**T2R2**東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

# 論文 / 著書情報 Article / Book Information

| 論題(和文)            | 任意指定ダンパー量を考慮したオイルダンパー制振設計手法の検討<br>- パラメータが設計値に与える影響 -                                                                      |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|
| Title(English)    | Study of seismic design using oil dampers considering arbitrary damper quantity - Effects of parameters on design values - |  |  |
| 著者(和文)            | │<br>│ 滿田悠斗, 佐藤大樹, Alex Shegay                                                                                             |  |  |
| Authors(English)  | Yuto Mitsuta, Daiki Sato, Alex Shegay                                                                                      |  |  |
| 出典 / Citation     | 日本建築学会関東支部研究報告集, , , pp. 513-516                                                                                           |  |  |
| Citation(English) | , , , pp. 513-516                                                                                                          |  |  |
| 発行日 / Pub. date   | 2023, 2                                                                                                                    |  |  |
| 権利情報              | 一般社団法人 日本建築学会                                                                                                              |  |  |

# 任意指定ダンパー量を考慮したオイルダンパー制振設計手法の検討 -パラメータが設計値に与える影響-

構造-振動

正会員 ○ 滿田悠斗 正会員 佐藤大樹 ″ Alex Shegay

制振構造 オイルダンパー 大振幅地震動

#### 1. はじめに

近年,南海トラフ地震による長周期地震動 いや直下型地 震動など、これまでの設計レベルを大きく上回る地震動 (大振幅地震動<sup>2)</sup>)の発生が予測されている。そのため、 超高層建物においても、より高い耐震性が求められる。そ の対策の1つとして、オイルダンパーを用いた制振設計 が挙げられるが,対象となる建物によっては,建築計画上, 層間変形角を目標値以内に収めるという十分な制振効果 が得られるダンパー量を設置できない場合がある。笠井 らは、オイルダンパーによる制振設計として、等価剛性調 節法による層剛性非比例分配を提案した 3。この手法によ る多質点系への分配は、設計用外力分布と建物剛性の差 が大きな層に対し、より大きなダンパー量を分配できる ため、様々な地震動に対して有効なダンパー配置を設計 することが可能となる。また、上野らは、上記で述べた層 剛性非比例分配に,設計者が必要ダンパー量に対して任 意に指定できるダンパー量(以降,任意指定ダンパー量) の導入を考えた設計手法を提案した 4。この手法により, 任意指定ダンパー量として各層の制限を設けながらも建 物の構造特性に従うダンパー分配を行うことが可能とな る。しかし、検討数が少ない。

そこで、本報ではまず、上野らが提案した設計手法を用 いて制振設計を行う。その際に、様々なパラメータを変化 させ、比較することで、そのパラメータが設計値に与える 影響について確認することを目的とする。

#### 2. 建物モデルおよび入力地震動概要

#### 2.1 非制振モデル概要

本報で用いる建物モデルは、文献 4)で用いたモデルと 同様である。本報では、このダンパーが設置されていない 建物モデルを非制振モデルと呼ぶこととする。以下に非 制振モデルの概要を記す。図 1 に非制振モデルの軸組図 と基準階平面図を示す。建物モデルは、地上 37 階、建物 高さ 146.1m で、平面プランは各階同一の片コア形式であ る。長辺方向を X 方向、短辺方向を Y 方向としており、 本報では、X 方向を検討対象とする。図 1 に示すように、 Y3 構面の X4~X7 スパンの高さ方向のみにダンパーが設 置可能であると仮定する。梁断面は H-850×350×19×32~H-700×250×12×19, 柱断面は, □-700×700×65×65~□-700×700×25×25 である.また,柱梁の鋼種は SM490 であ る.なお,非制振モデルの X 方向の固有周期は,1 次 4.87 s, 2 次 1.69 s, 3 次 1.00 s である。



2.2 入力地震動概要

本報では、コーナー周期 0.64s 以降で減衰定数 5%にお ける擬似速度応答スペクトル pS, が 80cm/s で一定となる 告示波 ART HACHI (位相特性: HACHINOHE 1968 EW), および大阪地方の基整促波である OS2 の 2 種類の地震動



