T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	中低層免震建物における実効変形比に基づくブレース配置の検討 その 1 ブレースの降伏と座屈および免震支承の引抜きの判定手法
Title(English)	A study on brace placements for low to mid-rise base-isolated buildings based on brace effective deformation ratio Part 1 Evaluation on yielding and buckling of braces, and uplift of rubber bearings
著者(和文)	新井雄大, 佐藤大樹, Alex Shegay, 戸張涼太, 安永隼平, 植木卓也, 金城 陽介
Authors(English)	Yudai Arai, Daiki Sato, Alex Shegay, Ryota Tobari, Jumpei Yasunaga, Takuya Ueki, Yosuke Kaneshiro
出典 / Citation	日本建築学会関東支部研究報告集, , , pp. 517-520
Citation(English)	, , , pp. 517-520
発行日 / Pub. date	2023, 2

中低層免震建物における実効変形比に基づくブレース配置の検討

その1 ブレースの降伏と座屈および免震支承の引抜きの判定手法

2.構造-2.振動

免震構造	中低層建物	ブレース配置
免震支承の引抜き	降伏耐力	座屈耐力

1. はじめに

近年,免震建物の多様化が進み,大型物流倉庫を筆頭に, ロングスパンの鉄骨造にも免震構造が採用される事例が 増えている。ロングスパンの鉄骨造では,主架構のみでは 剛性が低く,免震層に対して相対的に剛体とみなせない ため,免震構造による応答低減効果が十分に期待できな いケースがある。これを避けるために,鉛直ブレースを設 置し,上部構造に十分な水平剛性を確保する必要がある。

しかしながら、ブレース配置によっては、ブレース軸力 により免震支承に大きな変動軸力が生じ、引抜きが発生 する場合(図1(a))や、ブレース断面積が小さくなりブレ ースに降伏あるいは全体座屈が生じる場合(図1(b))があ り、設計時にはこれらを生じさせない適切なブレースの 配置と剛性の組み合わせを選択する必要がある¹⁾。

ブレースとその周辺架構の関係に目を向けると、ブレ ースは架構せん断変形には有効に作用するが、柱や免震 支承の軸伸縮に由来する架構曲げ変形によりブレースに 変形ロスが生じる(図2)。架構の層間変形に対するブレ ースの水平変形(=実効変形)の比率は実効変形比と呼ば れ^{例えば2)},筆者らは免震支承直上のブレースの実効変形比 が低いときに引抜きが生じることに着目し、実効変形比

A study on brace placements for low to mid-rise base-isolated buildings based on brace effective deformation ratio Part 1 Evaluation on yielding and buckling of braces, and uplift of rubber bearings

正会員	○ 新井雄大*1	正会員	佐藤大樹
]]	Alex Shegay *3	11	戸張涼太*4
]]	安永隼平*5	11	植木卓也*5
]]	金城陽介*5		

により引抜きを判定できることを既報³⁾で示した。また, 実効変形比が大きい場合にはブレースの変形効率が高く なり,目標層剛性を満足するときのブレース断面積が小 さくなるため,降伏や座屈の危険性が高まる。

そこで本報では、免震支承の引抜きやブレースの降伏・ 座屈が実効変形比により評価できることに着目し、実効 変形比に基づいて降伏、座屈および引抜きを判定する手 法を提示し(その1)、適切なブレース配置・剛性の組み 合わせの設計手法と設計例を示す(その2)。

2. 実効変形比に基づく降伏, 座屈, および引抜きの判定

以降では、柱や梁などの部材から構成される 3 次元解 析モデルを「部材系」、各層の質点とせん断バネから構成 される解析モデルを「バネ系」と呼ぶ。本章では、各層で 剛床仮定の成立する部材系からブレースの実効変形を考 慮したバネ系を作成し、バネ系の各諸元を用いることで、 ブレースの降伏と全体座屈、および免震支承の引抜きを 判定する手法を示す。

2.1 ブレースの実効変形を考慮したバネ系モデルの作成

部材系(図 3(a))からバネ系(図 3(b))の作成にあたり 笠井ら⁴⁾,石井ら⁵⁾が制振建物を対象に提案した状態N, R 解析を免震建物にも準用する。バネ系は各層3種のバ ネから構成されており、それぞれ主架構(=ブレース以外 の上部構造)の剛性 K_{fs} ,ブレースの水平剛性 K_{ds} ,および 柱や免震支承の軸変形に由来するブレース設置箇所の架 構剛性 K_{bs} である。状態N,R解析によりブレースの配置 と剛性が実効変形比に与える影響をそれぞれ定量的に評 価できる。

