T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	複数建物を有する街区免震の地震応答に関する検討 その2 最適ダンパ ー量の検討と応答低減効果の比較		
Title(English)	Seismic response of multiple building base isolated system Part2. Optimum damper size and response reduction effect		
著者(和文)			
Authors(English)	Airi Hasegawa, Daiki Sato, Jing Ll, Masaru Kikuchi		
出典 / Citation			
Citation(English)	, , , pp. 505-508		
発行日 / Pub. date	2023, 2		

複数建物を有する街区免震の地震応答に関する検討

その2 最適ダンパー量の検討と応答低減効果の比較

構造-振動

免震構造 街区免震 耐震

時刻歴応答解析 降伏せん断力係数 ダンパー量

1. はじめに

本報その1では、免震構造協会で提案している街区免震 のモデルについて固有値解析を行い、上部構造の固有周期 が街区免震全体に与える影響について考察した。街区免震 全体に対して、固有周期が長い建物の応答が支配的となり、 街区免震全体の固有周期はそのような建物の固有周期に 近づくことがわかった。

本報その2では、街区免震における免震層の最適なダン パー量について検討する。具体的には、時刻歴応答解析を 行い上部構造と免震層の最大応答値から、応答低減効果が 大きいダンパー量を検討する。さらにそこから得られた最 適ダンパー量を用いて、街区免震モデルの応答結果を単体 免震モデル、耐震モデルの結果と比較し、街区免震の応答 低減効果について検討する。

2. 入力地震動

入力地震動は、コーナー周期 0.64 s 以降で擬似速度応答 スペクトル $_pS_v(h=5\%)$ が 80 cm/s で一定となる告示波 ART HACHI(位相特性: HACHINOHE 1968 NS)と, ART KOBE(位 相特性: JMA KOBE 1995 NS)の 2 種類を用いる。Fig. 1 に 時刻歴波形、Fig. 2 に疑似速度応答スペクトル $_pS_v(h=5\%)$ を示す。

Seismic response of multiple building base isolated system Part2. Optimum damper size and response reduction effect

正会員	○ 長谷川愛理*1	正会員	佐藤大樹 *2
]]	*1 李晶]]	^{*3} 菊地優

3. 街区免震におけるダンパー量の検討

街区免震に対してダンパー量をパラメータとした時刻 歴応答解析を行い,得られた最大応答値に基づいて,本検 討モデルにおける最適なダンパー量を検討する。ここで, ダンパー量とは免震層の降伏せん断力係数*α*sを指す。

Fig. 3~5 にそれぞれ時刻歴応答解析により得られた,免 震層の最大変位 X_0 ,上部構造の最大層間変形角 R_{max} ,上部 構造の最大加速度 A_{max} を示す。図中の赤破線は各指標の許 容上限値を表しており,Fig. 3 は免震層の変位のクライテ リア,Fig. 4 は層間変形角のクライテリア,Fig. 5 は入力 地震動の最大加速度である。また(a)には ART HACHI NS を,(b)には ART KOBE NS を用いた結果を示している。 Fig. 3 の免震層の最大変位では、ダンパー量が大きいほど 免震層の応答は低減する傾向が見られ、 $\alpha_s = 0.025$ 以上で クライテリアを満足することが確認できる。Fig. 4,5 に 示す上部構の応答値に着目すると、ダンパー量が過大また

HASEGAWA Airi, SATO Daiki, LI Jing, KIKUCHI Masaru

-506-

は過小であるとき応答は増大する傾向にあり,特に固有周 期が長い病院(HOS),高層住宅棟(HB)の応答値が大きいこ とがわかる。Fig. 4 では α_s = 0.015 ~ 0.025 の範囲において 全ての建物の最大層間変形角が許容範囲に収まっている ほか,Fig. 5 についても α_s = 0.015 ~ 0.025 の応答値は比較 的小さいことが確認できる。これらの結果より,全ての建 物と免震層において設計クライテリアを満たすダンパー 量は α_s = 0.025である。

Fig. 6, 7 に上部構造の最大層間変形角の高さ方向分布を 示す。Fig. 6 は ART HACHI NS を, Fig. 7 は ART KOBE NS を用いており,それぞれ(a)~(f)に建物ごとの結果を示 す。図中の赤破線は第一勾配の限界(δ_1)層間変形角 R_1 を, 赤実線は第二勾配の限界(δ_2)層間変形角 R_2 を表している。 Fig. 6, Fig. 7 より,多くの条件下で各層の最大層間変形角 は第二勾配までに収まっていることが確認できる。さらに ダンパー量が極端に多いとき,または極端に少ないとき, 応答値は最大を示す傾向が見られる。

以上より、ダンパー量が過大または過小であるとき街区 免震の応答は増大する傾向にあることがわかる。また、本 検討モデルにおける最適なダンパー量は、全ての建物およ び免震層で設計クライテリアを満たし、応答値が比較的低 い値を示す 0.025 と決定できる。