Study of seismic design using oil dampers considering arbitrary MITSUTA Yuto, SATO Daiki, Alex SHEGAY, damper quantity

- Effects of parameters on design values -



#### 図 3 変位応答スペクトル

で検討を行う。図 2 に加速度波形を、図 3 に減衰定数が 2,5,10%の変位応答スペクトルを示す。また,図 3 には 非制振モデルの X 方向の 1~3 次の固有周期を併記する。 なお,解析は構造計算プログラムの RESP-D を用いて行い, 積分時間間隔は 0.001 秒で出力間隔は 0.01 秒で行う。ま た,本報では主架構弾性で解析を行う。

#### 3. オイルダンパーを用いた制振設計手順

以下に任意指定ダンパー量*K*<sup>"</sup><sub>di,op</sub>を考慮したオイルダン パー制振設計手順を示す。

- STEP1. 検討対象建物の諸元及び設計用地震動の設定
   建物モデルの質量 M<sub>i</sub>, 主架構剛性 K<sub>fi</sub>, 層高 h<sub>i</sub>,
   1 次固有周期 T<sub>f</sub>,初期減衰定数 h<sub>0</sub>を設定する。
   また,1 次固有周期 T<sub>f</sub>における設計用地震動の
   変位応答スペクトル S<sub>d</sub>(T<sub>f</sub>h<sub>0</sub>)を設定する。
- STEP2. 設計時に必要なパラメータの設定

リリーフ率 $\mu_d$  (リリーフ時のダンパーの変形に 対するダンパーの最大変形),2次粘性比p,内 部剛性係数 $\beta$ ,取付け部材剛性比 $K_b/K_f$ を設定 する。

<u>STEP3. 層間変形角 θfの算定 5</u>

$$\theta_f = \frac{S_d(T_{f}, h_0)}{H_{eff}} \tag{1}$$

ここで、Heffは有効高さ5を示す。

- <u>STEP4. 目標層間変形角  $heta_{max}$ の設定</u>
- 制振構造での目標層間変形角 $\theta_{max}$ を設定する。

## <u>STEP5. 1質点系での必要ダンパー量の算定 5</u>

STEP3 で算定した層間変形角 $\theta_f$ から STEP4 で 定めた目標層間変形角 $\theta_{max}$  に低減させるため の必要ダンパー量(1次損失剛性比 $K_d^{"}/K_f$ )を性 能曲線(図 4) <sup>5</sup>より算定する。図 4 中の $R_a$ は せん断力低減率, $R_d$ は変位低減率を表す。



その際,減衰効果係数 Dh は次式より算出する。

$$D_h = \sqrt{\frac{(1+\alpha h_0)}{(1+\alpha h_{eq})}} \tag{2}$$

ここで, *h*<sub>eq</sub>は等価減衰定数<sup>5</sup>である。定数 α は 地震動によって変化する。

#### <u>STEP6.</u> ダンパーの内部剛性比 $K_d/K_f$ の算定 $\frac{5}{2}$ 。

$$\frac{K_d}{K_f} = \frac{K_d^{"}}{K_f} \cdot \frac{\beta}{\omega_f}$$
(3)

ここで、 $\omega_f$ は主架構の固有円振動数である。

### <u>STEP7. 等価支持材剛性比K<sup>\*</sup><sub>b</sub>/K<sub>f</sub>の算定 <sup>5</sup></u>

$$\frac{K_b^*}{K_f} = \frac{1}{K_f / K_b + K_f / K_d}$$
(4)

#### STEP8. 等価支持材変形比の算定<sup>5)</sup>

ここで

STEP5 より得られた $K_a^{"}/K_f$ とSTEP7 より得られた $K_b^{*}/K_f$ より等価支持材変形比 $\lambda$ が得られる。

$$\lambda = \frac{K_d^{''}}{K_f} \cdot \frac{K_f}{K_b^*} \tag{5}$$

#### STEP9. 多質点系への必要ダンパー量の分配<sup>4</sup>

全層に対して必要ダンパー量 $K_{di}^{''}$ を次式より算 定する ( $\Sigma_{A}$ =0)。

$$K_{di}^{"} = \frac{Q_{i}}{h_{i} \sum_{B} Q_{i} h_{i}} \left\{ \frac{K_{di}^{"}}{K_{f}} \sum_{i=1}^{N} (K_{fi} h_{i}^{2}) - \sum_{A} (K_{di,op}^{"} h_{i}^{2}) + \Lambda \sum_{B} (K_{fi} h_{i}^{2}) \right\} - \Lambda$$
(6)

$$\Lambda = \lambda + \frac{1}{\lambda \{f(p, \mu_d)\}^2}$$
(7)

$$f(p,\mu_d) = p + \frac{2(1-p)}{\mu_d} - \frac{1-p}{{\mu_d}^2}$$
(8)

