

number of gauged datasets used to create them. 

 

2.3.3. Performance of temperature datasets  

 

Figure 2.10 illustrates the comparison values of mean monthly averaged daily 

maximum and minimum temperatures derived from the results of bilinear interpolation of 

gridded data and those derived from the data of gauging stations from 1985–2011. Overall, 

the SA-OBS dataset displayed better estimates of seasonal patterns and magnitudes for both 

minimum and maximum temperatures (Figures 2.10 and A5). CFSR products exhibited huge 

differences in magnitude for both maximum and minimum temperatures, especially between 

April and December. ERA5, CPC, SA-OBS, and the observed results showed overall 

similarity in their seasonal patterns for minimum temperature (Figures 2.10 and A5). 

 

The statistical indices evaluating the performance of maximum and minimum 

temperatures at the monthly timescale are given in Table 2.4. The results of four different 

indices for individual stations and their mean values are presented separately for maximum 

and minimum temperatures. CFSR maximum and minimum temperatures had the poorest 

performance compared to other gridded products, as typically indicated by a large RMSE.  
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Figure 2.10. Comparison of mean monthly averaged daily maximum (top) and minimum 

(bottom) temperatures at individual stations from 19985 – 2011. 

 

The CPC and SA-OBS minimum temperatures showed the highest mean correlation 

coefficients, which were equal to 0.84 (Table 2.4). SA-OBS maximum temperature values 

outperformed the CPC products, as indicated by the mean values of all indices (Table 2.4). 
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Therefore, the SA-OBS product is the most favorable alternative temperature data source 

over the TSL Basin. 

 

From the statistical analysis, the CPC and SA-OBS-based air temperature performed 

comparably well with the gauged data. This result was consistent with the previous work 

(Van den Besselaar et al., 2017) that found a high correlation between SA-OBS and 

APHRODITE (gauge-based dataset) for mean temperature over Southeast Asia. Similarly, 

Khadka et al. (2021) indicated that CPC shows a high correlation with gauged data and well 

captures the variation of maximum and minimum temperature in northeast Thailand. 

 

Table 2.4. Performance of statistical indices for maximum and minimum temperatures at 

the monthly time scale 

Station Dataset 
Tmax       Tmin       

MBE RMSE R md MBE RMSE R md 

Battambong 

CFSR 0.54 2.66 0.63 0.52 -0.36 1.85 0.56 0.55 

CPC 0.26 1.17 0.83 0.72 0.81 1.09 0.91 0.72 

ERA5 0.26 1.17 0.83 0.72 0.74 1.18 0.87 0.70 

SA-OBS 0.70 1.30 0.80 0.64 0.64 0.98 0.90 0.76 

Siem Reap 

CFSR -0.67 2.66 0.44 0.42 -0.89 1.74 0.65 0.50 

CPC -0.68 1.91 0.69 0.62 -0.01 0.94 0.86 0.76 

ERA5 -1.68 2.04 0.77 0.48 0.41 1.12 0.82 0.72 

SA-OBS 0.10 1.05 0.79 0.69 -0.22 0.92 0.87 0.76 

Stung Treng 

CFSR -1.52 2.96 0.59 0.45 -1.43 2.08 0.68 0.42 

CPC -2.34 2.65 0.83 0.45 -0.65 1.13 0.88 0.70 

ERA5 -2.32 2.70 0.77 0.44 -0.13 1.00 0.82 0.69 

SA-OBS -1.89 2.36 0.64 0.45 -0.78 1.12 0.90 0.70 

Kratie 

CFSR -0.31 2.72 0.54 0.46 -0.72 1.82 0.40 0.40 

CPC -1.74 2.39 0.68 0.50 0.21 1.27 0.71 0.61 

ERA5 -1.81 2.29 0.71 0.47 0.52 1.42 0.60 0.54 

SA-OBS -1.26 1.75 0.70 0.53 0.00 1.20 0.71 0.63 

Pochentong 

CFSR -1.04 3.07 0.35 0.37 -1.45 2.12 0.45 0.33 

CPC -2.11 2.83 0.53 0.42 -0.05 0.81 0.83 0.71 

ERA5 -1.30 1.85 0.72 0.54 -0.55 1.04 0.79 0.60 

SA-OBS -1.14 1.68 0.71 0.53 -1.07 1.04 0.82 0.56 

Average 

CFSR -0.60 2.81 0.51 0.44 -0.97 1.92 0.55 0.44 

CPC -1.32 2.19 0.71 0.54 0.06 1.05 0.84 0.70 

ERA5 -1.37 2.01 0.76 0.53 0.20 1.15 0.78 0.65 

SA-OBS -0.70 1.63 0.73 0.57 -0.29 1.05 0.84 0.68 

   

2.3.4. Evaluation of performance based on the streamflow simulation 

 

Through the analyses described in sections, 2.3.1–2.3.3, APHRODITE, ERA5, 

TRMM and IMEERG were found to be the preferred alternative precipitation data sources, 
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and SA-OBS was found to be the favored alternative source for air temperature data. 

Therefore, the four selected gridded precipitation products and the SA-OBS air temperature 

data were used in the SWAT model application to simulate streamflow in 11 tributary basins. 

Model performance was evaluated based on three statistical indicators: NSE, PBIAS, and 

R2. Although the model parameters were optimized independently for each precipitation 

dataset, there were some differences in the model performance results due to inherent biases 

and uncertainties included in each precipitation dataset (Table A5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. Daily observed (black solid line) and simulated (red dashed line) flow of the 

Sen tributary basin during calibration and validation periods from 1995 to 2002 (1998 and 

2001 to 2002 for TRMM and IMERG, respectively) and 2003 to 2011, respectively. The 

secondary plots (blue solid line) indicate daily rainfall corresponding to each product. The 

black dashed line marks the end of the calibration period and the beginning of the 

validation period. 
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Figure 2.11 compares the time series of observed and simulated daily streamflow in 

the Sen River Basin, which has the largest drainage area, during the calibration (from 1995 

or 1998 or 2001 to 2002) and validation periods (from 2003 to 2011). The hydrograph of 

APHRODITE, ERA5, TRMM and IMERG displayed a similar seasonal pattern to the 

observed data, showing very good agreement and performance during both calibration and 

validation periods (NSE and R2 ≥ 0.75, and PBIAS < ±10%) (Tables A3 and A5). The 

monthly observed and simulated flows of all other tributary basins during the calibration 

and validation periods are shown in Figures A6 and A7, respectively. Most of the results 

based on the four precipitation products reproduced the seasonal patterns well for both 

calibration and validation periods (Figs. A6 and A7), mainly due to the good representation 

of monthly rainfall and temporal patterns in these datasets (Figures 2.7 and 2.8). 

 

Statistical indices summarized for the calibration and validation periods (Table A5) 

demonstrate that APHRODITE, ERA5, TRMM and IMERG products performed well on 

daily streamflow simulations, as NSE and R2 in the calibration and validation periods were 

higher than 0.5 and PBIAS values were within ±15% in most tributary basins. On average, 

the ERA5 streamflow showed weaker performance in the 11 tributary basins than the 

TRMM, IMERG and APHRODITE streamflow, especially during the calibration period. 

The average performance of IMERG-based models showed a slightly better performance 

than that of the TRMM product for both calibration and validation phases (Table A5). 

 

The comparison of observed and simulated mean annual runoff from the delineated 

area of each tributary basin and their total values indicated that APHRODITE, TRMM and 

IMERG precipitation datasets showed better overall performances in hydrological 

simulations during both calibration and validation periods, whereas the total runoff based on 

ERA5-rainfall overestimated the runoff by more than 50 mm in both calibration and 

validation periods (Figure 2.12). Although ERA5 precipitation showed good spatial (Figure 

2.6) and temporal (Figure 2.7) performance when compared with gauged data, the bias and 

uncertainty in rainfall variability and distribution in the upstream areas, where gauged data 

are not available, could influence the performance of streamflow simulation at the gauged 

station. The rainfall from APHRODITE, TRMM and IMERG combined with SA-OBS air 

temperature provided more reliable estimates of mean runoff in each tributary basin and the 

total delineated basin areas during calibration and validation periods. Although 

APHRODITE, TRMM and IMERG performed well in reproducing the streamflow, a large 
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difference in the annual precipitation recorded in these datasets (Figure 2.9) warrants further 

investigation with an additional water balance component, i.e., ET, which is discussed in 

Section 2.3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. Comparison of observed and simulated mean annual runoff depth in the 

calibration (top) and validation (bottom) periods. The mean runoff depth for each tributary 

basin and the total represents the runoff from the delineated area of each tributary basin 

and all of the delineated basin area, respectively. 
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The average daily precipitation of SA-OBS overestimates the gauged data and is 

higher than that of APHRODITE and TRMM over Southeast Asia (Van den Besselaar et al., 

2017), which agrees with the findings from our study. Errors in precipitation input can cause 

significant uncertainties in hydrological simulation. Consistent with the result of this study, 

the CFSR data overestimated the gauged rainfall which resulted in the considerable 

overestimation of simulated streamflow in the upper Dong Nai River, Vietnam (Nhi et al., 

2019). Dinh et al. (2020); Thom et al. (2017); Vu et al. (2012) indicated that the TRMM and 

APHRODITE precipitation data have potential applications in driving hydrological model 

and water resources management in the Mekong River Basin, while our study showed that 

APHRODITE gives much underestimation of basin-wide precipitation. Similarly, Kawai et 

al. (2021) have pointed out in their study that the APHRODITE precipitation is about 33-

38% less than the gauged values over Lao PDR. Like our study, Gunathilake et al. (2020) 

showed that IMERG had a high correlation and the lowest estimation error with gauged 

rainfall leading to good performance in simulating the streamflow in the Upper Nan River 

Basin, Northern Thailand. Therefore, Mohammed et al. (2018) revealed that the models 

utilizing TRMM and IMERG forcing data simulated streamflow well in the Lower Mekong 

River, which is also found in our study. 

 

2.3.5. Evaluation of performance based on ET throughout the TSL Basin 

 

The spatial distribution of mean annual ET calculated in the SWAT model 

application was compared with MODIS-based and GLEAM-based ET for the whole basin, 

excluding the flooded areas (Figures 2.13 (a)-(f)). The mean annual ET of each dataset was 

759, 935, 1093, 1084, 1138 and 1036 mm for APHRODITE, ERA5, TRMM, IMERG, 

MODIS, and GLEAM, respectively, suggesting a better agreement between TRMM and 

IMERG-based and satellite-based ET, i.e., MODIS and GLEAM. The ET maps based on 

TRMM, IMERG and MODIS (Figures 2.13 (c), (d) and (c) showed high spatial similarities, 

except for the upstream areas in the Pursat tributary basin. Different algorithms used in ET 

calculations (discussed in 2.2.4.3) might be the source of dissimilarity between simulated 

ET and satellite-based ETs in some parts of the tributary basins.  
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Figure 2.13. Comparison of the spatial distribution of long-term mean annual ET of 

APHRODITE (a), ERA5 (b), TRMM (c), IMERG (d) MODIS(e) and GLEAM (f) over the 

TSL Basin. The mean was calculated based on the long-term mean annual ET from 2001 

to 2011. The mean annual ET of each dataset was mentioned at the top left corner of each 

map.  
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Figure 2.14. Scatter plots of tributary basin-averaged monthly simulated ET with MODIS-

ET (red diamond) and GLEAM-ET (blue circle) for the individual dataset from 2001 to 

2011. Each plot represents monthly ET averaged over each tributary basin excluding 

flooded areas.   
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Figure 2.14. Cont. 

 

The monthly ET's time series and scatter plots averaged over each tributary basin 

(excluding the flooded areas) as shown in Figures A8 and 2.14, respectively, the ET from 

the four precipitation products showed some similar seasonal patterns with MODIS- and 

GLEAM-ET, but significant differences were found for APHRODITE- ET. APHRODITE-

ET was much lower than other models- and satellite-based ET, while RMSE values were 

found to be relatively smaller between those of TRMM and IMERG-ET and the satellite-

based ETs (Table A6). 
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Additionally, the average RMSE between IMERG- and MODIS-ET is slightly 

smaller than that of TRMM-ET and MODIS-ET (Table A6). The limited gauge information 

(e.g., rainfall monitoring stations exclusively located at the downstream areas, Figure 2.1) 

used for gauge adjustment algorithms and resultant precipitation underestimations (Figures 

2.6 and 2.7) could be the leading causes for the relatively poor performance of 

APHRODITE-based SWAT in ET estimations, indicating that this product could not be 

suitable for basin-wide hydrological applications. On average, the ET values simulated by 

the SWAT model using each precipitation product attributed to approximately 62% of the 

total precipitation (Figure A9). 

 

Figure A10 compares mean simulated annual runoff depth values from each tributary 

basin and the total drainage area between 2001 and 2004, which were obtained by applying 

SWAT modeling and excluding the flooded regions in each tributary basin. The simulated 

total runoff depth from 11 tributary basins was 330, 414, 395 and 393 mm/year for 

APHRODITE, ERA5, TRMM and IMERG, respectively. In the study by Kummu et al. 

(2014), the total runoff depth from the same 11 tributaries of the TSL Basin during the same 

period (2001-2004) was estimated to be 394 mm/year, which is much closer to our results 

obtained using TRMM and IMERG precipitation. 

 

The smaller RMSE (Table A6) and better temporal (Figure A8) and spatial (Figures 

2.13 and 2.14) patterns of the IMERG- and TRMM-ET with GLEAM- and MODIS-ET 

indicates that TRMM and IMERG provide more reliable rainfall values over the TSL Basin, 

resulting in a more accurate estimation of streamflow and ET and a better prediction of other 

water balance components in the study area. Therefore, TRMM and IMERG precipitation, 

combined with SA-OBS air temperature, is a superior meteorological input for SWAT 

model simulations for comprehensive hydrological impact assessments over the TSL Basin. 

 

2.4.  Conclusion  

 

This study provided a comprehensive assessment of seven gridded precipitation and air 

temperature products, including APHRODITE, TRMM, IMERG, CFSR, ERA5, SA-OBS, 

and CPC, by statistically comparing these datasets with gauge-based datasets and applying 

the SWAT model for daily streamflow and ET simulations over the TSL Basin. The 

precipitation data from APHRODITE, ERA5, TRMM and IMERG were found to have high 
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correlations with rain-gauged data and the lowest estimation errors, whereas CFSR and SA-

OBS products showed marked overestimation during most of the study period. The SA-OBS 

and CPC were found to match the observed air temperature data well, while the CFSR and 

ERA5 data showed larger estimation errors. The results of the hydrological simulation 

showed that the rainfall data from APHRODITE, TRMM and IMERG, combined with SA-

OBS-based air temperature data, provided improved estimations of daily streamflow and 

mean runoff depth for most of the delineated tributary basins during the calibration and 

validation periods. The ET estimated using the TRMM and IMERG datasets showed a better 

temporal and spatial pattern agreement with GLEAM- and MODIS-ET. This suggests that 

TRMM and IMERG, in conjunction with SA-OBS air temperature, are reliable for providing 

the streamflow through the SWAT model application and other water balance components. 

Although TRMM and IMERG datasets provided comparable performance in streamflow 

and ET simulation in the study area, a slight improvement found for IMERG in statistical 

analysis and streamflow and ET simulations, in addition to the spatial resolution and latency 

time of IMERG, suggest that IMERG and SA-OBS provide the most favorable 

meteorological input datasets for comprehensive basin-wide hydrological impact 

assessments. 

 

The comprehensive evaluation framework used in this study was found to be effective 

in selecting reliable gridded meteorological datasets for hydrological simulation in data-

sparse river basins, especially when large uncertainty existed in the spatio-temporal 

distribution of rainfall. The findings also showed that applying gridded data that had only 

been verified through statistical comparisons with gauged data and hydrological simulation 

of streamflow could result in large uncertainties when quantifying other water balance 

components and assessing the hydrological responses, including rainfall-driven phenomena 

such as soil erosion and nutrient transport, due to climate change and land-use change. Our 

comprehensive evaluation approach results are a valuable guide for selecting alternative 

meteorological data for hydrological applications when the existing gauging networks are 

limited, not only in the TSL Basin but also in the Mekong River Basin and other river basins 

located within a similar climate region. 
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Chapter 3 Sediment load estimation using a novel regionalization sediment-

response similarity method for ungauged catchments 

 

The study of chapter 2 attempts to determine an ideal alternative meteorological dataset 

as the input data for hydrological modeling. Although satellite-based or gridded 

meteorological data could serve as the model inputs, model outputs (i.e., streamflow or 

sediment load) need to be optimized using ground-based observation. However, model 

calibration or validation cannot be performed in the ungauged catchment (e.g., the catchment 

is not monitored in terms of water level or sediment concentration). To solve this problem, 

in this chapter, a common method known as regionalization, in which model parameters 

from well-monitored catchments are transferred to ungauged, was used to estimate 

hydrological variables such as streamflow and sediment load. The final output of this section 

is the target of Objective 2. This model was carried on to Chapter 4 for application in hydro-

environment impact assessment. 