状態 N, R 解析の概要を図 4 に示す。状態 N, R 解析 は、免震支承の水平変形を拘束し、鉛直変形のみが生じる 状態で、ブレース部の剛性をそれぞれ 0, ∞ にして静的外 力を与えることで行える。以降では、バネ系の諸元には右 下添え字 s を付け、状態 N, R 解析時の諸元にはそれぞれ 右下添え字 N, R を付けて表記する。

ARAI Yudai, SATO Daiki, Alex SHEGAY, TOBARI Ryota, YASUNAGA Jumpei, UEKI Takuya, KANESHIRO Yosuke

 K_{fs} は状態 N 解析時の層せん断力 $Q_N を層間変形 \delta_N$ で除 すことで得られる (式(1))。また、状態 N でのブレース設 置箇所の実効変形比 α_N はブレースの水平変形 δ_{dN} を用い て式(2)により算出される。ここで右下添え字 ij は第 i @ j番目のブレース設置箇所を意味する。

 $K_{\text{fs},i} = Q_{\text{N},i} / \delta_{\text{N},i}$, $a_{\text{N},ij} = \delta_{\text{dN},ij} / \delta_{\text{N},i}$ (1),(2) K_{bs} は a_{N} と状態 R でのブレース軸力の水平成分 F_{dR} ,層 間変形 δ_{R} を用いて式(3),(4)により得られる。

 $K_{\text{bs},ij} = \alpha_{\text{N},ij} F_{\text{dR},ij} / \delta_{\text{R},i}$, $K_{\text{bs},i} = \sum_j K_{\text{bs},ij}$ (3),(4) K_{ds} は部材系のブレース断面積 A_{d} を決定することで得 られる。 α_{N} , 鋼材のヤング係数 E, ブレース1本の軸方向 長さ L_{d} , 取付角度 θ (0< θ < π /2)を用いると式(5),(6)のよ うに算出できる。

$$K_{\rm ds,ij} = \alpha_{\rm N,ij}^2 K_{\rm d,ij} = \alpha_{\rm N,ij}^2 \frac{E A_{\rm d,ij}}{L_{\rm d,ij}} \cos^2 \theta_{ij} , \quad K_{\rm ds,i} = \sum_j K_{\rm ds,ij}$$
(5),(6)

 K_{ds} と K_{bs} の直列バネを付加系剛性 K_{as} と呼び,式(7)に より得られる。また,層間変形に対するブレースの水平変 形の比率 (= δ_d / δ)を意味する実効変形比 α_{es} は設置箇所 ごとに式(8)のように K_{as} と K_{bs} を用いて表せる。

$$K_{\rm as,i} = \frac{K_{\rm ds,i} K_{\rm bs,i}}{K_{\rm ds,i} + K_{\rm bs,i}} , \qquad \alpha_{\rm es,ij} = \alpha_{\rm N,ij} \left(1 - \frac{K_{\rm as,ij}}{K_{\rm bs,ij}} \right)$$
(7),(8)

以降では、ここで示したバネ系の諸元を用いて、ブレー スの降伏、座屈、および引抜きを判定する手法を示す。 2.2 実効変形比に基づくブレース降伏の判定

ここでは、ブレースをハの字型に設置したスパンの架 構変形(図5)に着目して降伏の判定手法を示す。ブレー スが弾性状態で降伏耐力 F_{dy}(水平方向)に達すると仮定 すると、ブレースの水平方向の降伏変形 δ_{dy}は式(9)のよう に理論的に導出できる。なお、「[^]」は軸方向の諸元を意 味する。

$$\delta_{\mathrm{dy},ij} = \frac{\widehat{\delta}_{\mathrm{dy},ij}}{\cos\theta_{ij}} = \frac{\widehat{F}_{\mathrm{dy},ij}}{\widehat{K}_{\mathrm{d},ij}\cos\theta_{ij}} = \frac{\sigma_{\mathrm{y}}A_{\mathrm{d},ij}L_{\mathrm{d},ij}}{EA_{\mathrm{d},ij}\cos\theta_{ij}} = \frac{\sigma_{\mathrm{y}}L_{\mathrm{d},ij}}{E\cos\theta_{ij}} \tag{9}$$

ブレースが降伏しないためには、ブレースの水平変形 δ_{d} が δ_{dy} を下回る必要がある(式(10))。

$$\delta_{\mathrm{d},ii} = \alpha_{\mathrm{es},ii} \,\delta_i < \delta_{\mathrm{dv},ii} \tag{10}$$