ここに, Q<sub>i</sub>は層せん断力を表す。

- <u>STEP10.</u> K<sup>"</sup><sub>di</sub> < 0がある場合,当該層をK<sup>"</sup><sub>di</sub> = K<sup>"</sup><sub>di,op</sub> = 0とし, 式(6)~(8)を用いて,他層のK<sup>"</sup><sub>di</sub>を再計算する<sup>4</sup>)。
- <u>STEP11.</u> 設置可能な $K_{di}^{"}$ を超える層がある場合,当該層 を $K_{di}^{"} = K_{di,op}^{"}$ とし,最も大きな値が算出された 層に対し, $K_{di,op}^{"} = K_{di,max}^{"}$ を与えて,式(6)~(8)を 用いて,他層の $K_{di}^{"}$ を再計算する。このとき,  $K_{di,op}^{"}$ は次式で得られる<sup>4</sup>。

$$K_{di,op}^{"} = \frac{F_{dyi}\cos\theta N_{di}}{\dot{u}_{dyi}/\omega_f}$$
(9)

ここで、 $F_{dyi}$ はリリーフ荷重、 $N_{di}$ は設置ダンパー数、 $\dot{u}_{dyi}$ はリリーフ速度である。なお、 $K_{di,max}^{"}$ は設置上限ダンパー量を表す。

STEP12. K<sup>"</sup><sub>di</sub> ≤ K<sup>"</sup><sub>di,op</sub>となるまで,STEP10 を繰り返し, 最終的なダンパー配置を得る<sup>4)</sup>。

#### <u>STEP13. 各層のダンパー諸元の決定</u>

STEP12 より求めた必要ダンパー量よりオイル ダンパーの種類と本数を選定する。

#### 4. 各種パラメータが設計値に及ぼす影響

3.1 節で示した設計手順を用いて制振設計を行う。その際に、様々なパラメータを変化させ、比較することでそのパラメータが及ぼす影響について確認する。

#### 4.1 設計時に必要なパラメータ

本章では,設計用地震動の変位応答スペクトル  $S_d(T_f,h_0)$ を ART HACHI, OS2 においてそれぞれ 108.18, 111.75 と し、リリーフ率 $\mu_d$  = 2.0,取付け部材剛性比 $K_b/K_f$  = 2.0 と して制振設計を行う。また,STEP11 で設定する $K_{di,max}^{''}$ につ いては,各層に 2000 kN 級のオイルダンパーを6基とした ときの $K_{di,op}^{''}$ とする。よって、リリーフ荷重 $F_{dyi}$  = 1800 kN, リリーフ速度 $i_{dyi}$  = 1.5 cm/s とし、その他の諸元を式(9)に 代入し、 $K_{di,op}^{''}$  =  $K_{di,max}^{''}$  = 6500 kN/cm を得る。加えて, STEP13 でダンパーの選定を行う際に、ダンパーのリリー フ荷重 $F_{dyi}$ は要求値 $F_{dyi}$ を用いて以下の範囲内になるよう に選定した。

$$0.8F'_{dyi} \le F_{dyi} \le 1.2F'_{dyi} \tag{10}$$

さらに, STEP13 でダンパーを選定する際に使用するダ ンパーの諸元を表 1 に示す。

|                       | 祝 アンパ 品儿 |        |  |  |
|-----------------------|----------|--------|--|--|
| ダンパー名称                | 1500kN   | 2000kN |  |  |
| $\dot{u}_{dy}$ (cm/s) | 1.5      |        |  |  |
| p                     | 0.0123   |        |  |  |
| β                     | 4.5      |        |  |  |
| $C_d$ (kN·s/cm)       | 90000    | 120000 |  |  |
| $F_{dy}$ (kN)         | 1350     | 1800   |  |  |