 

3.1. Introduction 

 

Ground-monitored and satellite-based hydrometeorological and water quality datasets 

play vital roles in developing reliable hydrological models for regional environmental 

assessments of land-use change and anthropogenic threats such as climate change (Ang et 

al., 2022; Guo et al., 2020; Zhao et al., 2022b). However, the sparse and uneven distribution 

of hydrometeorological and water quality monitoring stations typically found in developing 

countries hinders the development of reliable hydrological models and accurate simulations 

of the hydro-environmental impacts (Ang et al., 2022). To solve this problem, a common 

method known as regionalization, in which hydrological information (model parameters) 

from well-monitored catchments (donors) are transferred to ungauged or sparsely gauged 

catchments (receptors), is used to predict the time series of hydrological variables such as 

streamflow and sediment load. 

 

Several regionalization methods have been developed for modeling hydrological 

variables – especially for runoff simulation in ungauged catchments. The most common 

regionalization approaches include physical similarity (PS), spatial proximity (SPX), 

arithmetic mean (AM) and regression-based approach (RG) (Guo et al., 2020; Heng and 
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Suetsugi, 2014; Tegegne and Kim, 2018a; Zhao et al., 2022a). In the PS approach, one or 

more donor catchments with similar physical characteristics (i.e., climate, land-use, and 

geological conditions) to ungauged catchments are identified. Subsequently, a complete 

parameter set from the donor catchment is transferred to the corresponding ungauged 

catchment (Asurza-Véliz and Lavado-Casimiro, 2020; Guo et al., 2020). The performance 

of this technique depends on the selection of descriptors to explain the similarity. The SPX 

approach assumes that the nearby catchments should have similar characteristics and 

hydrological behaviors, and the entire parameter set is transferrable from the neighboring 

donors to the ungauged catchment, by interpolation or averaging (Swain and Patra, 2017). 

However, the model performance is inaccurate if strong heterogeneity is not present in the 

catchment characteristics as assumed (Parajka et al., 2005). In the AM approach, each 

calibrated model parameter from gauged catchments located in a given region is averaged 

and then transferred to the ungauged catchments in the same region. Consequently, the value 

of each corresponding parameter is identical for all ungauged catchments, which might not 

be realistic for heterogeneous catchments (Tegegne and Kim, 2018). The RG method aims 

to find the relationships between catchment attributes and model parameters calibrated in 

the gauged catchments. The established relationships are further used to quantify the model 

parameters for ungauged catchments (Heng and Suetsugi, 2014; Oudin et al., 2008). Heng 

and Suetsugi (2014); Zhang and Chiew (2009) mentioned that the equifinality problem of 

model parameterization is a major weakness of this method since the model parameters are 

used directly to build catchment relationships and define catchment clusters. 

 

Numerous studies have compared the performance of different regionalization 

approaches for modeling streamflow and sediment in river basins and have reported the 

outperformance of the PS and SPX approaches over other regionalization methods (Guo et 

al., 2020; Heng and Suetsugi, 2014; Oudin et al., 2008; Parajka et al., 2013, 2005; Tegegne 

and Kim, 2018; Zhang and Chiew, 2009). Heng and Suetsugi (2014) compared three 

regionalization approaches (PS, RG, and SPX), to estimate sediment rating curves in 

ungauged catchments, for predicting instantaneous suspended sediment yield in 16 

catchments of the lower Mekong River basin (LMRB). They found that the PS approach 

provided the best performance, while the SPX technique produced the least effective 

regionalization solution, owing to a sparse network of monitoring stations in the study area. 

Parajka et al. (2005) conducted runoff modeling across 320 Austrian catchments and 

revealed that the PS and SPX approaches perform similarly and were close to the calibration 
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results. Oudin et al. (2008) compared three regionalization methods (PS, SPX, and RG) for 

runoff modeling in 913 catchments in France and found that wherever a dense network of 

gauging stations was available, the SPX provided the best regionalization solution, while 

the performance of PS approach is intermediary. Parajka et al. (2013) compared four 

regionalization techniques (as mentioned earlier) for runoff prediction based on a review of 

34 past studies for 3,874 catchments; results indicated a lower performance of the RG 

method than other methods used in those studies. Additionally, it was found that the SPX 

and PS techniques performed best in humid catchments, while the PS and RG methods 

performed slightly better in arid catchments. However, in studies with dense streamflow 

gauge networks, there was a tendency for the SPX technique to outperform the RG and AM 

methods (Parajka et al., 2013). A common conclusion from this research is that the SPX 

approach has a relatively enhanced performance when dense streamflow gauge networks are 

available. In other conditions, the PS method is more likely to provide the best 

regionalization solution for the hydrological estimation of ungauged catchments. 

 

The PS method assumes that the similarity in the input attributes, e.g., such as rainfall, 

land use, and geological conditions between gauged and ungauged catchments is connected 

to the corresponding similar responses, such as sediment or runoff. However, the 

relationship between the inputs and outputs can be inherently different between gauged and 

ungauged catchments, owing to the spatiotemporal variability of the hydrologic process in 

individual catchments (Tegegne and Kim, 2018). Moreover, the proximity among catchment 

centroids introduced in the SPX method is not necessarily translated into hydrologic 

similarity (Kokkonen et al., 2003). To overcome the problems associated with the SPX and 

PS methods, Tegegne and Kim (2018) proposed the new catchment runoff-response 

similarity (CRRS) regionalization method, to identify the attributes of a critical catchment 

and more accurately represent the hydrological similarities. The CRRS is based on the idea 

that catchments with similar runoff responses have similar hydrological processes, and 

therefore, similar model parameter values. The CRRS outperformed other regionalization 

methods, including the next best regionalization approach, the PS method, with 10–14% and 

4–7% during the calibration and validation tests, respectively (Tegegne and Kim, 2018). 

 

Overall, the regionalization approaches examined in previous studies assume that the 

catchment classification or clustering is possible, based on several static catchment 

descriptors (i.e., land-use and geological conditions) with long-term mean climatic 
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descriptors (e.g., mean annual rainfall), or a combination. However, spatiotemporal 

variability in climate within the catchment is neglected (Samaniego et al., 2010). Wagener 

et al. (2007) also found that the prediction of hydrological variables (streamflow and 

sediment load) in ungauged catchments is a challenging task, primarily because the 

hydrologic processes occurring within a catchment occur over a wide range of 

spatiotemporal scales. Therefore, catchment attributes (descriptors), that represent the 

spatiotemporal variability of climate and hydrological process in gauged and ungauged 

catchments, are required for the regionalization of catchments. Therefore, in this study, a 

new regionalization method was proposed. This sediment-response similarity (SRS) method 

aims to find appropriate attributes that can ideally transfer the response of gauged 

catchments (associated with sediment erosion and transport) to that of ungauged catchments, 

considering spatiotemporal variability of the hydrologic processes occurring within the 

catchments. The method was developed by using a conventional regionalization method (an 

AM) and two statistical indices of catchment attributes: the coefficient of variation (CV) and 

correlation coefficient (R). These describe the spatiotemporal variations of sediment 

response and its relationship with rainfall characteristics in gauged and ungauged 

catchments. The values of these indices can characterize and compare the sediment-response 

behavior in terms of catchment attributes between gauged and ungauged catchments. Briefly, 

the SRS steps are as follows: 1) Apply the AM regionalization approach to transfer the 

calibrated parameters used in the soil and water assessment tool (SWAT) model from the 

gauged to ungauged catchment and simulate model output (i.e., sediment response); 2) 

Calculate the CV for observed rainfall (input) and the simulated sediment response obtained 

in the first step, and calculate the R between the rainfall and the sediment response, for each 

gauged and ungauged catchment; 3) Identify the catchment clusters (gauged and ungauged 

catchments), which are based on the sediment-response similarities, using the similar CV 

and R values; 4) Update the final parameter values from the same clusters, from the gauged 

to ungauged catchments (i.e., similar sediment responses represented by the CV and R 

values), and 5) Rerun the SWAT model to simulate the time series of sediment load in the 

ungauged catchments. To examine the validity and effectiveness of this proposed SRS 

approach, the method was applied to tributary basins located in the LMRB. The performance 

of the SRS method was compared with the conventional regionalization method, i.e., 

physical similarity. Finally, the sediment load time series was estimated using the SRS 

method for the ungauged tributaries of the Tonle Sap lake (TSL) basin (a sub-basin of the 

LMRB), which has a limited number of monitoring stations. 
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3.2. Materials and methods  

3.2.1. Hydrological model setup 

 

Figure 3.1 (top dash-box) shows the framework of the SWAT model setup (Section 

3.5). First, the spatial and meteorological data were input into the SWAT model to set up 

hydrological models for both gauged and ungauged catchments. Next, the whole catchment 

was delineated into sub-catchments. The sub-catchment boundaries were delineated based 

on information from the digital elevation model (DEM) for the area. A combination of land 

cover, slope, soil properties, and management practices of the sub-catchments was classified 

and overlaid to form hydrologic response units (HRUs). Therefore, the gauged and ungauged 

sub-catchments were clustered using SRS (Section 3.2.2.1) and PS (Section 3.2.2.2) 

regionalization methods. 

 

3.2.2. Regionalization methods  

3.2.2.1. Sediment-response similarity 

 

In this study, the new SRS regionalization method was based on a two-phase 

approach of transferring parameters (Figure 3.1). In the first phase, the conventional 

regionalization methods were used to tentatively transfer the calibrated model parameters 

from the gauged to ungauged catchments. The AM regionalization method was used in this 

study because the number of gauged catchments is insufficient in the two case study basins 

(see Figure 3.3). The number of ungauged receiver catchments will be too high compared to 

the number of donor catchments, if the catchment clusters were to be identified based on the 

PS or SPX approaches, owing to the differences between donor and receiver catchments. 

However, the PS or SPX approaches can be used to tentatively transfer model parameters 

from gauged to ungauged catchments where there are many donor catchments. The second 

phase of the parameter transfer approach was based on SRS. The catchments with similar 

rainfall characteristics and sediment responses are considered hydrologically similar. Once 

similar catchments were identified, the final parameter values of each gauged catchment 

were transferred to the ungauged catchments. The similarity of runoff response and sediment 

load simulated in the model implies that dominant hydrological processes within a particular 

ungauged catchment are well incorporated into the model.  
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Figure 3.1. Flowchart of physical similarity (PS) and the sediment-response similarity 

(SRS) parameter transfer schemes. Numbers 1 and 2 denote the two-phase approach of 

parameter transfer of the SRS systematic procedure. The top dash-box denotes the general 

procedure of the SWAT model setup. 
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Consequently, the regionalization methods that consider the similarity in the rainfall 

characteristics and the sediment load response as the main attributes could reduce the 

hydrologic uncertainty in the predicted results of the ungauged catchments (Tegegne and 

Kim, 2018). The hydrological processes within a catchment occur over a wide 

spatiotemporal scale. Therefore, catchment attributes that represent the spatiotemporal 

variability of climate and hydrological processes in the catchments, are required for the 

regionalization of catchments. The CV index is a statistical measure of the dispersion of data 

points in a data series around the mean, and it is beneficial when comparing the degree of 

variation from one data series to another, even if the means are considerably different 

(Brown, 1998). The R index measures the strength of the statistical relationship, or a linear 

association, between two variables. The CV and R indices describe the spatiotemporal 

variations of sediment response and the relationship with rainfall characteristics, in gauged 

and ungauged catchments. This can partially characterize the unique sediment-response 

behavior of each catchment. Therefore, the CV and R indices could be ideal catchment 

attributes for identifying SRS in long-term spatiotemporal variations between gauged and 

ungauged catchments.  

The detailed and systematic procedures of the SRS method are summarized in five 

steps (Fig. 1), as follows.  

Step 1: During the first phase, the AM regionalization approach was applied to 

tentatively transfer the calibrated parameters used in the SWAT model from the 

gauged to ungauged catchment and simulate model output such as sediment response 

or load. 

Step 2: In the second phase, the daily sediment load for each sub-catchment (simulated 

in Step 1), is normalized by the corresponding sub-catchment area. The index values 

of CV of daily rainfall, normalized sediment load, and R between daily rainfall and 

normalized sediment load, were then calculated for each sub-catchment.  

Step 3: The self-organizing map (SOM) (Section 3.2.3) clustering technique was used 

to identify similar sub-catchments using the daily time series CV and R index values 

computed for each sub-catchment (see Figures 4 and 5).  

Step 4: The model parameters for the ungauged catchments were updated with the 

final parameter values from the gauged catchments in the same cluster. This means 

that similar sediment responses or CV and R values were considered. 

Step 5: Finally, the SWAT model was rerun to simulate the sediment load time 

series in the ungauged catchments. 
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3.2.2.2. Physical similarity 

 

The PS method is one of the best-performing regionalization solutions reported in 

previous studies (Guo et al., 2020; Heng and Suetsugi, 2014; Oudin et al., 2008; Parajka et 

al., 2013, 2005; Tegegne and Kim, 2018; Zhang and Chiew, 2009, among others). It was 

used for comparison against the performance of the SRS method. The PS approach assumes 

that catchment physiographic characteristics predetermine the hydrological behavior. The 

catchment descriptors or attributes are generally used to define the similarity and are related 

to the topography, land cover and soil type of the catchment. In this study, the area-weighted 

catchment slope, the Universal Soil Loss Equation (USLE), the land cover and management 

factor (CUSLE), and the USLE soil erodibility factor (KUSLE), were used. In previous studies, 

these attributes were considered the main drivers of hydrological responses in different 

catchments (Merz and Blöschl, 2004; Tegegne and Kim, 2018).  

 

The area-weighted average value of each catchment attribute of each sub-catchment 

was computed as follows:   

 

          ( ) ( ) ( )
1 2

CA area ratio CA area ratio CA area ratio CAi m
=  +  + +                   (3.1) 

 

where, CA is a catchment attribute value (i.e., CUSLE, KUSLE and %Slope); i is the number of 

sub-catchments; the area ratio is the area occupied by the corresponding catchment attribute 

divided by the total area of the sub-catchment i, and m denotes different land use types, soil 

types and slope classes for CUSLE, KUSLE and %Slope, respectively.  

 

 Table A7 presents the CUSLE and KUSLE values of different land use and soil types, 

respectively, which were retrieved from the SWAT land-use and soil-type databases (Ang 

et al., 2022). The slope percentage of each sub-catchment was calculated from the DEM 

input data (see Table 2). The schematic framework of the PS method is illustrated using that 

of the SRS approach in Figure 3.1. First, the area-weighted slope, CUSLE, and KUSLE values 

of gauged and ungauged sub-catchments were computed and inputted into the SOM 

algorithm. The SOM clustering technique was then used to identify similar cluster sub-

catchments, using the area-weighted slope, CUSLE, and KUSLE of each sub-catchment (see 

Figures 4 and 5). Finally, the model parameters for the ungauged catchments were 
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transferred from similar gauged catchments to simulate the time series of sediment load in 

the ungauged catchments. This simulated time series from the PS approach was compared 

with that from the SRS method, to evaluate the SRS method's performance. 

 

3.2.3. Self-organizing map 

 

An SOM is an unsupervised learning algorithm based on artificial neural networks used 

to cluster and visualize the structure of high-dimensional data sets (Kohonen, 1990, 1982). 

An SOM consists of input and output layers linked by weightings (Figure 3.2a). The input 

layer is formed by a set of nodes consisting of input vectors (Figure 3.2a), and the output 

layer is formed by nodes arranged in a two-dimensional (2-D) grid map. This 2-D grid map 

(also called the Unified distance matrix or U-matrix) shows the data similarities by grouping 

similar data into the same clusters, as indicated by the same numbers inserted in the grids 

(shown in Figure 3.2b). In this study, the values of CUSLE, KUSLE, and %Slope, and the values 

of CV and R derived from the daily rainfall and sediment response of individual sub-

catchments (i.e., gauged and ungauged), were used as the input vectors to create the SOM 

clustering map (Figure 3.2b) for the PS and SRS methods, respectively. The input vectors 

were normalized to prevent unintentional weighting of vector attributes during the training 

process (see Box A1). The number of output neurons (i.e., the size of the output map, see 

Figure 3.2b) in an SOM can be selected using the empirical rule by Vesanto and Alhoniemi 

(2000). The optimal number of neurons, i.e., in the SOM is calculated approximately by 

5 L , where L is the number of samples in input vectors (number of sub-catchments, see 

Figure 3.5) (Farsadnia et al., 2014). The SOM assigns values to represent the input vector 

(i.e., reference vector) in each neuron, which is generated and adjusted during the process 

of clustering (Farsadnia et al., 2014; Hamel and Brown, 2011). During the training process, 

similar input vectors were close to each other, and dissimilar ones were further apart. This 

implies that similar input vectors between gauged and ungauged sub-catchments will be 

mapped to the same clusters. Then the most similar gauged to ungauged sub-catchment will 

be found based on the relative distance as shown in Figure 3.2b. Additionally, the maximum 

number of clusters identified in each catchment is beneficial, as the more clusters identified, 

the larger the number of donor catchments. The complete process for training the SOM can 

be found in Box A2. Detailed information on the SOM algorithm is documented in Kohonen 

(1990, 1982), and the applications of the SOM in hydrological studies can also be found in 
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previous research (Farsadnia et al., 2014; Ley et al., 2011; Nourani et al., 2013; Tegegne 

and Kim, 2018; Wallner et al., 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. a) Schematic diagram of the self-organizing map. b) Unified distance matrix 

(U-matrix). In b), the number shown on the map denotes clusters. Colors denote the 

relative distance between the grids numbered on each axis. 

