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Abstract  Personality computing explores methods of automatically measuring human traits to create a better understanding 

of the human psyche and thought processes. We examine conversations and interactions in dyadic environments through the 

perspective of representation learning to capture the psychological traits that compose a target's personality profile. We propose 

a bimodal speech-text model to predict scores for personality traits at a sentence level for the speakers using disentangled 

representations on speech and text. Our model outperforms current personality prediction methods using visual features and/or 

metadata on the UDIVA dataset's English subset. 
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1. Introduction 

Personality computing is a field that connects computer 

science to personality psychology. Understanding how 

different people think and act can often be achieved by 

understanding their personalities [1]. Personality 

psychology explains why people think and behave in a 

certain way [2]. It provides an explanatory account of an 

individual’s thoughts, feelings, motivations, and behaviors 

and their patterning [3].  

With personality computing, one of the goals is to 

develop techniques for artificial intelligence to detect, 

recognize, and predict human emotions and be able to 

respond and adapt to them [4]. Advancements within this 

field can not only improve computational systems but 

ultimately help further our understanding of human 

psychology and behavior [5, 6].  

In this work, we explore the automatic inference of 

personality using audio data recorded during face -to-face 

dyadic interactions using a multimodal method that is 

effective for emotion recognition. Inspired by th e use of 

autoencoders for disentanglement representation learning, 

we propose an audio-textual multimodal method for 

personality score prediction using the UDIVA dataset [7]. 

Current methods of personality recognition using this 

dataset propose methods using visual features and/or 

metadata [8]. However, our approach focuses on using just 

the audio recorded from these sessions to perform our 

personality analysis. Doing so not only allows us to reduce 

the amount of overhead for data collection and processing 

but also prevents more confounding variables and biases 

that are known to be associated with visual modalities.  

 

Our work is the first to our knowledge to evaluate speech 

and text multimodal personality recognition on the UDIVA 

dataset as well as to perform self -reported personality 

recognition with a cross-representation autoencoder. We 

introduce an automatic speech recognition (ASR) 

component which makes it possible to perform text 

personality analysis solely with audio from the dataset.  

 

2. Related Works 

2.1. Emotion Recognition  

This work is inspired by a multimodal audio -textual 

system [9] which uses data captured in dyad ic interactions 

to perform emotion recognition. Both emotion recognition 

and personality recognition are tasks within the scope of 

affective computing and pertain to the automatic 

evaluation of human affect. As such, we found that a 

similar approach was effective for an adjacent task in the 

field.  

We aim to capture similar features in the speech data to 

evaluate its performance from emotion recognition to 

personality recognition. However, our multimodal system 

regresses personality scores for each input. We also 

introduce an ASR component to our system to 

automatically generate text transcriptions from the speech 

audio samples and a new weighting policy for the fusion of 

both modalities.  

2.2. Personality Modeling  

The Big Five Model of Personality (also known as the 

Five-Factor Model or OCEAN Model) is one of the most 

influential models in psychology [10]. The traits present in 

the Big Five represent those dimensions that have shown 

up most frequently throughout questionnaires and lexicon 
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of trait-descriptive items. 

The Big Five traits are Openness, Conscientiousness, 

Extraversion, Agreeableness, and Neuroticism. With this 

trait model, personality can be numerically represented by 

assigning a value to each dimension on a scale. This 

personality model and other similar five-factor solutions 

(e.g., the AB5C model) [2] have been found to be more 

stable than more complex solutions [10].  

For this work, we examine dyadic interactions to 

perform our personality analysis. These types of 

interactions are interactions between two parties, which are 

often used as a source for context -rich scenarios to measure 

interpersonal constructs and social behaviors [7]. Research 

in this field often leverages dyadic interactions for 

detecting and modeling individual and interpersonal social  

signals and dynamics [1].  

2.3. Personality Recognition  

The goal of automatic personality recognition is to 

identify various personality-relevant information in a 

subject to provide a useful personality assessment [11]. 

This has been accomplished in previous works by focusing 

on a single point of view, relying on handcrafted features 

such as facial landmarks, gaze, and head and body gestures 

[8]. However, in this work, we aim to perform personality 

recognition without using such features. Previous studies 

have shown that apparent personality perception can suffer 

heavily from bias associated with perceived attributes like 

gender, ethnicity, age, and face attractiveness [12,13].  

It can be time-consuming and exhaustive work to record, 

transcribe, and synchronize t ranscriptions in data 

collection. Furthermore, several methods applied to our 

chosen UDIVA dataset use handcrafted features that require 

labor-intensive annotations [7]. In our work, we propose a 

multimodal method that only requires an audio stream as 

input to perform personality recognition.  