 $a_{es,dy}$ を式(11)のように算出すると、 $a_{es,dy}$ は特定の変形時 に降伏を生じさせないための a_{es} の上限値を意味する。

$$\alpha_{\rm es,dyij} = \frac{\delta_{\rm dy,ij}}{\delta_i} = \frac{\sigma_{\rm y} L_{\rm d,ij}}{R_i H_i E \cos \theta_{ij}} = \frac{\sigma_{\rm y}}{E} \cdot \frac{2}{\sin 2\theta_{ij}} \cdot \frac{1}{R_i}$$
(11)

したがって,式(8)で算出する *a*es が, *a*es < *a*es,dy を満たして いれば降伏が発生しないと判定できる。言い換えると,図 6(a)に示すように,目標クライテリアに応じて *a*es < *a*es,dy を満足する *a*es となるようにブレースの配置と剛性の組み 合わせを選択すれば,ブレース降伏を免れる。また,ハの 字型に設置されたブレースの実効変形比は 1.0 以下であ ることがほとんどであるため^{例えば 6}, *a*es,dy = 1.0 となる *R* (図 6(a)中●印)より小さい設計クライテリアを設定すれ ば,ブレース降伏の影響を無視できる。

2.3 実効変形比に基づくブレース座屈の判定

両端ピン接合であるブレースが、弾性状態で座屈荷重 F_{dcr} (水平方向)に達すると仮定したときの、ブレースの 水平方向の座屈変形 δ_{dcr} は、断面 2 次モーメント I_d を用い て式(12)のように導出できる。

$$\delta_{\mathrm{dcr},ij} = \frac{\widehat{\delta}_{\mathrm{dcr},ij}}{\cos \theta_{ij}} = \frac{\widehat{F}_{\mathrm{dcr},ij}}{\widehat{K}_{\mathrm{d},ij} \cos \theta_{ij}}$$
$$= \frac{\pi^2 E I_{\mathrm{d},ij}}{L_{\mathrm{d},ij}^2} \cdot \frac{L_{\mathrm{d},ij}}{E A_{\mathrm{d},ij} \cos \theta_{ij}} = \frac{I_{\mathrm{d},ij}}{A_{\mathrm{d},ij}} \cdot \frac{\pi^2}{L_{\mathrm{d},ij} \cos \theta_{ij}}$$
(12)

したがって、断面 2 次半径 $i_d (= \sqrt{I_d/A_d})$ を用いた $a_{es,der}$ (式 (13)) が、ある層間変形角のときに座屈が生じる実効変形 比を意味する。

 $-\frac{\delta_{\mathrm{dcr},ij}}{I_{\mathrm{d},ij}} - \frac{I_{\mathrm{d},ij}}{I_{\mathrm{d},ij}}, \qquad \pi^2 \qquad 1 - \left(\frac{\pi i_{\mathrm{d},ij}}{I_{\mathrm{d},ij}}\right)^2 \tan \theta_{ij}$

(13)

$$\delta_{es,derij} = \delta_i = A_{d,ij} L_{d,ij} \cos \theta_{ij} R_i H_i = (H_i) R_i$$
 (1).
 $\delta_i = A_{d,ij} L_{d,ij} \cos \theta_{ij} R_i H_i = (H_i) R_i$ (1).
 $L_{d,ij} = \delta_i = \delta_i$
 $\delta_i = \delta_i$
 $R_i = \delta_i$

ブレースが座屈しないためには、 δ_d が δ_{der} を下回る必要が あるので、 $\alpha_{es,dy}$ と同様に $\alpha_{es} < \alpha_{es,der}$ となることでブレース の全体座屈を判定できる(図 6(b))。したがって、 $\alpha_{es,dy}$ と $\alpha_{es,der}$ の小さい方が、降伏・座屈を生じさせないための設 計可能な α_{es} の範囲の決定において、支配的な要素となる。 また、図 6(a)●印と同様に、座屈においても i_d に応じて式 (13)で $\alpha_{es,der} = 1.0$ となるようなR(図 6(b)▲印)以内に目 標クライテリアを設ければ座屈の影響を無視できる。

式(13)の i_d を左辺に移項すると、任意の a_{es} に対して、 ある変形時に座屈を生じさせないための i_d の下限値 i_{der} が 算出でき(式(14))、 $i_d > i_{der}$ となることでも座屈しないと いう判定が可能である。

$$i_{\text{der},ij} = \frac{H_i}{\pi} \sqrt{\alpha_{\text{es},ij} \frac{R_i}{\tan \theta_{ij}}}$$
(14)