 

a) 

b) 
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3.2.4. Study area 

 

The TSL basin, and the basins of the Sekong, Sesan and Srepok rivers, collectively 

known as the 3S Rivers, located in the LMRB, were selected to test the applicability of the 

SRS approach proposed in this study (Figure 3.3). The tropical monsoon-driven climate 

dominates the hydro-climatic conditions in these basins and is characterized by a rainy 

season (May–October) and a dry season (November–April) (B. Shrestha et al., 2017; World 

Bank, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Location map of the TSL River and 3S River Basins showing the water-level 

and sediment monitoring stations. The gauging stations of Sen, Chinit, Sekong and Srepok 

catchments are for both water-level and sediment monitoring, and they are termed “gauged 

catchments” while others are only for water-level measurement. The inset shows the 

location of the TSL and 3S River Basins in the Lower Mekong River Basin and Indochina 

Peninsular. 



 

56 
 

The general information on the TSL Basin can be found in Chapter 2. The location map 

and drainage catchment characteristics of each tributary are presented in Figure 3.3 and 

Table 3.1, respectively. 

 

Table 3.1. The total drainage area, gauged area, and land-use of each catchment of the TSL 

and 3S basins 

No River Name Area (km2) 
Delineated area* 

(km2 / %) 

Forest land 

 (%) 

Agricultural 

land (%) 

Urban land and 

others (%) 

1 Baribo 7,153.78 875.33 / 12.24 25.01 74.61 0.39 

2 Chikreng 2,713.90 1,719.12 / 63.35 78.38 21.62 0.00 

3 Chinit 8,236.86 4,055.91 / 49.24 62.70 37.26 0.04 

4 Dauntri 3,695.97 519.13 / 14.05 43.42 56.58 0.00 

5 Mongkol Borey 14,966.42 3,964.94 / 26.49 14.67 85.14 0.19 

6 Pursat 5,964.77 4,118.59 / 69.05 76.15 23.76 0.09 

7 Sangker 6,052.78 2,596.69 / 42.90 53.76 46.09 0.14 

8 Sen 16,359.58 14,129.33 / 86.37 85.37 14.61 0.02 

9 Siem Reap 3,618.98 609.75 / 16.85 26.28 73.57 0.15 

10 Sreng 9,986.27 6,691.42 / 67.01 61.68 38.32 0.00 

11 Staung 4,357.39 1,878.31 / 43.11 75.03 24.97 0.00 

  Total land area 83,106.70 4,1158.52 / 49.52 54.77 45.14 0.09 

  Tonle Sap lake 2,743.80 - - - - 

12 Sekong 28,689.95 25,393.92 / 88.51 85.4 9.5 5.1 

13 Srepok 31,179.93 27,361.41 / 87.75 83.3 9.9 6.8 

 

The 3S River basins are transboundary rivers that flow through three countries, with 

a total catchment area of 78,650 km2, of which 33% is in Cambodia, 29% is in the Lao PDR, 

and 38% is in Vietnam (see Figure 3.3) (López et al., 2017; B. Shrestha et al., 2017; Trang 

et al., 2017). The Sesan and Srepok rivers flow through Cambodia, joining the Sekong river 

and finally meet with the Mekong River at Stung Treng province in Cambodia (Figure 3.3). 

The elevation of the 3S basins ranges from less than 100 masl downstream to over 2000 

masl in the upstream areas of the Sekong basin. The basin area and land use distribution of 

the Sekong and Srepok river basins are presented in Table 3.1, in which the areas are 

dominated by forest cover (> 80%) (Constable, 2015; Trang et al., 2017). Acrisols (68%) 

and Ferralsols (12%) with sandy clay loam and clay texture are the dominant soils in the 3S 

basins (M. Shrestha et al., 2017). The annual discharge from the 3S basins represents 

approximately 17–20% of the total annual streamflow of the Mekong River (an average of 

2,886 m3/s) (Piman et al., 2013). The 3S basins are also a primary source of sediment in the 

LMRB, and the annual sediment load from the 3S basins is estimated at 10–25 Mt (Million 

tons) (Kondolf et al., 2014). 
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3.2.5. Hydrological model 

 

The SWAT model was used in this analysis. It is a semi-distributed model, a widely used 

hydrological model to simulate streamflow, sediments, and other hydrological variables 

under diverse environments and different scales (Arnold et al., 1998). The prediction of the 

sediment in the SWAT model is based on a modified universal soil loss equation (MUSLE) 

(Williams, 1975), developed initially by Wischmeier and Smith (1965), where rainfall and 

runoff are the main drivers of soil loss. The surface runoff from each HRU is simulated 

based on the SCS curve number method (USDA, 1972), with daily rainfall defined at the 

centroid of the sub-catchment, where the default SWAT daily rainfall (using observed 

rainfall at a gauging station located closest to the centroid of each sub-catchment) was not 

used (Arnold et al., 1998). More details about the SWAT can be found in Chapter 2 and 

official theoretical documentation (Neitsch et al., 2011) and the review paper by Gassman 

et al. (2007). 

 

3.2.6. Data collection and pre-processing 

 

Each dataset used for the SWAT model setup is summarized in Table 3.2. The Mekong 

River Commission-Water Quality Monitoring Network (MRC-WQMN) dataset has been 

widely used in sediment load simulation studies in the Mekong River basin (Kummu et al., 

2008; Kummu and Varis, 2007; Sok et al., 2020; Wang et al., 2011). The total suspended 

solids (TSS) samples were taken from this dataset, collected at 0.30 m below the water 

surface in the center of the river cross-section, at each monitoring station (Sok et al., 2020), 

and were analyzed using the recommended analytical methods (MRC, 2019). There are 

limited water-level and sediment monitoring stations in the study basins. The monthly 

observed sediment data at four gauging stations (Chinit and Sen catchments in the TSL basin 

and Sekong and Srepok catchments in the 3S basin, see Figure 3.3) were used to calibrate 

and validate SWAT model parameters. Suspended sediment loads were estimated from the 

time series data of daily observed streamflow and monthly TSS concentrations, which were 

monitored at the same location, using the regression model built into the LOAD ESTimator 

(LOADEST) program (Runkel et al., 2004). The applicability of the LOADEST was verified 

through many studies in estimating daily pollutant loads for various water quality parameters, 

including sediment (Duan et al., 2013; Jha and Jha, 2013; Jha et al., 2007; Park and Engel, 

2016, 2015, among others) and calibrating SWAT model parameters (Cakir et al., 2020; 
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Epelde et al., 2015; Nepal and Parajuli, 2022; Sok et al., 2020; Teshager et al., 2016). 

Detailed information on topography, land-use, soil type and water level data can be found 

in Chapter 2. The study in Chapter 2 evaluated seven gridded meteorological datasets and 

found that precipitation from Integrated Multi-satellitE Retrievals for Global Precipitation 

Measurement (GPM) (IMERG) and air temperature data of Southeast Asia-Observational 

(SA-OBS) are the optimal meteorological data for comprehensive basin-wide hydrological 

impact assessments in the TSL basin. Previous studies also revealed that the models using 

IMERG precipitation data simulated streamflow well in the LMRB and the 3S basins (Li et 

al., 2018; Mohammed et al., 2018; Wang et al., 2017). Therefore, the precipitation and air 

temperature values of IMERG and SA-OBS, respectively, were interpolated using the values 

at the four grids nearest to the centroid of each sub-catchment for use in the SWAT model. 

For the Sekong and Srepok catchments, water-level data, which were provided by the MRC 

(Table 3.2), from a monitoring station of each catchment (see Figure 3.3) were used as the 

observed data for flow model calibration (2005–2008) and validation (2009–2011). The 

results of the flow simulation model achieved good performance in the Sekong catchment, 

while good and satisfactory performance of model calibration and validation, respectively, 

were obtained in the Srepok catchment (Figure A11, Tables A3 and A8). 

 

Table 3.2. Summary of required data used for SWAT model setup and calibration 

Data type Time 

period 

Temporal 

resolution 

Spatial 

Resolution 

Sources 

Topography 

(Digital 

Elevation 

Model [DEM]) 

- - 90 m http://srtm.csi.cgiar.org  

Land cover map 2002 - 250 m 
Mekong River Commission 

(MRC) 

Soil types map 2002 - 250 m MRC 

Total rainfall, 

Maximum and 

minimum air 

temperatures 

2001–2011 Daily - 

Integrated Multi-satellitE 

Retrievals for Global 

Precipitation Measurement 

(GPM) (IMERG) and 

Southeast Asia-

Observational (SA-OBS)  

Water level 1995–2011 Daily - 

MRC and Department of 

Hydrology and River Works 

(Cambodia)  

Total suspended 

solids (TSS) 

concentration  

2005–2008 Monthly - MRC 

 

http://srtm.csi.cgiar.org/
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3.2.7. Model calibration, validation and evaluation 

 

The calibration of model parameters for streamflow and sediment load was performed 

using the SWAT-calibration and uncertainty Programs (SWAT-CUP) (Abbaspour, 2015). 

Among several methods for calibration in SWAT-CUP to deal with parameter uncertainty, 

the Sequential Uncertainty Fitting version 2 (SUFI-2) method was selected (Nkonge et al., 

2014; Wu and Chen, 2015) to provide more reasonable daily streamflow and sediment 

simulations at the outlet of each gauged drainage area (Table 3.1 and Figure 3.3). The 

streamflow in each catchment was calibrated before calibrating the sediment load 

(Abbaspour, 2015). Then, parameters for sediment load were calibrated while maintaining 

the flow-parameter ranges which were obtained through the flow calibration. Owing to the 

availability and consistency of continuous sediment load data in each catchment, the model 

parameters were calibrated with available data between 2005 and 2008. Based on previous 

studies (Ang et al., 2022; Ang and Oeurng, 2018; Oeurng et al., 2019; Roth et al., 2016; Sao 

et al., 2020; Sok et al., 2020; Vilaysane et al., 2015; Vu et al., 2012), 26 sensitive parameters 

were selected and calibrated for streamflow and sediment load simulation using the SWAT-

CUP model (Tables A9-A12). 

 

To validate the regionalization approach proposed in this study, the leave-one-out cross-

validation approach, also known as the Jack-knife method (introduced by Quenouille (1956) 

and Tukey (1958)), is typically used to validate the regionalization approach (Athira et al., 

2016; Gitau and Chaubey, 2010; Heng and Suetsugi, 2014; Parajka et al., 2005; Razavi and 

Coulibaly, 2013; Samuel et al., 2011; Tegegne and Kim, 2018). In this procedure, one of the 

gauged catchments is assumed as a pseudo-ungauged catchment, while the remaining 

catchments are regarded as the candidate donors. For example, when validation was 

conducted for the Chinit catchment (see Figure 3.3 for the location of the Chinit catchment), 

the remaining three catchments (i.e., Sen, Sekong, and Srepok) functioned as its candidate 

donors (see Figure 3.5). Subsequently, the PS and SRS methods were applied to select the 

best donor sub-catchments from the same cluster, with the smallest relative distance (see 

Figure 3.2b). Finally, using the calibrated model parameters transferred from the best donor 

sub-catchments, the time-series of sediment load in the Chinit catchment was estimated and 

compared with the observed data for the cross-validation phase. 
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For evaluating model performance in estimating the time series of sediment load, three 

quantitative metrics were employed. These were the Nash-Sutcliffe efficiency (NSE), 

percent bias (PBIAS), and coefficient of determination (R2), as shown in Table A1 (Moriasi 

et al., 2007). The NSE indicates agreement between the simulated and the observed time 

series values (Nash and Sutcliffe, 1970). The PBIAS measures the average tendency of the 

simulated values to be larger or smaller than their observed counterparts (Gupta et al., 1999). 

The R2 estimates the linear relationship between two variables, by assessing the extent of 

difference between one variable by another. Furthermore, the performance ratings suggested 

by Moriasi et al. (2007) were applied to evaluate the integrated performance of simulated 

results (Table A3). 

 

3.3. Results and discussion  

3.3.1. Interpretation of sub-catchment descriptors and clusters for each 

regionalization method 

 

Based on the elevation data, the Chinit, Sen, Sekong, and Srepok catchments were 

delineated into 14, 29, 23 and 29 sub-catchments, respectively. The total of 95 sub-

catchments is shown in Figure 3.4, which displays the spatial variation of the area-weighted 

values of the catchment descriptors in the four test catchments. These were subsequently 

used to create the SOM for generating sub-catchment clusters for each regionalization 

method. The area-weighted values of CUSLE in the Chinit, Sen, and Sekong catchments are 

similar, more so than that of the Srepok catchment, while similar KUSLE values were 

observed in the Chinit, Sen, and Srepok catchments (Figures 3.4a-h). The Chinit and Sen 

catchments are neighboring tributaries in the TSL basin; therefore, the slopes were more 

similar to each other (compared with Sekong and Srepok catchments) (Figures 3.4i-l). 

Specifically, slight slopes (10–20%) were observed in most sub-catchments of the Chinit 

and Sen catchments. However, steep slopes were observed in the upstream Sekong 

catchment (> 20%), in contrast to the low slope in a large area of the Srepok catchment 

(Figures 3.4i-l).  
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Figure 3.4. (A) Area-weighted values of CUSLE (a-d), KUSLE (e-h) and slope percentage (i-

l) for the physical similarity regionalization method. (B) Coefficient of variation of rainfall 

(m-p), coefficient of variation of sediment load (q-t) and correlation coefficient between 

rainfall and sediment load (u-x) for the sediment-response similarity regionalization 

method. 
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Figure 3.4. Cont. 
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Figure 3.5. a) Physical similarity sub-catchment clusters, b) Physical similarity donor and 

receiver sub-catchments for Chinit catchment as a pseudo ungauged catchment, c) 

Sediment-response similarity sub-catchment clusters, and d) Sediment-response similarity 

donor and receiver sub-catchments for Chinit catchment as a pseudo ungauged catchment. 

                          c)                           d) 

                          a)                               b) 
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In the Chinit catchment, a relatively low variation of rainfall (CV = 0.6–0.7) was 

observed, which covers most of the catchment area (Figure 3.4m). The CV of rainfall is 

similar for the Sen, Sekong and Srepok catchments, at 0.6–0.9, except for the downstream 

areas of the Sekong and Srepok catchments, where the CV ≥ 0.9 (Figures 3.4n-p). The CV 

values of sediment were higher than that of rainfall, indicating a higher temporal variation 

in sediment than rainfall in each sub-catchment (Figures 3.4q-t). The relatively homogenous 

CV values of sediment were observed in most sub-catchments of the Chinit and Sen 

catchments (Figures 3.4q-r), whereas uneven CV values were observed in the Sekong and 

Srepok catchments, indicating the different sedimentation processes caused by slope in these 

two catchments (Figures 3.4s-t). A high correlation (R = 0.6–0.8) between rainfall and 

sediment was observed in most of all sub-catchments, demonstrating a high linear 

relationship between rainfall and sediment response (Figures 3.4u-x). 

 

The sub-catchments were classified into the same four clusters for each regionalization 

method. Additionally, several sub-catchments within a catchment (e.g., Sen catchment) were 

grouped into a single cluster, through the PS approach (Figure 3.5a). However, the SRS 

approach provided more clusters in one catchment (Figure 3.5b). This may add to the 

improvement of estimating sediment load in ungauged catchments (Section 3.3.2). The 

donor sub-catchments, identified by the PS regionalization approach, were dominated by the 

sub-catchments of the Sen catchment (10 out of 14 sub-catchments) when the Chinit was 

considered the pseudo ungauged catchment, indicating that these two catchments have 

similar physical characteristics (Figures 3.5a-b). The donor and receiver sub-catchments, 

when the other catchments (i.e., Sen, Sekong and Srepok) were considered as the pseudo-

ungauged catchment, are shown in Figures A12-14.    

 

3.3.2. Evaluation of the performance of regionalization methods 

 

The performance of the SRS and PS approaches were compared based on three statistical 

indicators (NSE, PBIAS, and R2) for sediment load simulation, at each monitoring station 

in the Chinit, Sen, Sekong, and Srepok catchments with the leave-one-out cross-validation 

approach. The daily observed and simulated sediment load of all catchments for the model 

calibration and cross-validation phases from 2005 to 2008 are shown in Figure 3.6. Most 

results for the three model simulation schemes reproduced the seasonal patterns well for 

both seasons. However, there were some underestimations, specifically for extreme peak 
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flow periods (Figure 3.6). Statistical indices summarized for the calibration model on site 

(Table 3.3) demonstrate a very good performance of daily sediment load simulations, with 

NSE and R2 values of > 0.75, and PBIAS values within ±10% in the three catchments (i.e., 

Chinit, Sen, and Sekong). Satisfactory performance was found for the Srepok catchment 

(NSE and R2 of 0.61), suggesting that the model parameters in each catchment were 

calibrated well. In the cross-validation phase, on average, the performance of the SRS 

approach (NSE and R2 of 0.75 and 0.76, respectively) was slightly better than the PS 

approach (NSE and R2 of 0.72 and 0.74, respectively) and close to the results of the at-site 

calibrated models (NSE and R2 of 0.77) (Table 3.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Comparison of daily sediment loads at the gauging station of each 

catchment showing observed (i.e., LOADEST-based), calibrated, PS-derived, and SRS-

derived sediment loads. 
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Table 3.3. Results of statistical indices during the model calibration and cross-validation 

for the sediment load at the gauging station of each catchment. 