3. Methodology 

Our model contains a bimodal structure to perform 

personality recognition using a separate “Speech” audio 

modality and a “Text” language modality, as depicted in 

Figure 1. We develop a model for each modality that 

predicts personality scores over the five personality traits 

presented in Big Five model of personality and then 

combine the results to get our final output. Our speech 

model uses the audio from the dataset to train an auto -

encoder to generate representations disentangled with 

speaker features, which is used to estimate personality 

scores, described in Section 3.2. Likewise, our text model 

uses a CNN to generate embeddings for scores, described 

in Section 3.3. We fuse these two scores from each model 

to generate final predictions using our method explained in 

Section 3.4.  

The system uses as inputs audio recordings of each 

session, text transcriptions of those audio recordings and 

outputs labels containing the personality scores of the 

participant for each sample. For the speech model, we first 

extract wav2vec2.0 features, a Mel-spectrogram, speaker 

identity embeddings, and a phone sequence from each 

sample and then use them as input to get the predicted 

personality scores.  

For the text model, we input text features extracted from 

the transcripts using Transformer-based language models 

to get predictions for their personality scores. Finally, we 

combine these two scores with a weighted score fusion to 

obtain the final personality score predictions.  

3.1. Data Preprocessing 

We first undergo data preprocessing to obtain speech 

audio, text transcriptions, and personality labels for each 

session recording to divide the data based on every `turn' 

spoken in the recording.  

For input into our system, we take the video recordings 

of the UDIVA dataset and extract the audio from each 

session. From there, we separate the audio based on each  

spoken turn and participant. For each speech sample, we  

generate a label containing the speaker's personality scores 

obtained from the metadata information. We also use 

wav2vec2.0 [16] to automatically generate transcripts for 

each sample. The wav2vec2.0 model used in this 

component is a pre-trained language model released by 

huggingface which has been fine-tuned for speech 

recognition in English [19].  

3.2. Audio Modality 

The Encoder takes the wav2vec2.0 features and speaker 

identity embeddings as input and outputs a speech 

representation with personality information. This 

representation is then input into the Decoder along with the 

phone sequence embeddings generated by the phone 

encoder and speaker identity embeddings to reconstruct the 

Mel-frequency spectrograms.  

We minimize the loss between the reconstructed 

spectrograms and the original ones generated by the speech 

samples to leverage both high-level and low-level features 

of the speech data. Finally, we disentangle features from 

the speaker identity and phone sequences irrelevant to 

personality recognition by reducing the size of the 

encoder's bottleneck. This allows us to generate speech 

representations with personality cues  that are uninfluenced   
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by confounders in the speaker’s identity, which are then 

used in our regressor to predict personality scores.   

To perform personality recognition using the audio 

modality, we analyze speech and speech features extracted 

from the audio and train it through the encoder-decoder 

model to generate speech representations that contain 

personality information. This is depicted in the “Speech 

Model” component of Figure 1 for the architecture of this 

model. Following the method in [9], we randomly crop our 

samples to 96-frame speech segments to perform feature 

extraction on the input to generate speech spectrograms, 

phone sequences, wav2vec2.0 features, and speaker 

identity embeddings.  

The encoder concatenates the wav2vec2.0 feature and 

speaker identity embeddings and then processes them 

through three convolutional layers and two Bidirectional 

Long Short Term Memory (BLSTM) layers, followed by a 

downsampler to get the personality speech representation.  

This representation is then input into the Decoder along 

with the phone sequence embeddings generated by the 

phone encoder and speaker identity embeddings to 

construct the Mel-frequency spectrograms. First, the 

decoder takes the speech representation of size from the 

encoder and upsamples it back to its previous size. This 

upsampled speech representation is then concatenated with 

the speaker identity embedding and the phone sequence  

embedding, then processed through an LSTM layer, three 

convolutional layers, two more LSTM layers, and finally, 

a fully connected layer to output a feature array that 

represents the Mel-frequency spectrogram.  

We compare this with the ground-truth spectrograms 

using mean squared error loss. We minimize the loss 

between the reconstructed spectrograms, which allows us 

to the cross-representational aspect of this disentanglement 

method, with its ability to represent both high -level 

wav2vec2.0 features and low-level spectrogram features. 

Finally, we can disentangle features from the speaker 

identity and phone sequences irrelevant to personality 

analysis by reducing the size of the encoder's bottleneck.  