表 1 ダンパー諸元

#### 4.2αによる影響

本節は、式(2)中のα=25、75の2種類で検討する。ま た,目標層間変形角 θ<sub>max</sub>=1/125 rad とし,STEP9 で用いる 層せん断力分布として,モデルA,Bには非制振モデルに ART HACHI を,モデルC,DにはOS2を入力したときの 最大層せん断力を用いる。設計用地震動として層せん断力 分布と同じ地震動を用いる。図 5 に設計された制振モデ ルを示す。その際に、モデルA、Cはα=75とし、モデル B, Dはα = 25 として設計を行う。また,表 2 に各モデル の等価減衰定数 heq とダンパー数を示す。等価減衰定数に 着目すると、モデルAに比べてモデルBでは約44%増加 し、モデル C に比べてモデル D では約 45%増加している ことが分かる。それに伴い、ダンパー本数も増加しており、 モデルBでは1500kN級が30本,2000kN級が20本,合 計で50本増加し、モデルDでは1500kN級が38本、2000 kN 級が 22本, 合計で 60本増加していることが分かる。 これより, α = 75 から 25 に変化させると、等価減衰定数 は45%程度増加し、2倍程度のダンパー本数が必要である ことが分かる。次に、各モデルに設計用地震動を入力し、 時刻歴応答解析を行う。その解析結果より得られた各層の 最大層間変形角を図 6 に示す。設計用地震動を ART HACHI としたモデル A, B においては、全層で目標層間 変形角以内に収まっていることが分かる。それに対し、設 計用地震動を OS2 としたモデル C, D においては, モデル



表 2 等価減衰定数とダンパー本数

| 建物モデル     | Α            | В            | С      | D      |
|-----------|--------------|--------------|--------|--------|
| 設計用地震動    | ART<br>HACHI | ART<br>HACHI | OS2    | OS2    |
| α         | 75           | 25           | 75     | 25     |
| $h_{eq}$  | 0.0502       | 0.0722       | 0.0544 | 0.0791 |
| 1500kN[本] | 6            | 36           | 0      | 38     |
| 2000kN[本] | 48           | 68           | 56     | 78     |



図 6 最大層間変形角

D では概ね全層で目標層間変形角以内に収まっているが, モデルCでは収まっていないことが分かる。原因について は今後の課題とする。

#### 4.3 目標層間変形角 *θmax* による影響

本節は、STEP4 にあたる目標層間変形角を変化させる。 モデル A, Cにおいて目標層間変形角 θ<sub>max</sub> = 1/150 rad に変 えたものをそれぞれモデル E, F とする。図 7 に設計され た制振モデルを示す。また、表3に各モデルの等価減衰定 数 heg とダンパー数を示す。等価減衰定数に着目すると、 モデル A に比べてモデル E では約 53%増加し, モデル C に比べてモデル F では約 52% 増加していることが分かる。 それに伴い、ダンパー本数も増加しており、モデル E では 1500 kN 級が 14 本, 2000 kN 級が 52 本, 合計で 66 本増加 し, モデル F では 1500 kN 級が 40本, 2000 kN 級が 16本, 合計で 56 本増加していることが分かる。これより, θmax= 1/125 rad から 1/150 rad に変化させると、等価減衰定数は 52%程度増加し、2 倍程度のダンパー本数が必要であるこ とが分かる。次に、4.2節と同様に、各モデルに設計用地 震動を入力し,時刻歴応答解析を行う。その解析結果より 得られた各層の最大層間変形角を図 7 に示す。設計用地 震動を ART HACHI としたモデル A, Eにおいては, 全層 で目標層間変形角以内に収まっていることが分かる。それ に対し、設計用地震動を OS2 としたモデル C, F において