At-site Calibration 

River R2 NSE PBIAS (%) 

Chinit 0.80 0.78 8.30 

Sen 0.86 0.86 -1.15 

Sekong 0.82 0.82 -7.81 

Srepok 0.61 0.61 -3.90 

Average 0.77 0.77 -1.14 

Cross-validation [Physical Similarity (PS)] 

River R2 NSE PBIAS (%) 

Chinit 0.78 0.76 16.70 

Sen 0.81 0.81 10.53 

Sekong 0.74 0.74 -13.56 

Srepok 0.61 0.59 -8.70 

Average 0.74 0.72 1.24 

Cross-validation [Sediment-Response Similarity (SRS)] 

River R2 NSE PBIAS (%) 

Chinit 0.79 0.77 10.00 

Sen 0.84 0.84 7.58 

Sekong 0.82 0.79 -9.76 

Srepok 0.61 0.60 -5.00 

Average 0.76 0.75 0.70 

 

Figure 3.7 compares the monthly sediment load simulated by each method (i.e., 

calibration on site, PS and SRS) and the observations for each catchment. The high values 

of the coefficient of determination (R2 > 0.70) indicate that simulated sediments of the 

calibration and cross-validation approaches have a strong linear relationship with the 

observed monthly data. As seen in the scatter plots, the SRS method outperformed the PS 

method in three catchments (Chinit, Sen, and Sekong). 

 

Additionally, the same correlation coefficients were obtained for the Srepok catchment, 

demonstrating more reliable sediment load estimation by the SRS regionalization method. 

Figure 3.8 shows the observed and simulated mean monthly sediment load for each 

catchment (2005–2008). The simulated sediment load obtained from the three methods 

showed a seasonal pattern similar to the observed results. It was found that the PS-based 

sediment loads in the Sekong catchment showed marked overestimation during October and 

December, while results from the SRS and calibrated models were close to the observed 

results (Figure 3.8).  
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Figure 3.7. Scatter plots of monthly observed sediment load with calibrated (circles), PS-

derived (squares) and SRS-derived (triangles) sediment loads at the gauging station of 

each catchment. The red dash lines are 1:1 line, and the blue solid lines denote linear 

regressions.  
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Figure 3.8. Observed and simulated the mean monthly sediment load at the gauging 

station of each catchment. Simulated results are based on the calibration, PS and SRS 

methods. The shaded area denotes the maximum and minimum standard errors of upper 

and lower bounds from the above-mentioned four simulation schemes. 

 

The comparison of observed and simulated annual sediment load from each catchment 

indicated that the SRS cross-validation and at-site calibration showed similar and better 

overall performances in sediment simulations, whereas the estimated errors of total sediment 

load based on the PS method cross-validation were up to ± 16% (Figures 3.9 and A15). The 

SRS approach proved to be superior for sediment prediction in the ungauged catchments, 

with an improvement of up to 7%, compared with the PS method (Figure A15). The 

reliability of the seasonal variation of sediment simulated by the PS models was relatively 

lower (as shown in Figures 3.6 and 3.8), and could result in an overestimation in the total 

annual sediment load simulation. 

 

More importantly, the student t-tests were carried out further to check the statistically 

significant improvement of model performance. Two groups of paired samples were tested 

by hypothesis student t-test. There are pairs of NSE and R2 at four gauging sites from the PS 

and SRS regionalization methods (Table 3.4). The null hypothesis assumes that the SRS 

method does not significantly improve the model performance, while the alternative 

hypothesis means that the model performance is significantly improved. It can be inferred 
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that the improvement of NSE achieved through sediment-response similarity is relatively 

more distinguished, while the enhancement of R2 is relatively less significant. The p-values 

were 0.03 (< 0.05) for NSE and 0.09 (< 0.10) for R2, demonstrating that the null hypothesis 

should be rejected at 95% and 90% confidence intervals, respectively (Table 3.4). According 

to the results of student t-tests, a statistically significant improvement in model performance 

was found when considering sediment-response similarity (i.e., sediment response and 

rainfall characteristics) as the catchment attribute for the regionalization method, 

consequently enhancing sediment simulation at ungauged river basins.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Comparison of annual calibrated, PS- and SRS-derived sediment loads at the 

gauging station of each catchment. The annual sediment load for each catchment 

represents the sediment load from the gauged area of each corresponding catchment. 

 

Table 3.4. Significance test (student-t) for improvement in NSE and R2 

Indices n T p α 

NSE 4 2.66 0.03 0.05 

R2 4 1.76 0.09 0.10 

Note: “n” is the sample size, “T” is the t-statistic score, “p” is the probability, and “α” 

is the significant degree 
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Subsequent to updating the model parameters in the second phase of the SRS procedure, 

the sub-catchments were clustered again (as shown in Figure 3.5c) using the simulated 

sediment load. Therefore, the sub-catchment clusters were derived from the AM transferred 

parameters in the first phase, and then derived from the updated parameters in the second 

phase, which could be compared and checked (Fig. A16). There were a few sub-catchments 

that were assigned with different cluster numbers between Figures 3.3a and 3.3b. This 

indicated that the AM method was reliable in tentatively transferring parameters. 

 

The proposed SRS regionalization method effectively addressed the main challenge of 

selecting ideal catchment attributes in conventional approaches. The conventional 

regionalization methods found it difficult to select the catchment’s key attributes that ideally 

identified hydrological and sediment similarities. Thus, relatively higher uncertainty was 

found in the hydrological prediction at the ungauged catchments for the PS method. 

However, the SRS method considered the spatiotemporal variations of rainfall and sediment 

response through the CV and R indices, as the catchment attributes that could relatively 

better determine the hydrological and sediment similarities between gauged and ungauged 

catchments. The SRS approach generated more sub-catchment clusters in a single catchment 

than the conventional method (as shown in Figures 3.5 and A12-14), providing a diversity 

of regionalized model parameters and a better representation of hydrological and 

environmental conditions in the ungauged catchment. Eventually, the new regionalization 

SRS approach could reduce the uncertainty of sediment estimation in ungauged catchments, 

compared with the conventional method (as shown in Figures 3.6-3.9, A12, and Tables 3.3-

3.4). Additionally, it showed the potential for catchment-wide sediment load simulations in 

the ungauged catchments (Section 3.3.3). 

 

3.3.3. The application of the proposed regionalization method in ungauged 

catchments of the TSL basin  

 

The newly proposed regionalization method, i.e., sediment-response similarity, needed 

to be validated before being applied in the actual ungauged catchments. Through the 

comprehensive analyses shown in Sections 3.3.1–3.3.2, the SRS method was successfully 

validated and outperformed the conventional method. Therefore, the SRS approach was 

selected to simulate the sediment load at the stations of the nine ungauged catchments of the 

TSL basin (see Figure 3.3) during the past decades (i.e., 2001–2011). In Chapter 2, we 
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successfully calibrated and validated the SWAT model parameters in flow simulations at the 

hydrological monitoring stations of each catchment. Therefore, those flow-calibrated 

parameters (see Tables A9) and the regionalized-sediment parameters from the best donor 

catchments (i.e., Chinit, Sen, Sekong and Srepok catchments, see Figure A17 and Tables 

A10-A13) were inputted into the SWAT model. Subsequently, the sediment load in each 

ungauged catchment was simulated from 2001 to 2011. Eleven catchments drain into the 

lake (Figure 3.3). The total area of the TSL basin, disregarding the floodplain, is 83,107 km2, 

and the flows of 41,159 km2 (~50%) are gauged (Table 3.1). For computational purposes, 

the tributary basins can be divided into gauged, ungauged, and flooded areas (Kummu et al., 

2008) (see Fig. A18 and Table A14). 

 

Figure 3.10 illustrates the mean simulated annual sediment load values from the total 

drainage area (2001–2011), from the SRS approach and SWAT modeling, excluding the 

flooded regions in each catchment. The simulated mean annual total sediment load from all 

catchments was approximately 2.30 Mt/year from 2001–2011 (dashed line in Figure 3.10). 

Kummu et al. (2008) used hydrodynamic modeling to estimate the mean annual total 

sediment load for the same 11 catchments of the TSL basin during the period 2001–2003, 

and found that the annual total load was approximately 1.77 Mt/year. The current study 

result for the corresponding period (2001–2003) was 1.81 Mt/year, which is similar to that 

of the previous study. The annual variation of sediment load flux into the lake was significant. 

For example, it varied from 1.45 Mt in 2003 to > 3.00 Mt in 2006, as presented in Figure 

3.10. 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Annual total sediment load into Tonle Sap lake. The total load is the 

summation of load from 11 catchments. The years shown are hydrological years (from 

May 1, of the year indicated to April 30, of the following year, for the period 2001–2011). 
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Figure 3.11. Seasonal variation of total sediment load into Tonle Sap lake between 2001–

2011. The total load was calculated as per the description in Figure 3.10. 

 

The long-term mean monthly variations in total sediment load from all catchments 

flowing into the lake from 2001 to 2011 are presented in Figure 3.11. Results showed that 

the sediment transport was dominant in the high-rainfall period (September–October), and 

the highest sediment load (and discharge) occurred in October, exceeding 0.80 Mt, and 

dropped to 0.01–0.25 Mt during the dry season, or receding flood period (November–April). 

The total annual sediment loads from Sen, Sangker, and Baribo catchments contributed 

approximately 65% (~ 1.55 Mt) of the total sediment into the lake from all catchments, while 

the smallest contribution (~ 0.20 Mt) was from the Dauntri and Sreng catchments (Figure 

A19). Additionally, the average total sediment yield from all catchments was approximately 

29 t/km2/year, between 2001 and 2011 (Figure A20). 

 

The total annual sediment yields from the Sen, Sangker, and Baribo catchments were 

higher than other catchments (> 50 t/km2/year). The annual sediment yield of the Sekong 

catchment was the highest (> 200 t/km2/year). The Srepok catchment produced a sediment 

yield of approximately 70 t/km2/year, which was comparable with that of some catchments 

of the TSL basin, including the Baribo, Sangker, and Sen catchments, which had a sediment 

yield of 55–98 t/km2/year between 2005 and 2011 (Figure A21).  
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3.4. Conclusion  

 

In this study, a novel SRS regionalization method has been proposed, using the SWAT 

model and SOM clustering technique to overcome the limitation of the critical attributes of 

a catchment favoring sediment similarity, which usually exists in the conventional 

regionalization approaches. Additionally, the SRS minimizes uncertainty when simulating 

sediment load in ungauged catchments. The performance of the SRS model was evaluated 

by comparing it with the conventional regionalization methods, and the results of model 

calibration in four catchments of the TSL and 3S basins. The results indicated the 

comprehensive performance of the SRS regionalization method for estimating sediment load 

in the ungauged catchments. It considered the spatiotemporal variations of sediment 

response and its relationship with rainfall characteristics as a catchment attribute and showed 

the potential to ideally determine hydrological and sediment similarities between gauged 

and ungauged catchments. The SRS approach obtained an estimation error reduction of up 

to 7%, compared with the PS regionalization method. Compared to the conventional 

approach, there was an improvement in statistical metrics (NSE and R2 = 0.75 and 0.76, 

respectively) for the SRS method, which was close to the calibration model results (NSE 

and R2 = 0.77) thereby outperforming the conventional approach. The SRS method was also 

selected to estimate sediment load in the ungauged tributaries of the TSL basin. Results 

showed that the annual total sediment flux into the lake from its tributaries is approximately 

2.3 Mt/year, with the highest sediment load occurring in October, exceeding 0.8 Mt. 

 

The proposed SRS regionalization method effectively addressed the main challenge in 

conventional approaches, which is the selection of ideal catchment attributes that favor 

hydrologic similarity between gauged and ungauged catchments. Thus, the SRS 

regionalization method proposed in this study is a global alternative method for estimating 

sediment, as well as other hydrological variables and rainfall-driven phenomena such as 

streamflow and nutrient transport, in ungauged catchments. However, in this study, the 

applicability of the SRS regionalization method is tested on a limited number of catchments 

and gauged datasets. Therefore, it is recommended to incorporate more gauged catchments, 

especially those with a larger scale and more sufficient in-situ data, to widely extend the 

method's applicability and minimize the associated uncertainty. 
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Chapter 4 Decadal climatic variability, land-use change and hydro-environmental 

impact assessment 

 

This chapter brings altogether the two methodologies or frameworks developed in 

Chapters 2 and 3 for the application to hydro-environmental impact assessment, owing to 

climate variation and land-use change during the last few decades. The final output of this 

section is the target of Objective 3. 

 

4.1. Introduction 

 

Human population growth, anthropogenic activities, and land use and land cover 

changes, exacerbated by climate variation, have led to the freshwater lakes and river basins 

being identified as some of the most severely endangered ecosystems (Rosenzweig et al., 

2007). As the result, freshwater resources in many regions of the world have deteriorated in 

terms of quality and quantity due to the above-mentioned environmental-related stressors 

(Bastia and Equeenuddin, 2016; Phi Hoang et al., 2016). Among them, climate and land-use 

change have been identified as two important drivers affecting water resources at both 

regional and global scales (Khoi et al., 2022; Shrestha et al., 2018). Climate variability can 

significantly impact the spatiotemporal characteristics of precipitation and temperatures and 

as a result, cause changes in hydrological processes and river flow regimes (Oeurng et al., 

2019; Zhao et al., 2022). The changes in hydrological processes then lead to changes in the 

transport of sediment and nutrient yields (Shrestha et al., 2018). Moreover, changes in land-

use types can affect the hydrological components, including evapotranspiration, infiltration, 

base flow, and surface runoff, as well as soil erosion and degradation (Khoi et al., 2022; Li 

et al., 2009; Shrestha et al., 2018; Wan et al., 2014). 

 

Numerous studies have examined the impacts of climate variability and land-use change 

on hydrology and water quality in many different river basins. For instance, Shrestha et al. 

(2018) found a maximum of 24 and 15.25% decrease in streamflow and nitrate nitrogen, 

respectively under climate change in Songkhram River, Thailand. Whereas land-use change 

projection is found to be responsible for a maximum 6.35% increase in streamflow and an 

11.60% decrease in nitrate nitrogen loading in the same river basin. Climate variability was 

found to cause an increase of 1.00% in streamflow, and 2.91% in sediment loading, while 

the effect of land-use change increased by 0.01%, and 3.70% in streamflow and sediment 
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load, respectively in Sekong, Sesan and Srepok (3S) rivers (Khoi et al., 2022). Fu et al. 

(2019) reported that the streamflow changed by −39.1% due to climate change and 2.2% 

due to land-use change in the Woken River, China. Furthermore, climate change caused an 

increase in the annual streamflow of the Johor River in Malaysia by 2.9%, while land-use 

change only contributed to an increase of 0.1% (Tan et al., 2015). 

 

The TSL Basin in Cambodia is the largest freshwater body in Southeast Asia and one 

of the most productive ecosystems in the world (Uk et al., 2018), playing a crucial role in 

livelihood and sustainable development in Cambodia and the Lower Mekong region 

(Shivakoti and Bao, 2020). Despite its significant value, the lake ecosystem is widely under 

threat from climate change together with anthropogenic activities inside and outside the TSL 

basin (Oeurng et al., 2019; Shivakoti and Bao, 2020; Siev et al., 2018; Uk et al., 2018). 

According to the impact assessments, TSL and its floodplain are vulnerable to hydrological 

changes, attributed mainly to the development of water infrastructure (Arias et al., 2014; 

Johnstone et al., 2013; Masumoto et al., 2008; Morovati et al., 2023), climate change 

(Frappart et al., 2018; Johnstone et al., 2013; Morovati et al., 2023; Oeurng et al., 2019; Phi 

Hoang et al., 2016), water quality degradation (Chea et al., 2016; Soum et al., 2021) and 

land use/ land cover change (Chen et al., 2022; Niu et al., 2022; Senevirathne et al., 2010). 

 

Previous research works paid more attention to the Mekong mainstream and 

anthropogenic activities along the Mekong River, whereas limited information is available 

regarding hydro-environmental impacts from the tributary basins of the TSL (Ang and 

Oeurng, 2018; Kummu et al., 2014). A better and more appropriate assessment of the climate 

variability and land-use change impacts within the TSL Basin will facilitate better 

management and environmental conservation of the TSL Basin. The overall objective of this 

study is to quantify the impacts of climate variability and land-use change on the streamflow 

and sediment load of the TSL Basin during the past decades, using hydrological modeling 

approaches. First, the spatiotemporal variation of decadal climatic was analyzed from 2001 

to 2020. Furthermore, the contribution of climate variation to streamflow and sediment 

change was investigated by using the SWAT model to simulate streamflow and sediment 

during this period. Finally, four different land-use change scenarios were analyzed and input 

into the hydrological modeling for streamflow and sediment load impact assessment. The 

findings of this study can support policymakers and planners in proposing suitable 
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management practices to cope with the impact of climate and land-use changes on water 

quantity and quality in the TSL Basin. 

 

4.2. Materials and methods 

4.2.1. Study area 

 

The study was conducted in the TSL Basin. The general information on the TSL Basin 

can be found in Chapter 2. The location map showing eleven tributaries of the TSL Basin 

is presented in Figure 4.1.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Location map of the TSL Basin. The green circle denotes the station 

monitoring the water level in the lake area. The inset indicates the location of the TSL 

Basin in the Indochina Peninsular.  
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4.2.2. Hydrological model 

 

The SWAT model was used in this analysis. It is a semi-distributed model, a widely used 

hydrological model to simulate streamflow, sediments, and other hydrological variables 

under diverse environments and different scales (Arnold et al., 1998). More details about 

the SWAT can be found in Chapter 2 and official theoretical documentation (Neitsch et al., 

2011) and the review paper by Gassman et al. (2007). 