At inference time, the audio sample is divided into 96-

frame speech segments, and personality predictions are 

made for every segment in the speech sample. The final 

personality score is determined by taking the average of all 

the predicted scores within that sample.  

3.3. Text Modality 

In addition to the speech-based personality recognition, 

we also analyze the text features of the spoken dialogue 

during each session to perform text -based personality 

recognition.  

During the data preprocessing, we included an ASR 

component that generates text transcriptions for each 

speech sample. Then, we use pretrained Transformer-based 

models [18] to extract features from each transcription 

which are used to train our text -based personality 

recognition model using a convolutional neural network.  

Compared to the speech-based component, which 

randomly selects 96-frame speech segments from each 

sample, this text-based component generates predictions 

using the entire text-transcribed sample.  

Figure 1. High level overview of the architecture of our multimodal personality recognition model.  In our speech model, 

we perform feature extraction using Librosa [14], Gentle Aligner [15], wav2vec2.0 [16], and Resemblyzer [17]. These 

features are then input into our encoder-decoder as depicted above. The text model uses BERT [18] to generate text 

embeddings which are processed through a convolutional neural network. Using the output of both models, we are able to 

perform late fusion to get the final personality predictions.  
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Table 1. Comparison of the results of our proposed method with challenge results from [8]. The values on the table 

represent MSE, in which case a lower value indicates better performance. *Results from the English  subset 

 

3.4. Multimodal Fusion 

Both our speech modality and text modality produce 

personality score predictions using their respective models. 

To leverage both speech and text modes, we perform score 

fusion to combine the results of these two components.  

Rather than assigning a single scalar value to each 

modality as proposed by [9], we instead introduce a 

weighted method that uses different weights for each 

individual trait. For each sample, we use the following:  

𝒑 =
1

𝒘𝟏 +𝒘𝟐

(𝒘𝟏 ⊙𝒑𝒔 +𝒘𝟐 ⊙𝒑𝒕) 

where 𝒘𝟏  and 𝒘𝟐  represent weight vectors for the 

different modalities and ⊙ is the Hadamard or element-

wise product. 

 

4. Experiments 

4.1. Conditions 

In this work, we use the UDIVA dataset [7], which 

contains video recordings of dyadic interaction sessions 

and self-reported personality scores for each participant. 

These sessions were conducted in Spanish, Catalan, or 

English. In this work, we focus on the sessions of the 

dataset that were in English, discarding the sessions in 

Spanish and Catalan.  

During our training and evaluation, we perform cross -

validation to separate our training and validation sets 

across five folds. For each session, we randomly assign it 

to one of the folds such that it is part of the test set , and 

the remaining sessions make up the training set. This 

process is necessary to ensure that speakers in the test set 

are not found in the training set.  

In the speech modality of the personality recognition 

model, we use the Adam optimizer with a learning rate at 

1e-4 and default beta coefficients of 0.9 and 0.999. The 

batch size is set at 2 , and the model is trained for 500,000 

iterations at around 14 to 15 hours per fold. For the text 

modality of the personality recognition model, we similarly 

use the Adam optimizer with a learning rate at 1e-4 and 

default beta coefficients of 0.9 and 0.999. The batch size is 

set at 4, and the model is trained for 412,800 iterations for 

around 30-40 minutes per fold. Our models were 

implemented in PyTorch and trained on an NVIDIA Telsa 

P100 GPU.  

4.2. Results 

We evaluate the performance of our model by comparing 

the unimodal and fusion results to the challenge results 

presented in [8].  

In Table 1, we observe that our model outperforms 

existing methods on nearly all personality traits . Our 

overall average mean squared error for the fusion model is 

0.470, much smaller than that of the winning solution [2 0] 

of the ChaLearn challenge at 0.769. However, these results 

may not entirely represent the whole dataset because our 

model only examines the English sessions.  

 

5. Ablation Studies 

We perform a series of ablations on both the speech and 

text modalities to gain a better understanding of the 

contributions of each component in our system.  

5.1. Bottleneck Experiments  

We present several bottleneck configurations for the 

encoder by manipulating the values of the number of 

neurons in the BLSTM layers and the downsampling 

frequency. Our goal is to reduce the size of the encoder's 

output to be smaller than the size of the wav2vec2.0 feature 

array [1024, 96] . The results of these experiments are 

shown in Table 2.  

Our results reveal that different traits perform 

differently depending on the bottleneck size, which may 

imply that the optimal size of the speech representation 

may differ among traits.