2.4 実効変形比に基づく免震支承の引抜きの判定

ここでは、既報³において、第1層目で a_N =1.0 が成立 する中低層免震建物を対象に提案した、免震支承の引抜 き判定手法の概要を述べる。図7に長期荷重および水平 地震時の変動軸力が作用した時の免震支承材の鉛直変形 を示す。ここで、 σ_0 :長期荷重時面圧、 σ_{vt} :水平地震時の 面圧(σ_0 , σ_{vt} いずれも引張側を正とする)、 A_H 、 K_{vc} :支承 材1基あたりの断面積、鉛直剛性、 $\Delta \delta_{vt}$:水平地震による 長期荷重時からの鉛直変形(上向き正)である。図7よ り、X方向に k 番目の免震支承において、長期面圧から の変動面圧 $\Delta \sigma_{vt}$ を用いて式(15)が成り立つ。

一方, ブレース設置箇所の架構変形に着目すると, 図 8 に示す水平地震時の架構変形より, 1 階大梁の傾斜角 θ_g が, 第1層の層間変形 δ_1 , 階高 H_1 , および層間変形角 R_1 を用いて式(16)のように得られる。

$$\theta_{g,j} = \frac{(1 - \alpha_{es,1j})\delta_1}{H_1} = (1 - \alpha_{es,1j})R_1$$
(16)

また、同図より式(17)の関係が成り立つ。

$$\Delta \delta_{\mathrm{vt},k} = L_{\mathrm{eq},k} \theta_{\mathrm{g},j} \tag{17}$$

ここで、*L*_{eq}は、対象としている免震支承箇所から変形前の1階大梁内における回転中心までの水平長さであり、 ブレース剛性に依存しないと仮定し、ブレース配置を決めることで得られる計算値を用いる。ハの字型にブレー スを設置した時の*L*_{eq}は、状態 R 解析の結果を用いて式(18)のように算出できる。

$$L_{\text{eq},k} = \frac{\Delta \delta_{\text{vtR},k}}{\theta_{\text{gR},j}} = \frac{\Delta \delta_{\text{vtR},k}}{R_{\text{R},1}}$$
(18)

 a_{es} や θ_{g} はスパンごと, L_{eq} や $\Delta\delta_{vt}$ は支承ごとに算出され, 引張側と圧縮側で, $j \geq k$ の対応が異なる。k番目の免震 支承において, 図 9(a)のように状態 R 解析時の鉛直変形 $\Delta\delta_{vtR}$ が正または 0 のとき, すなわち引張側のときはj = kとなり, 図 9(b)のように $\Delta\delta_{vtR}$ が負のとき, すなわち圧縮 側のときはj = k - 1となるように対応させる(式(19))。

 $j = \begin{cases} k & (\Delta \delta_{vtR',k} \ge 0 \ \varepsilon \ vac \ k : 引張側の免震支承) \\ k - 1 & (\Delta \delta_{vtR',k} < 0 \ \varepsilon \ vac \ ac \ k : 圧縮側の免震支承) \end{cases}$ (19)

以上より,式(15)~(19)を用いて, R₁と変動面圧Δσ_{vt}の 関係が,式(20)のように定式化できる。

$$\Delta \sigma_{\text{vt},k} = \Delta \delta_{\text{vt},k} \frac{K_{\text{vc},k}}{A_{\text{H},k}} = \left(1 - \alpha_{\text{es},1j}\right) L_{\text{eq},k} \frac{K_{\text{vc},k}}{A_{\text{H},k}} R_1$$
(20)

長期軸力に対する上下地震動時に生じる変動軸力の比率 C_v を上下方向の静的震度として考慮すると、変動面圧 $\Delta \sigma_{vt}$ から水平地震時の面圧 σ_{vt} を求める際には、式(21)の ように表せる。

$$\sigma_{\text{vt},k} = (1 - C_{\text{v}})\sigma_{0,k} + (1 - \alpha_{\text{es},1j})L_{\text{eq},k}\frac{K_{\text{vc},k}}{A_{\text{H},k}}R_1$$
(21)

式(21)の a_{es} を左辺に移項することで、ある層間変形時 に引抜きが生じる第 1 層の実効変形比 $a_{es,ul}$ が式(22)のよ うに表せる。 $a_{es,ul}$ が引抜きを生じさせないための、第 1 層 の実効変形比の下限値となる(図 10)。