4. 街区免震,単体免震,耐震の比較

4.1. 解析モデル概要

本章では街区免震に加え、単体免震モデルおよび耐震モ デルの解析を行う。以下に単体免震と耐震のモデル概要を 示す。解析対象とする建物は本報その1で示した6種類と し、建物の略称も同じく、低層住宅棟を LB、高層住宅棟 を HB, 緊急避難所を GYM, エネルギーセンターを EC, 防災指令センターを DC, 病院を HOS と表す。

単体免震モデル

本報では、建物1棟につき1つの免震基盤を有するモデ ルを単体免震と定義する。解析モデルをFig.8に示す。単 体免震モデルにおける免震層の質量は、各上部構造の支配 面積に含まれる免震基盤の重量を合計することで算出す る。そのようにして求めた免震層の質量をTable1に示す。 ここで m_0 は免震層のみの質量を、 Σm は上部構造と免震層 の合計である総質量を表している。全ての建物において、 免震層の最大変形 $\delta_{0,max}$ は 40 cm、免震層の1 次固有周期 $_1T_{iso}$ は1.5 s、免震層の最大せん断力係数 $a_{0,max}$ は 0.1,降伏 せん断力係数 a_s は 0.025(3 章)とする。街区免震と同じ手法 を用いた免震層の設定により得られた免震層のパラメー タを Table 2 に示す。ここで、 T_f はアイソレータの周期、 k_f は免震層の降伏剛性、 k_s は履歴型ダンパーの剛性、 δ_y は 免震層の降伏変形を表している。

耐震モデル

免震層を設けない耐震の解析モデルを Fig.9 に示す。解析 対象とする建物の種類は、街区免震および単体免震と同じ であるが、耐震の場合は建物の剛性と耐力をそれぞれ免震 の場合の2倍に増幅する。固有値解析によって得られた1 ~3 次の耐震建物の固有周期を Table 3 に示す。免震時同 様、1 次固有周期が極端に長く支配的となっており、病院 (HOS)、高層住宅棟(HB)の順に固有周期が長い建物である ことが確認できる。

単体免震の解析モデル

耐震の解析モデル

Table 1 単体免震時の質量 [kN・s²/cm]						
建物	LB	HB	GYM	EC	DC	HOS
m_0	19.6	26.1	97.8	97.8	81.5	117.3
Σm	248.4	368.5	362.0	250.8	256.0	654.3

Table 2 免震層のパラメータ

建物	$T_f[\mathbf{s}]$	k _f [kN/cm]	k _s [kN/cm]	δ_y [cm]
LB	4.55	473.0	3886	
HB		701.7	5765	
GYM		689.2	5662	1 206
EC		477.6	3924	1.390
DC		487.4	4004	
HOS		1245.7	10234	

Table 3 耐震建物の固有周期 [s]

建物	1次	2 次	3 次
LB	0.594	0.211	0.129
HB	1.079	0.376	0.228
GYM	0.135	0.071	0.043
EC	0.296	0.114	—
DC	0.630	0.231	0.154
HOS	1.185	0.455	0.272

4.2. 時刻歴応答解析結果

単体免震モデル(a_s=0.025),耐震モデルについて時刻歴 応答解析を行った。本章では街区免震を含めた3つのタイ プのモデルについて,最大応答値の観点から比較を行う。 ここで層間変形角のクライテリアは,免震の場合で1/200, 耐震の場合で1/100と設定する。Fig. 10(a)~(c)にそれぞれ 上部構造の最大層間変形角,上部構造の最大加速度,免震 層の最大変位を示す。図中の赤破線は各指標の許容上限値 を表しており, Fig. 10(a)は層間変形角のクライテリア, Fig. 10 (b)は入力地震動の最大加速度, Fig. 10 (c)は免震層の変 位のクライテリアである。街区免震において, 耐震と比較 すると応答は大きく低減しており,免震による応答低減効 果が発揮されていることがわかる。単体免震と比較すると 上部構造の最大加速度,免震層の最大変位はほぼ同値であ り,全ての条件下においてどちらもクライテリアを満たし ている。しかし上部構造の最大層間変形角に着目すると, 街区免震の応答のほうが大きくなる場合も見受けられる。

5. まとめ

街区免震モデル,単体免震モデル,耐震モデルに対して 時刻歴応答解析を行い,最大応答値に基づいた街区免震の 応答低減効果について検討を行った。街区免震における最 適なダンパー量の検討では,過大または過小なダンパー量 は応答を増大させる傾向にあり,本検討モデルでは a_s=0.025が最も応答低減効果を発揮する最適なダンパー 量であることがわかった。街区免震モデル,単体免震モデ ル,耐震モデルによる応答比較では,耐震モデルに比べ街 区免震の応答は小さい結果となり,免震による応答低減効 果が確認できた。しかし、単体免震モデルと比較すると街 区免震の応答の方が大きくなる場合もあることから,設計 の際には注意が必要である。

謝辞,参考文献はその1にまとめて示す。

*1 東京工業大学 大学院生

Graduate Student, Tokyo Institute of Technology *1

*2 東京工業大学未来産業技術研究所准教授・博士(工学) Associate Professor, FIRST, Tokyo Institute of Technology, Dr.Eng *2

*3 北海道大学大学院工学研究院 教授・博士(工学)

Professor, Faculty of Engineering, Hokkaido University, Dr.Eng *3