 

To study the impact of climate and land-use changes on sediment load, the 

regionalization method (i.e., sediment-response similarity) proposed in Chapter 3 was used 

to transfer optimized parameters (i.e., regionalized parameters of model optimization using 

the 2002 land-use map) from gauged to ungauged tributary basins for sediment load 

simulation. Climate variability impacts were analyzed by keeping the land-use constant (i.e., 

2002 land-use condition), while the impacts of land-use change were estimated by driving 

the regionalized SWAT model with 1995, 2010 and 2018 land-use datasets. As shown in 

Chapter 3, the SRS approach provided a diversity of regionalized model parameters and a 

better representation of hydrological and environmental conditions in the ungauged 

catchment. As the result, the accuracy in parameter regionalization of the SRS method was 

better than that of the conventional method; therefore, a more reliable assessment of climate 

and land-use change impact on sediment load in ungauged tributary basins could be 

estimated by using the SRS regionalization approach.      

 

4.2.3. Data collection and pre-processing 

 

Each dataset used for the SWAT model setup is summarized in Table 4.1. Four 

different land-use periods: 1995, 2002, 2010, and 2018 land cover maps, together with the 

meteorological data from 2001 to 2020 were used to analyze spatiotemporal changes in 

climate and land use and input into the SWAT model to simulate their impacts on streamflow 

and sediment loading in the TSL Basin. The study in Chapter 2 found that precipitation from 

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) 

(IMERG) and air temperature data of Southeast Asia-Observational (SA-OBS) and Climate 

Prediction Center (CPC) are the optimal meteorological data for comprehensive basin-wide 

hydrological impact assessments in the TSL basin. Although the SA-OBS temperature is the 
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most outstanding dataset, for three years (2018-2020), the CPC-based temperature was used 

since the data availability of SA-OBS is only up to 2017. Since the land-use map used in 

this study is different from that used in Chapter 2, model optimization needs to be performed 

again using land-use conditions in 2002 before impact assessment. Water-level data, which 

were provided by the MRC (Table 4.1), from a monitoring station of each catchment (see 

Figure 3.3) were used as the observed data for flow model calibration (2001–207) and 

validation (2008–2011). The results of the flow calibration and validation show that on 

average, the model achieved satisfactory performance (Tables A3 and A15). 

 

After calibration and validation of the SWAT model using the 2002 land cover map, 

the impacts of the three land-use change scenarios on the streamflow and sediment load were 

simulated by driving the calibrated SWAT model with 1995, 2010 and 2018 land-use 

datasets. The SWAT model was not optimized or calibrated for different land-use conditions 

for the land-use change impact assessment. If the model were optimized (i.e., the model is 

calibrated to minimize the error and get similar values to the observation) for different land-

use data, the results from model optimization would not reflect the impact of land-use 

change since the simulation values were optimized to be similar with the observed values.  

 

Table 4.1. Summary of required data used for SWAT model setup and calibration 

Data type Time period Temporal 

resolution 

Spatial 

Resolution 

Sources 

Topography 

(Digital 

Elevation Model 

[DEM]) 

- - 90 m http://srtm.csi.cgiar.org  

Land cover map 

1995, 2002, 

2010 and 

2018 

- 30 m SERVIR-Mekong 

Soil types map 2002 - 250 m Mekong River Commission 

Total rainfall, 

Maximum and 

minimum air 

temperatures 

2001–2020 Daily - 

Integrated Multi-satellitE 

Retrievals for Global 

Precipitation Measurement 

(GPM) (IMERG), Southeast 

Asia-Observational (SA-

OBS) and Climate Prediction 

Center (CPC) 

Water level 1995–2011 Daily - 

MRC and Department of 

Hydrology and River Works 

(Cambodia)  

 

http://srtm.csi.cgiar.org/


 

79 
 

On the other hand, the impact assessment in this study was conducted based on the 

assumption that how much the streamflow and sediment load in the catchment would change 

after the certain area of land cover in the corresponding catchment is changed and input into 

the SWAT model. Therefore, the SWAT model was run for each scenario using the climate 

data for the period 2001–2020, and the results under each land-use scenario were compared 

to the corresponding streamflow and sediment load values for the 1995 land-use condition 

for the land-use change impact assessment. The same approach of studying the land-use 

change impact using the SWAT model was also found in the previous studies (e.g., He et 

al., 2021; Hu et al., 2021; Larbi et al., 2020; Samal and Gedam, 2021; Shrestha et al., 2018, 

among others). 

 

4.2.4. Lake surface area and volume 

 

The approach developed by (Sakamoto et al., 2007) and simplified by Normandin et al. 

(2018) to monitor flood extent in the Mekong Basin and the TSL Basin by (Frappart et al., 

2018) was adopted in this study (processing steps are presented in Figure A22). It is based 

on the thresholding of the Enhanced Vegetation Index (EVI), the Land Surface Water Index 

(LSWI), and the Difference Value between EVI and LSWI (DVEL) to determine the status 

(non-flooded or flooded) of any pixel in an 8-day composite MODIS image of surface 

reflectance. The two indexes are defined as follows (Huete et al., 1997): 

                              2.5
6 7.5 1

NIR REVI

NIR R B

 

  

−
= 

+  −  +
                                        (4.1) 

                                          NIR SWIRLSWI

NIR WSIR

 

 

−
=

+
                                                       (4.2) 

where ρNIR is the surface reflectance value in the near-infrared (841–875 nm, band 2), ρR is 

the surface reflectance value in the red (621–670 nm, band 1), ρB the surface reflectance 

value in the blue (459–479 nm, band 3), and ρSWIR the surface reflectance in the short-wave 

infrared (1628–1652 nm, band 6). Spatio-temporal variations of the flood were determined 

in the TSL Basin from January 2001 to December 2020. 

 The lake volume is calculated based on the water level at Kompong Luong station 

(HKL). We followed the same approach reported by Kummu et al. (2014) to calculate the 

temporal lake volume (V) from 2001 to 2020. Kummu et al. (2014) used the digital 
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bathymetric model (DBM) of the lake together with HKL to develop the following 

relationships on a daily time scale which give a correlation coefficient greater than 0.99. 

                   
3 2 2( ) 0.7307 0.354 0.9127 0.99KL KLV km H H r=  −  +                    (4.3) 

 

4.3. Results and discussion 

4.3.1. Spatiotemporal climatic variability 

 

The temporal variation and trends in basin-scale mean annual temperatures (i.e., 

Tmax and Tmin) from 1990 to 2020 in the TSL basin are shown in Figure 4.2. The annual 

variation of annual Tmax was significant. For example, it varied from approximately 33.5 °C 

in 1998 to < 32.0 °C in 1999, as presented in Figure 4.2. The difference in Tmin between 

dry and rainy seasons was more obvious than that in Tmax. The increase of Tmin during the 

rainy season is higher than that in the dry season, indicating relatively warmer nights in the 

rainy season.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Temporal trends and variability of basin-scale seasonal and annual maximum 

(top) and minimum (bottom) temperatures from 1990 to 2020. The rainy and dry seasons 

are from May to October and November to April, respectively.  
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On average, maximum and minimum temperature increases have been observed, with an 

approximate increase of 0.15℃ per decade since the 1990s. For maximum temperature, it 

was observed that the increases have risen relatively higher between the 2000s and 2010s, 

increasing by around 0.35℃ (Figure 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. a) Temporal trends and variability of basin-scale MAM (March-April-

May) rainfall, SON (September-October-November) rainfall, and annual rainfall 

from 2001 to 2017. b) Comparison of long-term mean monthly rainfall between the 

2001–2009 and 2010–2017 periods. 

 

The basin-scale annual rainfall was observed to slightly decrease from 2001-2020 

(Figure 4.3). Figure 4.3a indicates that the annual rainfall over the TSL Basin varied from 

1500 to 2000 mm between 2001 to 2020. Additionally, there was a relationship between 

precipitation variability and the El Niño Southern Oscillation (ENSO) phenomenon, with 

years recording strong El Niño correlated with years of low annual precipitation–especially 

during the last decade (Kabeya et al., 2021). The most recent El Niño that significantly 
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altered Cambodia’s weather patterns was from 2014–2016, which began in late–2014 and 

lasted until mid–2016 causing higher temperatures (Figure 4.2), declined rainfall (Figure 

4.3a), and eventually drought (Sutton et al., 2019). The rainfall was likely to decrease and 

increase before (March-May) and after (September-November) the wet monsoon, 

respectively, which would increase river discharge and flooding during the wet season, 

while extended droughts are likely to occur during the dry season. The March-May and 

September-November periods are the growing and harvesting seasons, respectively, of 

farming–especially for the paddy fields in Cambodia (Bunthan et al., 2018). Therefore, 

changes in monsoon rainfall amount and timing could impact people's livelihoods and the 

national food security of the country. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Spatial distribution of long-term mean MAM and SON rainfall 

between the 2001-2010 and 2011-2020 periods. The full name of MAM and SON are as 

per the description in Figure 4.3. The areal average of the mean rainfall is included at the 

top left corner of each map. 
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The long-term mean monthly rainfall between the 2001–2010 and 2011–2020 

periods was compared and shown in Figure 4.3b. It was observed that rainfall decreased in 

some months between February and August but increased between October and January in 

2011–2020 compared to that in 2001–2010, which would alter the seasonal pattern of 

streamflow and the amplitude of flood peaks in the TSL basin (as discussed in Section 4.3.3). 

 

The spatial distribution of mean MAM and SON rainfall shows larger rainfall over 

the hilly regions in the southwest and northeast and smaller rainfall over the lower elevation 

zone extending from the northwest to the southeast, including the TSL (Figure 4.4). It was 

observed that from March to May, rainfall decreased across the TSL basin area between 

2001–2010 and 2011–2020, decreasing by approximately 160 mm (Figure 4a-b). From 

September to November, on the other hand; rainfall increased by around 50 mm (Figure 4c-

d). Since the decreased amount of rainfall before the wet monsoon was higher than the 

increased rainfall during September and November, there was a decreasing trend in annual 

rainfall between 2001 and 2020 (see Figure 4.3a).   

 

4.3.2. Land-use/Land cover change analysis 

 

The land cover maps of 1995, 2002, 2010 and 2018 were utilized to compute the area 

of all land cover classes to examine the variations which took place over time from 1995 to 

2018 (Table 4.2 and Figure 4.5). From the 1995 land cover map, there are two major land 

cover classes in the TSL Basin: 56% of forest area (i.e., flooded forest, forest, plantation 

forest, evergreen broadleaf, and mixed forest) and 35% of cropland area (Table 4.2). The 

results presented in Figure 4.5 and Table 2.4 revealed that there is a substantial decrease 

found in forest-related areas while some growth in cropland areas was found. For example, 

the flooded forest was much deforested between 1995 and 2018, and the occupied area 

decreased from approximately 6,992 to 1700 km2, or 76% of the flooded forest area was cut 

down (Table 4.2). On the other hand, the cropland area increased by about 23% from around 

30,400 to 37,324 km2 in 1995 and 2018, respectively. Table 4.2 indicates that there was a 

dramatic loss of natural forest area (i.e., flooded forest, forest, evergreen broadleaf, and 

mixed forest) between 1995 and 2002, in which around 40% cumulative loss was found. 

Additionally, there is another 5% of the cumulative loss from 2002 to 2018; thus, totally the 

cumulative loss of natural forest area is around 45% or the area decreased from 37,052 in 
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1995 to 20,408 km2 in 2018 (Table 4.2). The change in natural forest cover found in this 

study is comparable with studies by Lohani et al. (2020; Lovgren (2020). The urban and 

grassland areas increased by around 12% and 229%, respectively between 1995 and 2018. 

The spatial changes in land cover would alter the seasonal pattern of streamflow and 

sediment load in the TSL basin (as discussed in Section 4.3.4).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Land-use map of 1995, 2002, 2010 and 2018 of the TSL Basin.  
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Table 4.2. Summaries of land cover classes in the TSL Basin from 1995 to 2018 

Land Cover Typology 

1995 2002 

Area [km2] 
Area 

[%] 
Area [km2] Area [%] 

*Change 

[%] 

Surface Water 2,694.56 3.10 2,670.78 3.07 -0.88 

Flooded Forest 6,991.94 8.05 1,814.72 2.09 -74.05 

Forest 15,004.59 17.27 12,617.45 14.52 -15.91 

Plantation Forest 11,714.43 13.49 18,044.46 20.77 54.04 

Evergreen Broadleaf 11,155.79 12.84 5,893.67 6.78 -47.17 

Mixed Forest 3,900.24 4.49 1,385.30 1.59 -64.48 

Urban and Built Up 67.67 0.08 75.54 0.09 11.63 

Cropland 30,399.46 34.99 34,773.45 40.03 14.39 

Rice 1,868.38 2.15 1,561.16 1.80 -16.44 

Barren 24.71 0.03 30.87 0.04 24.91 

Wetlands 3,005.58 3.46 7,911.77 9.11 163.24 

Grassland 18.28 0.02 45.53 0.05 149.08 

Shrubland 13.82 0.02 33.63 0.04 143.28 

Aquaculture 10.22 0.01 11.33 0.01 10.85 

Total 86869.66 100.00 86869.66 100.00 - 

 

 

 

 

 

 

 

 

2010 2018 

Area [km2] Area [%] Change [%] Area [km2] Area [%] Change [%] 

2,642.80 3.04 -1.92 2,604.95 3.00 -3.33 

1,795.62 2.07 -74.32 1,699.52 1.96 -75.69 

12,115.66 13.95 -19.25 11,107.22 12.79 -25.97 

17,364.01 19.99 48.23 17,119.27 19.71 46.14 

5,904.11 6.80 -47.08 6,488.81 7.47 -41.83 

1,301.41 1.50 -66.63 1,112.54 1.28 -71.48 

78.91 0.09 16.60 75.64 0.09 11.77 

36,041.51 41.49 18.56 37,324.14 42.97 22.78 

1,614.08 1.86 -13.61 1,252.61 1.44 -32.96 

40.74 0.05 64.84 57.77 0.07 133.78 

7,866.97 9.06 161.75 7,844.76 9.03 161.01 

38.61 0.04 111.24 60.06 0.07 228.58 

53.68 0.06 288.33 112.88 0.13 716.59 

11.55 0.01 13.03 9.49 0.01 -7.16 

86869.66 100.00 - 86869.66 100.00 - 
*change is calculated by comparing to the 1995 land cover area. 
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4.3.3. Impact of climate variability 

4.3.3.1. Contribution of climate variability to streamflow changes 

 

Climate variability impacts on streamflow or sediment load were estimated by 

keeping the land-use constant with the baseline (i.e., land cover 2002). The main effect of 

climate variability on water resources is to alter streamflow quantity and timing, which is 

caused by changes in components of the water balance, mainly rainfall and air temperature. 

In this study, the spatiotemporal changes in temperature and rainfall characteristics impact 

the hydrological cycle in the TSL basin, which was evident in the changing streamflow 

pattern. There was a downtrend of annual and SON-flow volume, which was caused by the 

decrease in the annual and MAM rainfall amount, respectively (Figures 4.3-4.4, and 4.6a).  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 
 

Figure 4.6. a) Temporal trends and variability of annual, MJJ (May-June-July) and SON 

(September-October-November) flow volume into the lake. b) Comparison of long-term 

mean monthly streamflow between the 2001–2010 and 2011–2020 periods. The flow was 

simulated from the total area of the TSL basin excluding the flooded area. 
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The decrease in streamflow can be attributed to an increase in evapotranspiration as a result 

of the increase in temperature and decrease in rainfall. The annual total and MJJ-flow 

volume into the lake experienced decreasing trend, with a decrease of 3.83 (9.40%) and 0.76 

km3 (10.73%), respectively since the 2000s (Figure 4.6a). On the other hand, an increasing 

trend was found in the SON-flow volume, with a rising of 1.93 km3 (10.34%) between 2001 

and 2020. During the last decade, i.e., 2012–2020, the impact of El Niño causes a drop in 

rainfall (Figure 4.3a) consequently leading to a decrease in streamflow and flow volume in 

the TSL basin (Figures 4.6a-b). The long-term mean monthly streamflow between the 2001–

2010 and 2011–2020 periods was compared and shown in Figure 4.6b. The streamflow was 

likely to decline (max. 26% decrease in May) between May and August in 2011–2020 

compared to that in 2001–2010, mainly because of the decreased rainfall between March 

and May (Figures 4.3-4.4 and 4.6). In addition, the peak flow and the streamflow increased 

(max. 14% increase in December) between September and December, which was caused by 

changes in rainfall after the wet monsoon (September to November) as shown in Figures 4.3 

and 4.4. Therefore, the shifting of monsoon rainfall and the increasing amplitude of flood 

peaks would impact agricultural activity and fishery productivity in the TSL Basin. The 

basin streamflow showed a greater impact from climate variation than land-use change 

(discussed in Section 4.3.4). 