図 7 制振モデル



表 3 等価減衰定数とダンパー本数



#### 図 8 最大層間変形角

は,目標層間変形角以内に収まっていないことが分かる。 この原因については今後の課題とする。

#### 4.4 地震動による影響

本節は、STEP9にあたる層せん断力分布を変化させる。 つまり,式(6)中の層せん断力 Qiが変化する。モデル A, C において層せん断力分布を Ai 分布に変えたものをそれぞ れモデルG, Hとする。その際, Ai分布は主架構の1次固 有周期より算出するものとする。図 9 に作成した制振モ デルを示す。また、表 4 に各モデルの等価減衰定数 hea と ダンパー数を示す。等価減数定数に着目すると、モデルA とGおよびCとHでは一致していることが分かる。ダン パー配置について,モデルGでは,5~7層のダンパーが少 なくなり 19~22 層で増えているが、ダンパーの合計本数は 同じであることが分かる。モデル H では、11 層のダンパ ーが少なくなり, 20, 22 層で増えているが, ダンパーの合 計本数は2本増え、ほとんど変化していないことが分かる。 これより,層せん断力分布を変えても,ダンパー配置が少 し変わるものの、等価減衰定数は変わらないため、ダンパ -の必要本数はほとんど変化しないことが分かる。

| *1 | 東京工業大学 | 環境・社会理工学院 | 大学院生        |
|----|--------|-----------|-------------|
| *2 | 東京工業大学 | 未来産業技術研究所 | 准教授・博士 (工学) |
| *3 | 東京工業大学 | 未来産業技術研究所 | 助教・Ph.D.    |



図 9 制振モデル

表 4 等価減衰定数とダンパー本数

| 建物モデル     | А            | G            | С      | Н      |
|-----------|--------------|--------------|--------|--------|
| 設計用地震動    | ART<br>HACHI | ART<br>HACHI | OS2    | OS2    |
| 層せん断力分布   | ART<br>HACHI | Ai           | OS2    | Ai     |
| $h_{eq}$  | 0.0502       | 0.0502       | 0.0544 | 0.0544 |
| 1500kN[本] | 6            | 10           | 0      | 4      |
| 2000kN[本] | 48           | 44           | 56     | 54     |

#### 5. まとめ

本報では、上野らの提案手法 %を用いて制振設計を行って、その際に、a、目標層間変形角  $\theta_{max}$ 、層せん断力分布を変化させ、それぞれのパラメータが設計値に与える影響について確認した。以下に得られた知見を示す。

- αを75から25に変化させると、等価減衰定数は45%
   程度増加し、2倍程度のダンパー本数が必要になる。
- ・ 目標層間変形角 θ<sub>max</sub>を 1/125 rad から 1/150 rad に変え ると,等価減衰定数は 50%程度増加し,2倍程度のダ ンパー本数が必要になる。
- 層せん断力分布を地震動から Ai 分布に変えると、ダンパー配置が少し変わるものの、等価減衰定数は変わらないため、ダンパーの必要数はほとんど変化しない。
   今後の展望として、目標層間変形角以内に収まらなかっ

今後の展望として、日標層面変形角以内に収まらなかった原因について明らかにする必要があると考える。

#### 参考文献

- 国土交通省:超高層建築物等における南海トラフ沿いの巨大 地震による長周期地震動対策について(技術的助言),2016.06
- 日本建築学会:大振幅地震動と建築物の耐震性評価—巨大海 溝型地震・内陸地震に備えて、2013.10
- 3) 笠井和彦, 伊藤浩資, 小椋崇之: オイルダンパーの等価剛性調 節による制振構造の応答制御手法, 日本建築学会構造系論文 集, Vol.73, No.630, pp.1281-1288, 2008.08
- 4) 上野史也,渡井一樹,佐藤大樹,笠井和彦,佐分利和宏,前田 達彦,増田寛之:オイルダンパーと変形制御機構を併用した 大振幅地震動に対する既存超高層建物の制振改修設計法,構 造工学論文集 vol.66B, pp.353-365, 2020.03
- 5) 日本免震構造協会 (JSSI): パッシブ制振構造設計・施工マニ ユアル第1版, 2003.10, 第2版, 2005.09, 第3版, 2013.11

Graduate Student, Tokyo Institute of Technology<sup>\*1</sup>

Associate Professor, FIRST, Tokyo Institute of Technology, Dr.Eng\*2 Assistant Professor, FIRST, Tokyo Institute of Technology, Ph.D.\*3