Method  O C E A N Avg↓  

UDIVA Baseline [7]  0.744  0.794  0.886  0.653  1.012  0.818  

SMART-SAIR Solution [20] 0.711  0.723  0.867  0.548  0.997  0.769  

FGM Utrecht Solution [8]  0.752  0.687  0.917  0.671  1.098  0.825  

Speech Model* (ours)  0.497  0.989  0.444  0.925  1.518  0.875  

Text Model* (ours)  0.223  0.399  0.200  0.667  1.272  0.552  

Fusion Model* (ours)  0.195  0.434  0.185  0.674  0.862  0.470  

- 244 -



 

  

 

 

Table 2. Ablations on different bottleneck sizes in the 

speech encoder. The Bottleneck label refers to the size of 

the speech representation output by the encoder at the 

specified configuration. The values indicate MSE.  

Bottleneck  O C E A N Avg↓  

[256, 48]  0.49  1.34  0.52  0.84  1.48  0.94  

[128, 24]  0.97  1.32  0.99  0.81  1.03  1.02  

[64, 8]  0.73  1.23  0.83  0.96  0.98  0.95  

[16, 2]  0.50  0.99  0.44  0.92  1.52  0.87  

 

5.2. Encoder-only Experiments 

To evaluate the performance and effectiveness of the 

cross-representational disentanglement in the speech 

model, we use a speech model that employs only an encoder 

to generate speech representations. As a result, this new 

encoder-only model does not use any disentanglement. For 

these experiments, we compare the results of our encoder-

decoder method to the encoder-only method.  

The results for evaluating the performance of the 

disentanglement method can be found in Table  3. We 

observe that in nearly all traits, the model with the 

Encoder-Decoder outperforms that of the Encoder-only 

architecture. Thus, we confirm that speech disentanglement 

using the speaker’s identity features is effective for 

personality recognition.  

Speech disentanglement on a speaker’s identity was 

originally proposed in [9] to eliminate speaker information 

from the speech representations for emotion recognition. 

However, speaker identity plays a different role in 

personality recognition, as personality is a dimension of 

the speakers themselves. Thus, when we apply this method 

to personality recognition, rather than eliminating speaker 

identity, we instead disentangle speaker identity features 

from their personality. The results found in Table  3 indicate 

that this type of disentanglement is indeed effective, and 

we can eliminate aspects of speaker identity that distract 

from personality trait estimation.  

5.3. ASR Analysis 

We compare the performance of the text model trained 

using the ASR-generated text transcriptions with one 

trained using the provided transcriptions in the dataset.  

From the results depicted in Table 4, we observe that in 

almost every trait, the model with the ASR transcripts 

outperforms that of the UDIVA Transcripts.  

The transcripts in the UDIVA dataset were obtained 

through a third-party company and manually reviewed for 

cleanliness and data protection [8]. However, upon close  

Table 3. Ablation on using disentanglement. We compare 

the disentanglement-employed Encoder-Decoder model 

and the Encoder-only without disentanglement. The values 

indicate MSE.  

 O C E A N Avg↓  

Encoder-

Decoder  
0.27  0.64  0.27  0.60  0.81  0.52  

Encoder 

only  
0.29  0.74  0.30  0.59  0.94  0.57  

 

Table 4. Ablation results for the training on the provided 

text transcripts in the UDIVA dataset compared the 

transcripts generated using ASR. The values indicate MSE.  

 O C E A N Avg↓  

UDIVA  0.23  0.42  0.21  0.69  1.27  0.56  

ASR 0.22  0.40  0.20  0.67  1.27  0.55  

 

inspection, the UDIVA dataset transcripts appear to correct 

grammar and omit filler words such as ‘like’ or ‘uh’ that 

the ASR can sometimes pick up on. Our ASR transcripts 

were much more consistent in transcribing the speech 

word-for-word. 

Thus, we can conclude that our model can perform well 

using automatically generated text transcriptions from ASR 

rather than the given transcripts. 

 

6. Conclusion 

In this work, we presented a multimodal system for 

personality recognition that outperforms current existing 

methods evaluated on the UDIVA dataset. Employing 

representation learning for this task was very effective, 

since performing disentanglement using an autoencoder 

was able to help our system better pick up on personality 

cues within the target's speech audio signals. Furthermore, 

using ASR for text transcriptions helped increase 

performance with our text model. Finally,  our weighting 

policy allowed us to individually balance the contributions 

from each modality depending on the trait. Using our 

system, we produced better results within the English 

subset of the UDIVA dataset, outperforming current 

methods that use visual features by overall 0.299 MSE. 
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