 

4.3.3.2. Changes in lake surface area and volume and water level 

 

Figure 4.7a presents temporal variations of surface water extent in the TSL drainage 

area between January 2001 and December 2020 using MODIS images. They exhibit a well-

marked seasonal cycle, with minima occurring in April and May and maxima between 

September and November. There is a strong interannual variability of the maximum flood 

extent ranging from 5,035 km2 in October 2015 up to 15,102 km2 in October 2011. The 

minimum lake surface varies between 2142 km2 in 2016 and 2647 km2 in 2001 during the 

low stage. Water stage changes accordingly, with an annual amplitude (i.e. difference 

between the maximum and the minimum over the year) varying from 4.57 m in 2015 to 8.90 

m in 2011 (Figure 4.7a). Temporal trends and variability of annual maximum water surface 

area and water level are presented in Figure 4.7b, in which decreasing trends of water extent 

and water level were found between 2001 and 2020, indicating a shrinking rate of lake 

volume over the years (see Figure 4.7c).  
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Figure 4.7. a) Monthly timer series and b) Annual maximum of surface water extent in the 

Tonle Sap basin based on the processing of MODIS images, and measured water level in 

the lake at Kampong Luong station over 2001–2020.  c) Monthly time series of total 

streamflow from 11 tributary basins and lake volume. Refer to Figure 4.1 for the location 

of the Kampong Luong station. In a) and c) the discontinued lines denote missing data on 

water level and lake volume, respectively during this period. 
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The annual maximum lake surface area and water level experienced decreasing trend, with 

a decrease of 2113 km2 (19%) and 2.52 m (28%), respectively (Figure 4.7b). Figure 4.7c 

shows that there is a relationship between lake volume and total streamflow from its tributary 

basins except for a few years in the beginning and at the end of the 2001-2020 period. The 

maximum lake volume and tributary flow are in 2011, while the minimum values were found 

in 2015. Although there is the influence of flow from the Mekong mainstream to the lake 

volume change, there was good agreement between lake volume and tributary flow shown 

in Figure 7c, suggesting the influence of decreasing trend of streamflow from tributary 

basins to the declining rate of lake volume–especially during the last decade.       

 

4.3.3.3. Climate variability and sediment load changes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. a) Temporal trends and variability of annual, MJJ- and SON-total sediment 

load. b) Comparison of long-term mean monthly total sediment load between the 2001–

2010 and 2011–2020 periods. The full name of MJJ and SON are as per the description in 

Figure 4.6. The total sediment load was simulated from the total area of the TSL basin 

excluding the flooded area. 

-30

-20

-10

0

10

20

30

40

-0.5

-0.3

-0.2

0.0

0.2

0.3

0.5

0.6

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

R
e

la
ti
v
e

 c
h

a
n

g
e

 [
%

]

M
o

n
th

ly
 s

e
d

im
e

n
t 
lo

a
d

 [
M

T
]

SED_2001-2010

SED_2011-2020

Relative change

y = -15757x + 2E+06

y = -1941.1x + 302730

y = 9641x + 994767

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

S
e

d
im

e
n

t 
lo

a
d

 [
M

T
] Annual MJJ SON

a) 

b) 



 

90 
 

The sediment load in the TSL Basin was changing over 2001-2020 due to the 

streamflow alteration caused by spatiotemporal changes in rainfall and temperature over the 

basin area during this period (Figure 4.8). There was a decrease of about 15% (~0.3 Mt) and 

12% (~0.037 Mt) in annual and MJJ-sediment load, respectively from 2001 to 2020 (Figure 

4.8a). Similar to rainfall and streamflow; on the other hand, an increasing trend was found 

in the SON-sediment load, with a rising of around 0.18 Mt or 18% between 2001 and 2020.    

 

Figure 4.8b illustrates the comparison of long-term mean monthly sediment load 

between the 2001–2010 and 2011–2020 periods. Due to the decline of streamflow between 

May and August, the sediment load during these months decreased up to 26% in 2011–2020 

compared to that in 2001–2010. Conversely, the sediment load was found to increase (max. 

21% increase in December) between September and December, which was triggered by 

hydrological cycle alternation (Figures 4.6b and 4.8b). 

 

4.3.4. Impact of land-use change on streamflow and sediment load 

 

Land-use maps for the years 2002, 2010, and 2018 were used to estimate the potential 

impacts of land-use change on the total streamflow and sediment load of the TSL Basin 

compared to the 1995 land cover map. Each land-use map (i.e., 1995, 2002, 2010 and 2018 

land-use maps) was input together with the same climate data (i.e., rainfall and temperature) 

from 2001 to 2020 into the SWAT model for streamflow and sediment load impact 

simulations due to land-use change. 

 

The changes in annual streamflow due to land-use changes were found to maximum 

increase by 3.66, 4.41, and 5.53% under 2002, 2010, and 2018 land cover scenarios, 

respectively between 2001 and 2020 (Figure 4.9a). On a seasonal scale, there is an increase 

in streamflow of up to 3.55, 4.48 and 5.83% between May and November, while a decrease 

of up to 3.45, 3.86 and 4.54% between December and April for 2002, 2010, and 2018 land 

cover scenarios, respectively compared to the 1995 land cover (Figure 4.9b). The decrease 

in streamflow during December and April is caused by changes in the hydrological cycle, in 

which groundwater recharge is increasing in the dry season due to less forest or vegetation 

cover. Although basin streamflow is more sensitive to climate change than land-use change, 

climate and land-use change are concurrent phenomena and, therefore, the land-use change 

impact should not be overlooked. 
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Figure 4.9. Impacts of land-use change on a) annual and b) long-term monthly streamflow 

under 2002, 2010, and 2018 land cover scenarios. 

 

 

Sediment load is more sensitive than streamflow to land-use change in the TSL Basin 

(Figure 4.10a-b). High seasonal variability in loading can be seen, with the rainy season 

(May to October) accounting for around 74% of the annual sediment load whereas only 24% 

of the annual load was observed during the dry season (November to April) (Figure 4.10b). 

Loading is the function of streamflow, rainfall, topography, land-use type, etc. with flow 

playing a vital role in generating loading; therefore, the same seasonal pattern was found 

between flow and sediment loading (Figures 4.9b and 4.10b). The TSL annual total sediment 

loading can be seen to increase by 8.16, 9.97, and 12.91% under 2002, 2010, and 2018 land-
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use scenarios, respectively compared to the baseline land-use period (i.e., 1995 land cover 

map). Likewise, the land-use change forced an increase in sediment loading during May and 

November by a maximum of 10.11, 13.51, and 19.57% of the monthly sediment load, while 

the maximum relative decrease in loading is 4.56, 5.09, and 5.80% between December and 

April under 2002, 2010, and 2018 land-use scenarios, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.10. Impacts of land-use change on a) annual and b) long-term monthly sediment 

load under 2002, 2010, and 2018 land cover scenarios. 
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Figure 4.11. Comparison of runoff depth change during June-July-August (top) and 

January-February-March (bottom) response to forest area loss under 2002, 2010 and 2018 

land cover scenarios. Forest area change refers to a relative loss of forest cover to the total 

area of the corresponding tributary basin.   
 

Figures 4.11 and 4.12 show that runoff depth and sediment yield, respectively in the 

Chinit tributary basin were found to be the most sensitive to land-use change impact due to 

a large relative decrease in the forest area to the catchment area (approximate 30%). A 2518 

km2 decrease in forest area was found between 1995 and 2018, which gave runoff depth an 

increase of about 11.69, 13.43 and 15.85% during June and August, and a decrease of around 

18.77, 20.04 and 21.12% during January and March for 2002, 2010, and 2018 land cover 

scenarios, respectively (Figure 4.11 and Table A16). Likewise, a decrease in forest cover in 

the Chinit tributary basin enforced sediment yield with an increase of approximately 12.81, 

15.60 and 16.75% during June and August and a decline of around 18.76, 22.18 and 23.16% 
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during January and March for 2002, 2010, and 2018 land cover scenarios, respectively 

(Figure 4.12). Furthermore, relatively high changes in runoff depth and sediment yield were 

found in the other two tributary basins (i.e., Sreng and Sen), which are consistent with the 

high percentage loss of forest area (up to 20%) shared with the catchment area. The runoff 

depth and sediment yield were seen to increase by up to 11.52 and 17.35%, respectively 

during June and August, while a decrease of up to 9.09 and 13.27%, respectively was found 

during January and March (Figures 4.11 and 4.12). The relatively lower forest area loss 

indicated a minimum land-use impact in the other eight tributary basins. There were 

increases in runoff depth and sediment yield from 0.30 to 4.95% and 0.54 to 3.70%, 

respectively during June and August, while the decreases from 0.07 to 2.81 and 0.24 to 3.49 

%, respectively were found during January and March (Figures 4.11 and 4.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Same as Figure 4.11 but for sediment yield change. 
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4.4. Conclusion 

 

This study investigates the decadal climatic variability and land-use change and 

quantifies their impacts on streamflow and sediment load in the TSL Basin during the last 

few decades. Four different land-use periods: 1995, 2002, 2010, and 2018 land cover maps, 

together with the meteorological data from 2001 to 2020 were used to analyze 

spatiotemporal changes in climate and land use and input into the SWAT model to simulate 

their impacts on streamflow and sediment loading in the TSL Basin. 

 

Climate analysis showed an increasing trend in the basin temperature and a downward 

trend in rainfall between 2001 and 2020. The hydrological analysis depicts that the early 

rainy season flows of the TSL Basin were lower (max. 26% decrease in May) for 2011-2020 

compared to the 2001-2010 time horizons. However, after the wet monsoon season, the 

streamflow was observed to receive some increases due to the rise in rainfall amount during 

September and November. Since flow plays a vital role in generating loading, a similar 

change in the seasonal pattern forced by climate variability was found between flow and 

sediment load. The basin streamflow and sediment load showed a greater impact from 

climate variation than land-use change. From the MODIS images analysis and measured 

water level in the lake, the annual maximum lake surface area and water level showed 

decreasing trends between 2001 and 2020, indicating a shrinking rate of lake volume over 

the years. The results of the land-use change analysis revealed that there was a substantial 

decrease found in forest-related areas while some growth in cropland areas was found. The 

flooded forest area decreased from approximately 6,992 to 1700 km2 or 76%, while the 

cropland area increased by about 23% from around 30,400 to 37,324 km2 in 1995 and 2018, 

respectively. The land-use change had a positive and negative impact on streamflow 

sediment loading during the rainy and dry seasons, respectively. The streamflow and 

sediment load were seen to increase by up to 5.83 and 19.57%, respectively between May 

and November, while a decrease of up to 4.54 and 5.80%, respectively was found between 

December and April. Sediment load is more sensitive than streamflow to land-use change in 

the TSL Basin. Furthermore, the highest impact of land-use changes on streamflow and 

sediment load was found in the Chinit tributary basin due to the largest decrease in the forest 

area shared with the total area of the catchment. 
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Based on the results found in this study, climate variability and land-use change have 

noticeable impacts on streamflow and sediment load in the TSL Basin, suggesting that 

planning and management of their impacts are crucial for the sustainable management of 

water resources and lake ecosystem conservation in the TSL Basin. 
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Chapter 5 Summary of the research 

 

 This chapter summarizes the research results and contributions, together with some  

remaining challenges for future research. 

 

5.1.  Summary of research results 

 

This research successfully developed a feasible method or framework for estimating 

streamflow and sediment load in data-sparse or poorly gauged basins of the Tonle Sap Lake, 

serving for sustainable management and conservation of the lake ecosystems. First, a 

comprehensive framework was used to determine an ideal alternative meteorological dataset 

for hydrological modeling, considering the spatiotemporal characteristics of each climate 

dataset and ensuring a reliable estimate of streamflow and evapotranspiration. Next, a new 

regionalization method was proposed to estimate sediment load in ungauged catchments, 

considering spatiotemporal variability and the sediment load relation to rainfall 

characteristics of individual catchments. Finally, the application of the above two mentioned 

methods for hydro-environmental impact assessment, owing to decadal climate variation 

and basin development during the last few decades. 

 

The study begins by introducing a comprehensive assessment of seven gridded 

precipitation and air temperature products by statistically comparing these datasets with 

gauge-based datasets and applying the SWAT model for daily streamflow and ET 

simulations over the TSL Basin. The precipitation data from APHRODITE, ERA5, TRMM 

and IMERG were found to have high correlations with rain-gauged data and the lowest 

estimation errors, and the SA-OBS and CPC were found to match the observed air 

temperature data well. The results of the hydrological simulation showed that the rainfall 

data from APHRODITE, TRMM and IMERG, combined with SA-OBS-based air 

temperature data, provided improved estimations of daily streamflow and mean runoff 

depth. The ET estimated using the TRMM and IMERG datasets showed a better temporal 

and spatial pattern agreement with GLEAM- and MODIS-ET. This suggests that TRMM 

and IMERG, in conjunction with SA-OBS air temperature, are reliable for providing 

streamflow through the SWAT model application and other water balance components. The 

comprehensive evaluation framework used in this study was found to be effective in 
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selecting reliable gridded meteorological datasets for hydrological simulation in data-sparse 

river basins, especially when large uncertainty existed in the spatiotemporal distribution of 

rainfall. These findings also showed that statistical comparisons with gauge data and 

hydrological evaluation of streamflow are not enough to justify the reliability of each 

gridded dataset.  

 

Next, a novel SRS regionalization method has been proposed, using the SWAT model 

and SOM clustering technique to overcome the limitation of the critical attributes of a 

catchment favoring sediment similarity, which usually exists in the conventional 

regionalization approaches. It considered the spatiotemporal variations of sediment response 

and its relationship with rainfall characteristics as a catchment attribute and showed the 

potential to ideally determine hydrological and sediment similarities between gauged and 

ungauged catchments. The results indicated the comprehensive performance of the SRS 

regionalization method for estimating sediment load in the ungauged catchments. The SRS 

approach obtained an estimation error reduction of up to 7%, compared with the PS 

regionalization method. The SRS regionalization method proposed in this study is a global 

alternative method for estimating sediment, as well as other hydrological variables and 

rainfall-driven phenomena such as streamflow and nutrient transport, in ungauged 

catchments.  

 

Eventually, the above two frameworks were used to quantify the impacts of climatic 

variability and land-use change on streamflow and sediment load in the TSL Basin during 

the last few decades. The decadal climatic variability between 2001 and 2020 and land-use 

change patterns in different periods were investigated as well. Climate analysis showed an 

increasing trend in the basin temperature and a downward trend in rainfall between 2001 

and 2020. The results of the land-use change analysis revealed that there was a substantial 

decrease found in natural forest areas, in which cumulative loss of natural forest area was 

around 45% or the area decreased from 37,052 in 1995 to 20,408 km2 in 2018. On the other 

hand, the cropland area increased by about 23% from around 30,400 to 37,324 km2 in 1995 

and 2018, respectively. The hydrological analysis depicts that the early rainy season flows 

of the TSL Basin were lower (max. 26% decrease) for 2011-2020 compared to the 2001-

2010 time horizons. However, after the wet monsoon season, the streamflow was observed 

to receive some increases due to the rise in rainfall amount during September and November. 

A similar change in the seasonal pattern forced by climate variability was found between 
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flow and sediment load. The land-use change had a positive and negative impact on 

streamflow sediment loading during the rainy and dry seasons, respectively. The streamflow 

and sediment load were seen to increase by up to 5.83 and 19.57%, respectively between 

May and November, while a decrease of up to 4.54 and 5.80%, respectively was found 

between December and April. The basin streamflow and sediment load showed a greater 

impact from climate variation than land-use change. Based on the results found in this study, 

climate variability and land-use change have noticeable impacts on streamflow and sediment 

load, suggesting that planning and management of their impacts are crucial for the 

sustainable management of water resources and lake ecosystem conservation in the TSL 

Basin. 

 

The feasible framework developed in this research would serve as a central approach 

in estimating streamflow and sediment load in data-sparse or poorly gauged basins. Besides 

that, the study also contributes a basic methodology to estimate other hydro-meteorological 

parameters of interest. For a similar purpose, this methodology can be applied as well in 

other river basins around the world. 

 

5.2. Contributions of research results 

 

The main contributions of this research are summarized as follows: 

• A novel regionalization method for estimating sediment load in ungauged 

catchments. 

• A comprehensive framework for evaluating satellite-based or gridded 

meteorological datasets as alternative climate data for hydrological modeling in data-

sparse river basins.  

• Two ideal alternative meteorological data sources (i.e., IMERG and SA-OBS) for 

basin-wide hydro-environmental assessment in the TSL Basin and beyond. 

• A coupled approach (the streamflow and sediment load estimating frameworks) for 

assessing the potential impact of climatic variability and land-use change on 

streamflow and sediment loading in the TSL Basin.  
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5.3.  Future challenges 

 

Although the current works could make some contributions, future works need to be 

paid attention to the following: 

 

• A framework for evaluating alternative climate datasets should pay further attention 

to sub-daily timescales (i.e., hourly), which would be beneficial for flood assessment 

and near-real-time forecasting. Additionally, this framework could be extended to 

evaluate alternative products covering the whole Mekong River basin. 

• Using the current framework, more and new climate products could be validated for 

basin-wide hydrological modeling and hydrological impact assessment. 

• The applicability of the SRS regionalization method is tested on a limited number of 

catchments. Therefore, it is recommended to incorporate more gauged catchments, 

especially those with a smaller and larger scale, to widely extend the method's 

applicability. 

• In the SRS method, if observed data is available, the method could be applied every 

5 years with different land-use conditions (e.g., 2002, 2010, and 2018 land-use maps), 

then the regionalized parameters would better represent the hydrological and 

environmental conditions of ungauged catchments for the whole period from 2001 

to 2020. Eventually, the temporal changes in sediment load in the ungauged 

catchments between 2001 and 2020 would be well simulated by the SRS method. 
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Figure A1. Map of the delineated basin area of each tributary basin. The hatched area 

denotes the gauging area of each tributary basin in the TSL basin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2. The average number of rain gauges per grid cell used for creating the 

APHRODITE dataset. The number of gauges used in APHRODITE (green square) is not 

necessarily the same as the number of rainfall stations (red circle, same as Figure 2.1) in 

each grid cell because of the different time coverage of rainfall data and data availability at 

each station. Each green square is plotted at the center of the grid cell. 
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Figure A3. Schematic and equation of bilinear interpolation method. 
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Table A1. Equations and optimal values of statistical indices 

No Statistical indices Equations* 
Range 

values 

Optimal 

values 

1 Mean Bias Error ( )
1

1 N

i i

i

MBE P O
N =

= −  -∞ to +∞ 0 

2 
Root Mean Square 

Error 
( )

1

21 N

i i
i

P ORMSE
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−=   0 to +∞ 0 
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Correlation 

Coefficient 

( )( )
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P P O O
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Modified Index of 

Agreement 
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−

− −


= −
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 0 to 1 1 
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Nash-Sutcliffe 

Efficiency 

2

11
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obs simQ Q
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6 Percent Bias 1 100
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Coefficient of 
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 0 to 1 1 

* iP and iO denote predicted and observed, respectively, daily precipitation or temperature of the ith day, P

and O denote predicted and observed, respectively, mean daily precipitation or temperature, and N is the 

number of data at daily time series. 
simQ and

obsQ denote simulated and observed, respectively, streamflow 

of the ith day. meanQ denotes mean daily streamflow. The first four indices are used for the evaluation of 

precipitation and temperature, while the last three indices are used to evaluate the streamflow simulation 

performance. 
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Table A2. The selected parameters and their initial range setting for calibration using 

SWAT-CUP 

No. Parameter name Description 
Range 

Method 
Min Max 

1 r__CN2.mgt SCS runoff curve number (f) -25% 25% Relative (1) 

2 v__ALPHA_BF.gw Baseflow alpha factor (days) 0 1 Replace (2) 

3 v__GW_DELAY.gw Groundwater delay (days) 0 500 - 

4 v__GWQMN.gw 

Threshold depth of water in the shallow 

aquifer required for return flow to occur 

(mm) 

0 5000 - 

5 v__GW_REVAP.gw Groundwater "revap" coefficient 0.02 0.2 - 

6 v__REVAPMN.gw 
Threshold depth of water in the shallow 

aquifer required for "revap" to occur (mm) 
0 500 - 

7 v__RCHRG_DP.gw Deep aquifer percolation fraction 0 1 - 

8 v__LAT_TTIME.hru Lateral flow travel time 0 180 - 

9 v__SLSOIL.hru Slope length for lateral subsurface flow 0 150 - 

10 v__CANMX.hru Maximum canopy storage 0 100 - 

11 v__ESCO.hru Soil evaporation compensation factor 0 1 - 

12 v__EPCO.hru Plant uptake compensation factor 0 1 - 

13 v__OV_N.hru Manning's "n" value for overland flow 0.01 30 - 

14 v__CH_N2.rte Manning's "n" value for the main channel -0.01 0.3 - 

15 v__CH_K2.rte 
Effective hydraulic conductivity in the main  

channel alluvium 
-0.01 500 - 

16 v__ALPHA_BNK.rte Baseflow alpha factor for bank storage 0 1 - 

17 v__CH_K1.sub 
Effective hydraulic conductivity in tributary 

channel alluvium 
0 300 - 

18 v__CH_N1.sub Manning's "n" value in the tributary channel 0.01 30 - 

19 r__SOL_AWC().sol Available water capacity of the soil layer -25% 25% - 

20 r__SOL_BD().sol Moist bulk density -25% 25% Relative (1) 

21 r__SOL_K().sol Saturated hydraulic conductivity -25% 25% - 

22 r__SOL_ALB().sol Moist soil albedo -25% 25% - 

23 v__SURLAG.bsn Surface runoff lag time 0 24 Replace (2) 

Note: (1): Multiplying initial parameter by value in percentage; (2): replacing initial parameter by value 
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Table A3. Performance ratings of recommended statistics for streamflow simulation 

Performance rating NSE R2 PBIAS (%) 

Unsatisfactory NSE ≤ 0.5 R2≤ 0.5 PBIAS ≥ ±25 

Satisfactory 0.5 - 0.65 0.5 - 0.65 ±15 - ±25 

Good 0.65 - 0.75 0.65 - 0.75 ±10 - ±15 

Very good 0.75 - 1 0.75 - 1 PBIAS < ±10 

 

 

 

Table A4. The mean value of each statistical index was calculated for thirty-one gauging 

stations. 

Indices 
Datasets 

APHRODITE CFSR ERA5 SA-OBS TRMM IMERG 

MBE (mm/month) -17.87 53.22 12.16 55.45 26.59 28.95 

RMSE (mm/month) 60.46 135.32 73.44 147.22 81.87 83.05 

R 0.86 0.56 0.78 0.68 0.79 0.79 

md 0.77 0.56 0.71 0.63 0.72 0.71 
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Figure A4. Comparison of monthly rainfall averaged for all the gauging stations included 

in each tributary basin from 1998 to 2011 for TRMM, 2001 to 2011 for IMERG and 1985 

to 2011 for other products and observations. 
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Figure A4. Cont. 
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Figure A5. Comparison of monthly mean daily maximum (TMX) and daily minimum 

(TMN) temperatures of individual stations from 19985 – 2011. The different colors of 

solid- and dash-lines denote the maximum and minimum temperature, respectively, of 

different datasets. 
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Figure A6. Monthly observed and simulated flow of each tributary basin in the calibration 

period. The beginning of the flow simulation depended on the flow data availability of 

each tributary basin. 
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Figure A7. Same as Figure A6 but for the validation period. Due to discontinued 

monitoring stations in Mongkol Borey and Baribo tributary basins, the flow simulations 

were validated from 2003 to 2004 and 2005, respectively. The flow data of the Siem Reap 

tributary basin was missing in the year 2005, thus; the model was validated from 2003 to 

2004 and 2006 to 2010. 
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Table A5. The performance of statistical indices in the calibration and validation periods. 

Dataset River name 
Calibration Validation 

NSE PBIAS (%) R2 NSE PBIAS (%) R2 

APHRODITE 

Baribo 0.62 3.40 0.62 0.43 27.20 0.53 

Chikreng 0.54 -10.60 0.56 0.53 -34.20 0.54 

Chinit 0.72 -0.80 0.72 0.66 -4.90 0.66 

Dauntri 0.52 5.30 0.53 0.49 -8.30 0.50 

Mongkol Borey 0.79 4.60 0.79 0.73 -15.90 0.75 

Pursat 0.68 1.90 0.68 0.52 2.00 0.52 

Sangker 0.43 13.50 0.44 0.30 -2.70 0.30 

Sen 0.80 -5.40 0.80 0.76 -1.10 0.76 

Siem Reap 0.57 -1.30 0.57 0.60 -11.80 0.61 

Sreng 0.65 -6.20 0.65 0.67 -22.20 0.69 

Staung 0.45 -5.70 0.46 0.62 12.00 0.64 

Average 0.62 -0.12 0.62 0.57 -5.45 0.59 

Dataset River name 
Calibration Validation 

NSE PBIAS (%) R2 NSE PBIAS (%) R2 

ERA5 

Baribo 0.54 -8.20 0.55 0.37 9.76 0.41 

Chikreng 0.34 -15.20 0.34 0.50 -48.40 0.52 

Chinit 0.70 -9.10 0.71 0.65 -13.60 0.66 

Dauntri 0.40 -8.70 0.40 0.42 6.40 0.43 

Mongkol Borey 0.59 -5.10 0.60 0.65 -20.60 0.67 

Pursat 0.48 -23.60 0.53 0.44 -31.60 0.49 

Sangker 0.58 -14.80 0.60 0.39 -28.80 0.42 

Sen 0.84 -6.60 0.84 0.79 -9.80 0.80 

Siem Reap 0.59 -9.10 0.59 0.52 -12.20 0.57 

Sreng 0.70 -7.10 0.70 0.67 -11.10 0.67 

Staung 0.44 -21.00 0.44 0.58 -15.90 0.60 

Average 0.56 -11.68 0.57 0.54 -15.99 0.57 

Dataset River name 
Calibration Validation 

NSE PBIAS (%) R2 NSE PBIAS (%) R2 

TRMM 

Baribo 0.66 -2.10 0.66 0.45 6.50 0.46 

Chikreng 0.53 -24.80 0.56 0.47 -36.50 0.49 

Chinit 0.81 -0.60 0.81 0.74 -3.20 0.74 

Dauntri 0.43 -13.70 0.46 0.33 -9.60 0.34 

Mongkol Borey 0.82 0.14 0.83 0.72 -12.80 0.75 

Pursat 0.46 6.60 0.48 0.40 2.40 0.40 

Sangker 0.54 -21.50 0.57 0.38 -26.40 0.39 

Sen 0.86 -8.20 0.87 0.79 -5.20 0.79 

Siem Reap 0.61 -5.00 0.61 0.67 -9.70 0.68 

Sreng 0.70 -2.40 0.70 0.69 -11.50 0.70 

Staung 0.46 2.50 0.46 0.61 -5.80 0.62 

Average 0.63 -6.28 0.64 0.57 -10.16 0.58 

Dataset River name 
Calibration Validation 

NSE PBIAS (%) R2 NSE PBIAS (%) R2 

IMERG 

Baribo 0.62 -1.20 0.62 0.47 -1.80 0.47 

Chikreng 0.35 -9.40 0.35 0.47 -16.50 0.48 

Chinit 0.88 -1.10 0.88 0.72 -9.00 0.73 

Dauntri 0.58 -12.80 0.59 0.49 -8.10 0.50 

Mongkol Borey 0.72 1.60 0.72 0.74 -12.20 0.76 

Pursat 0.48 -16.20 0.49 0.40 -2.00 0.40 

Sangker 0.64 -11.10 0.65 0.42 -24.90 0.44 

Sen 0.88 -3.00 0.89 0.80 -4.70 0.80 

Siem Reap 0.55 -0.10 0.56 0.68 -2.50 0.70 

Sreng 0.84 -7.60 0.85 0.68 -12.00 0.69 

Staung 0.66 -3.30 0.67 0.63 3.80 0.65 

Average 0.65 -5.84 0.66 0.59 -8.17 0.60 
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Figure A8. Comparison of tributary basin-averaged monthly evapotranspiration (ET) of 

the individual dataset from 2001 to 2011. The tributary basin-averaged monthly ET is the 

average monthly ET from all delineated sub-basins in each tributary basin excluding 

flooded areas. 
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Figure A8. Cont. 
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Table A6. The RMSE (mm/month) between SWAT-based ET and satellite-based ET over 

each tributary basin excluding flooded areas. 

River 

APHRODITE ERA5 TRMM IMERG 

GLEA

M 

MODI

S 

GLEA

M 

MODI

S 

GLEA

M 

MODI

S 

GLEA

M 

MODI

S 

Baribo 33.42 37.66 13.66 17.54 18.27 15.20 16.69 19.40 

Chikreng 18.41 18.81 24.32 23.22 16.79 21.69 24.12 22.77 

Chinit 40.08 34.01 36.44 31.37 19.94 20.46 19.88 17.26 

Dauntri 13.09 26.51 17.17 30.46 29.71 19.71 21.29 19.68 

Mongkol 

Borey 
15.61 14.68 29.43 22.24 17.05 14.55 20.85 22.01 

Pursat 43.19 55.89 33.74 47.54 31.50 45.14 24.66 38.63 

Sangker 43.92 56.42 15.44 26.05 22.90 22.73 16.17 21.71 

Sen 38.83 52.21 27.34 27.25 18.51 25.80 24.34 31.64 

Siem Reap 27.09 41.32 20.17 31.42 22.24 32.09 20.33 22.26 

Sreng 18.13 31.88 15.19 24.90 29.83 21.15 24.64 21.52 

Staung 29.04 36.75 17.18 25.02 18.69 18.78 15.01 18.71 

Average 29.16 36.92 22.73 27.91 22.31 23.39 20.73 23.24 
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Figure A9. The relative attribution of evapotranspiration to the total precipitation for the 

individual product between 2001 and 2011 over the TSL Basin excluding flooded areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A10. Comparison of simulated mean annual runoff depth between 2001 and 2004. 

The mean runoff depth represents the runoff from the whole drainage area of each 

tributary basin and the whole TSL Basin excluding the flooded areas. 
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Table A7. CUSLE and KUSLE values of different land use and soil types, respectively 
Land use name (SWAT Database)  SWAT code CUSLE 

Evergreen, high cover density EHCD 0.001 

Evergreen, medium-low cover density EMLD 0.001 

Evergreen mosaic EVMS 0.24 

Mixed, high cover density MEDH 0.008 

Mixed, medium-low cover density MEDM 0.008 

Mixed mosaic MXMS 0.24 

Crop mosaic, cropping area <30 CMCS 0.02 

Crop mosaic, cropping area >30 CMCL 0.15 

Agriculture land-intensive AGRI 0.24 

Deciduous DECD 0.048 

Deciduous mosaic DCMS 0.048 

Regrowth REGR 0.02 

Regrowth, inundated REGI 0.02 

Wood- and shrubland, evergreen WSEV 0.02 

Grassland GRAS 0.02 

Wood- and shrubland, dry WSDR 0.04 

Urban or built-over area URBN 0.15 

Water WATR 0 

Lower Mekong Basin (LMB) paddy field PDDY 0.03 

LMB forest land FRSL 0.001 

LMB distributed forest land DTFR 0.001 

Soil name (SWAT Database) SWAT code KUSLE 

Ferric acrisol ACf/ACp 0.15 

Gleyic acrisol ACg 0.13 

Gleyic acrisol / Dystric planosol ACg/PLd 0.13 

Areni-gley ACga 0.13 

Haplic acrisol ACh 0.16 

Haplic acrisol / Dystric planosol ACh/LPd 0.16 

Haplic acrisol-skeletic ACh-C 0.16 

Gleyic-plinthic ACpg 0.27 

Gleyic-plinthic-gley ACpga 0.27 

Gleyic ARg 0.02 

Dystric CMd 0.15 

Dystric cambisol / Dystric leptosol CMd/LPd 0.15 

Ferric cambisol / Ferric acrisol CMo/ACf 0.15 

Rhodic ferrasol FRr 0.09 

Eutric gleysol GLe 0.18 

Dystric leptosol LPd 0.18 

Eutric leptosol LPe 0.18 

Dystric planosol / Gleyic acrisol PLd/ACg 0.15 

Dystric plintosol PTd 0.2 

Rock out crop R 0.15 

Slope complex SC 0.16 
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Box A1. The self-organizing map 

A sequential regression process carries out the training process of the SOM 

(Wallner et al., 2013): 

 

1. Set j = 1 and select the input vector xj.  

2. Identify the node with the reference vector mi, most similar to the current input vector 

xj. This neuron is called the winner neuron or best matching unit (BMU): 

                                      arg min ( ) 1... ,c x m t i K
i i

i

= − =                                     (A3) 

where, the index i ranges over all reference vectors on the map. The quantity mi(t) refers 

to the reference vector at position i on the map at time step t. 

3. Update the reference vector of the winner neuron mc and the neighboring neurons mi 

based on the current input vector xj: 

                     ( 1) ( ) ( ) ( ) ( ) 1... ,i i ci j im t m t t h t x m t i K  + = +   − =                           (A4) 

where hci is the neighborhood function, which decreases with increasing distance to the 

winner neuron, and   is the learning rate, which decreases with increasing time. 

4. Set j = j + 1 and go back to step 2 until all input vectors are considered. 

5. Set t = t + 1 and go back to step 1 until a fixed number of iterations is reached. 

The above computation is usually repeated over the available input vectors many times 

during the training phase of the map. Each iteration is called a training epoch. 

 

One of the advantages of the SOM is that they have an appealing visual 

representation as the 2-D unified distance matrix, as seen in Figure 3.2b. As before, the 

colors on the map represent the relative distances between reference vectors: light colors 

indicate short distances, and dark colors indicate long distances. Contiguous areas of light 

colors represent strong clusters (Hamel and Brown, 2011). 
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Figure A11. Comparison of daily observed (solid black) and simulated (dash blue) flows 

in Sekong and Srepok catchments. The calibration and validation periods were from 2005 

to 2008 and 2009 to 2011, respectively. 

 

 

 

 

Table A8. Results of statistical indices obtained during the model calibration and validation 

for the flow at the gauging stations of Sekong and Srepok catchments. 

River 
Calibration Validation 

R2 NSE PBIAS R2 NSE PBIAS 

Sekong 0.79 0.77 13.50 0.72 0.72 -5.20 

Srepok 0.71 0.70 -3.00 0.58 0.57 -3.20 
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Table A9. The values of flow-calibrated parameters of each tributary basin. These fitted 

values were obtained from model optimization in Chapter 2.  

Parameter Name 
Calibrated Value 

Baribo Chikreng Chinit Dauntri Mongkol Borey Pursat 

r__CN2.mgt 0.036 0.197 0.200 -0.298 -0.462 0.099 

v__ALPHA_BF.gw 0.721 0.616 0.219 0.044 0.232 0.372 

v__GW_DELAY.gw 20.343 148.356 164.770 19.592 11.932 0.999 

v__GWQMN.gw 179.155 4588.491 2611.880 4646.876 1789.026 1026.557 

v__GW_REVAP.gw 0.178 0.101 0.198 0.187 0.193 0.171 

v__REVAPMN.gw 20.218 185.689 136.673 40.991 115.336 206.535 

v__RCHRG_DP.gw 0.292 0.216 0.013 0.206 0.082 0.117 

v__LAT_TTIME.hru   20.137   158.997   40.287 

v__SLSOIL.hru   127.245   105.617   0.914 

v__CANMX.hru 14.500 15.715 46.362 14.297 92.099 13.718 

v__ESCO.hru 0.489 0.748 0.325 0.133 0.325 0.986 

v__EPCO.hru 0.554 0.856 0.937 0.823 0.542 0.286 

v__OV_N.hru   26.998   4.984   27.784 

v__CH_N2.rte 0.034 0.042 0.217 0.197 0.073 0.195 

v__CH_K2.rte 365.609 83.757 188.763 131.570 418.183 202.901 

v__ALPHA_BNK.rte   0.518   0.303   0.916 

v__CH_K1.sub   4.864   61.288   24.970 

v__CH_N1.sub   9.196   25.991   10.577 

r__SOL_AWC().sol 0.178 0.326 0.410 -0.277 0.257 0.159 

r__SOL_BD().sol   -0.056   -0.066   0.183 

r__SOL_K().sol -0.183 -0.178 -0.150 0.331 -0.085 -0.185 

r__SOL_ALB().sol 0.187 -0.294 -0.310 0.029 0.050 -0.188 

v__SURLAG.bsn 15.220 5.079 4.158 10.453 17.066 13.036 

 

Table A9. Cont. 

Parameter Name 
Calibrated Value 

Sangker Sen Siem Reap Sreng Staung 

r__CN2.mgt -0.366 0.092 -0.271 0.035 0.189 

v__ALPHA_BF.gw 0.741 0.507 0.066 0.223 0.410 

v__GW_DELAY.gw 30.005 11.926 194.516 360.340 122.564 

v__GWQMN.gw 4959.035 1434.173 4470.288 4392.917 3999.254 

v__GW_REVAP.gw 0.199 0.189 0.054 0.151 0.156 

v__REVAPMN.gw 92.278 386.447 474.308 465.885 109.103 

v__RCHRG_DP.gw 0.294 0.266 0.029 0.004 0.003 

v__LAT_TTIME.hru 87.238 109.855 14.474     

v__SLSOIL.hru 116.617 62.217 22.592     

v__CANMX.hru 71.645 96.416 70.088 82.399 79.324 

v__ESCO.hru 0.217 0.087 0.254 0.492 0.474 

v__EPCO.hru 0.723   0.803 0.728 0.309 

v__OV_N.hru 1.194   28.250     

v__CH_N2.rte 0.025 0.169 0.149 0.297 0.192 

v__CH_K2.rte 474.281 149.830 178.124 267.889 490.836 

v__ALPHA_BNK.rte 0.589   0.959     

v__CH_K1.sub 0.104 0.020 51.020     

v__CH_N1.sub 17.455 25.484 8.185     

r__SOL_AWC().sol 0.094 0.025 0.411 -0.028 0.412 

r__SOL_BD().sol 0.000   -0.027     

r__SOL_K().sol -0.329   -0.066 0.085 0.229 

r__SOL_ALB().sol 0.513   0.389 0.037 -0.001 

v__SURLAG.bsn 12.285   19.563 11.729 9.404 
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Table A10. The selected flow and sediment parameters and their calibrated values of the 

Chinit catchments. These fitted values were obtained from model optimization from 2005 

to 2008. 

Type No Parameter name Description 
Fitted 

value 
Method* 

F
lo

w
 a

n
d

 s
ed

im
en

t 

1 r__CN2.mgt SCS runoff curve number (f) 0.127 Relative (1) 

2 v__ALPHA_BF.gw Baseflow alpha factor (days) 0.114 Replace (2) 

3 v__GW_DELAY.gw Groundwater delay (days) 340.113 - 

4 v__GWQMN.gw 

Threshold depth of water in the shallow 

aquifer required for return flow to occur 

(mm) 

4628.748 - 

5 v__GW_REVAP.gw Groundwater "revap" coefficient 0.188 - 

6 v__REVAPMN.gw 

Threshold depth of water in the shallow 

aquifer required for "revap" to occur 

(mm) 

338.286 - 

7 v__RCHRG_DP.gw Deep aquifer percolation fraction 0.049 - 

8 v__CANMX.hru Maximum canopy storage -0.378 - 

9 v__ESCO.hru Soil evaporation compensation factor 0.852 - 

10 v__EPCO.hru Plant uptake compensation factor 0.623 - 

11 v__CH_N2.rte Manning's "n" value for the main channel 0.249 - 

12 v__CH_K2.rte 

Effective hydraulic conductivity in the 

main  

channel alluvium 

213.555 - 

13 r__SOL_AWC().sol Available water capacity of the soil layer -0.231 Relative (1) 

14 r__SOL_K().sol Saturated hydraulic conductivity -0.230 - 

15 r__SOL_ALB().sol Moist soil albedo -0.022 - 

16 v__SURLAG.bsn Surface runoff lag time 15.279 Replace (2) 

S
ed

im
en

t 
 

17 v__LAT_SED.hru Sediment concentration in lateral flow 2157.10 Replace (2) 

18 v__CH_COV2.rte Channel cover factor 1.00 - 

19 r__USLE_K().sol Soil erodibility factor -0.18 Relative (1) 

(1): multiplying the initial parameter by value in percentage; (2): replacing the initial parameter by value. 

“-” refers to the method of the corresponding parameter being the same as the above parameter. 
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Table A11. Same as Table A10 but for the Sen catchment. 

Type No Parameter name Description Fitted value Method* 
F

lo
w

 a
n

d
 s

ed
im

en
t 

1 r__CN2.mgt SCS runoff curve number (f) 0.217 Relative (1) 

2 v__ALPHA_BF.gw Baseflow alpha factor (days) 0.372 Replace (2) 

3 v__GWQMN.gw 

Threshold depth of water in the 

shallow aquifer required for 

return flow to occur (mm) 

2871.432  

4 v__GW_DELAY.gw Groundwater delay (days) 0.264 - 

5 v__GW_REVAP.gw Groundwater "revap" coefficient 0.189 - 

6 v__REVAPMN.gw 

Threshold depth of water in the 

shallow aquifer required for 

"revap" to occur (mm) 

288.358 - 

7 v__RCHRG_DP.gw Deep aquifer percolation fraction 0.072 - 

8 v__LAT_TTIME.hru Lateral flow travel time 138.220 - 

9 v__SLSOIL.hru 
Slope length for lateral subsurface 

flow 
78.399 - 

10 v__CANMX.hru Maximum canopy storage 68.347 - 

11 v__ESCO.hru 
Soil evaporation compensation 

factor 
0.476 - 

12 v__CH_N2.rte 
Manning's "n" value for the main 

channel 
0.129 - 

13 v__CH_K2.rte 

Effective hydraulic conductivity 

in the main  

channel alluvium 

439.889 - 

14 v__CH_K1.sub 

Effective hydraulic conductivity 

in tributary 

channel alluvium 

3.159 - 

15 v__CH_N1.sub 
Manning's "n" value in tributary 

channel 
25.906 - 

16 r__SOL_AWC().sol 
Available water capacity of the 

soil layer 
-0.072 Relative (1) 

S
ed

im
en

t 
 17 v__LAT_SED.hru 

Sediment concentration in lateral 

flow 
3178.58 Replace (2) 

18 v__CH_COV2.rte Channel cover factor 0.99 - 

19 r__USLE_K().sol Soil erodibility factor -0.23 Relative (1) 

 



 

143 
 

Table A12. Same as Table A10 but for the Sekong catchment. 

Type No Parameter name Description 
Fitted 

value 
Method* 

F
lo

w
 a

n
d

 s
ed

im
en

t 

1 r__CN2.mgt SCS runoff curve number (f) 0.174 Relative (1) 

2 v__ALPHA_BF.gw Baseflow alpha factor (days) 0.835 Replace (2) 

3 v__GW_DELAY.gw Groundwater delay (days) 33.865 - 

4 v__GWQMN.gw 

Threshold depth of water in the shallow 

aquifer required for return flow to occur 

(mm) 

127.561 - 

5 v__GW_REVAP.gw Groundwater "revap" coefficient 0.027 - 

6 v__REVAPMN.gw 

Threshold depth of water in the shallow 

aquifer required for "revap" to occur 

(mm) 

74.678 - 

7 v__CANMX.hru Maximum canopy storage 5.834 - 

8 v__ESCO.hru Soil evaporation compensation factor 0.998 - 

9 v__EPCO.hru Plant uptake compensation factor 0.285 - 

10 v__OV_N.hru Manning's "n" value for overland flow 12.497 - 

11 v__CH_N2.rte Manning's "n" value for the main channel 0.167 - 

12 v__CH_K2.rte 

Effective hydraulic conductivity in the 

main  

channel alluvium 

484.442 - 

13 r__SOL_AWC().sol Available water capacity of the soil layer -0.187 Relative (1) 

14 r__SOL_K().sol Saturated hydraulic conductivity -0.199 - 

15 r__SOL_ALB().sol Moist soil albedo 0.365 - 

S
ed

im
en

t 
 

16 v__LAT_SED.hru Sediment concentration in lateral flow 3692.74 Replace (2) 

17 v__CH_COV2.rte Channel cover factor 0.99 - 

18 r__USLE_K().sol Soil erodibility factor 0.246 Relative (1) 
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Table A13. Same as Table A10 but for the Srepok catchment. 

Type No Parameter name Description 
Fitted 

value 
Method* 

F
lo

w
 a

n
d

 s
ed

im
en

t 

1 r__CN2.mgt SCS runoff curve number (f) 0.168 Relative (1) 

2 v__ALPHA_BF.gw Baseflow alpha factor (days) 0.501 Replace (2) 

3 v__GW_DELAY.gw Groundwater delay (days) 218.852 - 

4 v__GWQMN.gw 

Threshold depth of water in the shallow 

aquifer required for return flow to occur 

(mm) 

4057.173 - 

5 v__GW_REVAP.gw Groundwater "revap" coefficient 0.117 - 

6 v__REVAPMN.gw 

Threshold depth of water in the shallow 

aquifer required for "revap" to occur 

(mm) 

54.452 - 

7 v__CANMX.hru Maximum canopy storage 63.618 - 

8 v__ESCO.hru Soil evaporation compensation factor 0.028 - 

9 v__EPCO.hru Plant uptake compensation factor 0.707 - 

10 v__OV_N.hru Manning's "n" value for overland flow 28.725 - 

11 v__CH_N2.rte Manning's "n" value for the main channel 0.035 - 

12 v__CH_K2.rte 

Effective hydraulic conductivity in the 

main  

channel alluvium 

496.553 - 

13 r__SOL_AWC().sol Available water capacity of the soil layer -0.058 Relative (1) 

14 r__SOL_K().sol Saturated hydraulic conductivity -0.177 - 

15 r__SOL_ALB().sol Moist soil albedo -0.046 - 

S
ed

im
en

t 
 

16 v__LAT_SED.hru Sediment concentration in lateral flow 2327.12 Replace (2) 

17 v__CH_COV2.rte Channel cover factor 0.80 - 

18 r__USLE_K().sol Soil erodibility factor 0.03 Relative (1) 
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Figure A12. a) Physical similarity donor and receiver sub-catchments for Sen catchment 

as a pseudo ungauged catchment and b) Sediment-response similarity donor and receiver 

sub-catchments for Sen catchment as a pseudo ungauged catchment. The number shown 

on the map denotes the corresponding donor and receiver sub-catchments. 

                          a)                               b) 
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Figure A13. Same as Figure A12 but for the Sekong catchment. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A14. Same as Figure A12 but for the Srepok catchment. 

                          a)                               b) 

                          a)                               b) 
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Figure A15. The estimated error of sediment simulation compared with observed data at 

the gauging station of each catchment.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A16. a) Sub-catchment clusters based on rainfall and sediment response, using the 

tentative estimate of model parameters by the arithmetic mean method in the first phase of 

the SRS procedure. b) Sub-catchment clusters based on rainfall and sediment response 

after updating the model parameters in the second phase of the SRS procedure. See phases 

1 and 2 of the SRS procedure in Figure 3.1. In b), the red cross-marks shown on the 

clustering maps denote a different cluster number of corresponding sub-catchments 

compared with that in a). 
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Figure A17. Receiver sub-catchments of the actual ungauged catchment of the TSL basin. 

Refer to Figure 3.3 for the location of Chinit, Sen, Sekong and Srepok catchments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A18. Definitions of the active catchment area calculation components and flooded 

area in the Chinit catchment. Refer to Figure 3.1 for the location of the Chinit catchment. 
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Table A14. Equations for calculating sediment load in the ungauged catchments of the TSL 

Basin 

No Accounting catchment area Equation* 

1 Total area SEDi_total = (Ai_total / Ai_gauged) * SEDi_gauged 

2 Total area – flooded area SEDi_TRIB = [(Ai_total – Ai_flooded) / Ai_total] * SEDi_total 

* SEDi_total is the total sediment load of tributary i [metric tons], Ai_total is the total catchment area 

of tributary i [km2], Ai_gauged is gauged catchment area of tributary i [km2], SEDi_gauged is sediment 

load of the gauged catchment area of tributary i [metric tons], SEDi_TRIB is final sediment load of 

tributary i [metric tons] and Ai_flood is the flooded area of tributary i [km2] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A19. Long-term mean annual sediment load of each catchment excluding the 

flooded areas from 2001–2011. 
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Figure A20. Long-term mean annual sediment yield of each catchment of the TSL basin 

excluding the flooded areas from 2001–2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A21. Comparison of long-term mean annual sediment yield of Sekong and Srepok 

catchments with all catchments of the TSL basin. The annual sediment yield was 

calculated from the gauged area of each catchment from 2001–2011.   
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Table A15. The performance of statistical indices in the calibration and validation periods 

for study in chapter 4. 

Tributaries 
Calibration Validation 

R2 NSE PBIAS [%] R2 NSE PBIAS [%] 

Baribo 0.56 0.54 -4.50 0.50 0.35 -22.50 

Chikreng 0.41 0.40 -11.10 0.59 0.24 48.30 

Chinit 0.75 0.74 -1.80 0.67 0.65 10.80 

Dauntri 0.50 0.47 -32.10 0.17 0.15 -23.20 

Mongkol Borey 0.70 0.70 1.70 0.63 0.63 -0.90 

Pursat 0.31 0.31 -1.20 0.30 0.29 -5.40 

Sangker 0.42 0.40 -19.90 0.53 0.46 -37.00 

Sen 0.85 0.85 -8.90 0.79 0.79 2.50 

Siem Reap 0.65 0.65 -6.40 0.65 0.63 -10.10 

Sreng 0.84 0.83 -6.60 0.57 0.55 22.60 

Staung 0.66 0.65 -6.10 0.65 0.64 15.00 

Average 0.60 0.59 -8.81 0.55 0.49 0.01 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A22. Processing steps of the MODIS images for estimating inundated areas in the 

TSL Basin adopted from Frappart et al. (2018).
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Table A16. Summaries of natural forest cover (i.e.,  i.e., forest, evergreen broadleaf and mixed forest) in each tributary basin from 1995 to 2018. 

Area [%] and Change [%] refer to the percentage area shared with the total area of the tributary basin and the relative change compared to the 1995 

land cover area, respectively. 

Tributary 

basins 

Basin area 

[km2] 

1995 2002   2010 2018 

Area [km2] Area [%]* Area [km2] Change [%]** Area [km2] Change [%] Area [km2] Change [%] 

Baribo 7138.81 1255.14 17.58 839.21 -5.83 777.09 -6.70 729.85 -7.36 

Chikreng 2713.15 1194.19 44.01 882.49 -11.49 852.22 -12.60 792.19 -14.82 

Chinit 8217.39 3049.42 37.11 963.58 -25.38 588.82 -29.94 531.52 -30.64 

Dauntri 3682.20 724.39 19.67 595.74 -3.49 580.54 -3.91 525.18 -5.41 

Mongkol 

Borey 
14938.19 2483.88 16.63 1294.75 -7.96 1255.31 -8.22 1165.14 -8.83 

Pursat 5945.43 3598.59 60.53 3059.40 -9.07 3019.14 -9.75 2923.11 -11.36 

Sangker 6035.80 1506.52 24.96 1217.46 -4.79 1202.71 -5.03 1101.66 -6.71 

Sen 16344.33 10282.30 62.91 7282.30 -18.35 7027.76 -19.91 6878.89 -20.82 

Siem 

Reap 
3618.88 383.96 10.61 259.18 -3.45 254.80 -3.57 230.75 -4.23 

Sreng 9966.05 4217.41 42.32 2668.53 -15.54 2512.53 -17.11 2148.30 -20.76 

Staung 4355.05 1279.75 29.39 974.37 -7.01 965.83 -7.21 971.99 -7.07 
Note: Flooded forest cover is not included since the flooded area is excluded from SWAT modeling. 

 

 

 

 

 