 $\alpha_{\rm es,u1} = 1 + \frac{(1 - C_{\rm v})\sigma_{0,k}}{L_{\rm eq,k}R_1} \cdot \frac{A_{\rm H,k}}{K_{\rm vc,k}}$ (22)

 $a_{es,1} > a_{es,ul}$ であれば 引抜きが発生しない。 また、図 10 中の●印以 内の変形では、長期荷 重による沈み込み量が 変動軸力による $\Delta \delta_{vt}$ を 上回るため、引抜きの 影響が無視できる。

3. 降伏, 座屈および引抜きを考慮した設計可能 aes の範囲

第2章では、実効変形比に基づいたブレース降伏の判定 定(式(11))、ブレース全体座屈の判定(式(13))、免震支 承の引抜き判定(式(22))の手法を定式化した。設計時に は目標クライテリア内で、ブレースの降伏・座屈、支承の 引抜きが発生しないブレース配置を選択することが必要 条件である。式(11),(13),(22)より、 $a_{es,dyij}$ 、 $a_{es,derij}$ および $a_{es,ul}$ は、図11のように i_d や L_{eq} に応じてRとの関係を図示す ることができる。なお、同図はその2 で例題建物として 採用した大型物流倉庫を想定し、スパン $L_s = 1000$ cm,階 高H = 700 cm と仮定し、使用するブレース鋼材はBCR295 ($\sigma_y = 29.5$ kN/cm²)を想定している。

式(11)から明らかなように、 $a_{es,dy}$ (灰色線)はブレース 配置や本数に依存せずに $\sigma_y や \theta$ などの情報のみでRとの 関係が導出できる。本例では配置によらず、1/333 rad.程 度以内の変形であれば、 $a_{es,dy} > 1.0$ となるため、ブレース が降伏することは考えにくい。 $a_{es,der}$ (黒破線)は i_d に依 存しており、 i_d が大きいほど座屈の生じない $a_{es,der}$ は大き くなる。したがって、 a_{es} が大きく座屈が生じやすいブレ ース配置・剛性を選択した場合は、目標クライテリアに応 じて i_d を大きくすることで座屈を避けることができるこ とができる。 $a_{es,u1}$ (青線)の算出には、 ϕ 800 の HDR を想 定し、 $A_{\rm H} = 5023$ kN/cm, $K_{vc} = 35100$ kN/cm, 長期荷重時の 面圧 $\sigma_0 = -7.0$ N/mm²を代入し、上下方向の地震動を 0.3G ($C_v = 0.3$)として考慮している。 L_{eq} が小さいほど $a_{es,u1}$ が

 $(C_v = 0.3)$ として考慮している。 L_{eq} が小さいほと $a_{es,ul}$ が 小さいため、 a_{es} の取り得る範囲が広い。このように、 L_{eq} に応じて設計可能な a_{es} の範囲が異なり、特に小変形領域 での差が顕著である。

また、本例では、1/333 rad.程度を境に、1/333 rad.程度 以上の変形では $a_{es,u1} > a_{es,dy}$ となり、設計可能な a_{es} が存在 しないことが図から読み取れる。これは、1/333 rad.程度 以上の変形では降伏あるいは引抜きのいずれかが生じる ことを意味しており、設計時にはクライテリア変形角を 小さくするか、 σ_y 、免震支承、 $H や \theta$ などを変更するなど の対応が必要となる。一方、クライテリアを 1/333 rad.以 内に設定すると、ブレース降伏の影響は無視できる。した がって、R < 1/333 rad.の範囲では、 $a_{es} > a_{es,u1}$ を満たすブ レース剛性を選択し、 $a_{es} < a_{es,der}$ を満たす i_d を選択すれば 設計可能と判定できる。このように、設計可能な a_{es} の有 無に基づいて、目標クライテリアを調節できるのも本手 法の利点である。

4. まとめ

本報その1 では、ブレースの降伏と全体座屈、および 免震支承の引抜きを実効変形比に基づいて判定する手法

- *1 東京工業大学 環境・社会理工学院 大学院生
- *2 東京工業大学 未来産業技術研究所 准教授・博士(工学)
- *3 東京工業大学 未来産業技術研究所 助教・Ph.D.
- *4 JFE シビル株式会社
- *5 JFE スチール株式会社

を定式化し,目標クライテリアとの関係例を提示した。本 報その2では,設計フローの提案,および設計例を示す。

謝辞

本報告は, JFE シビル株式会社, JFE スチール株式会社, 東京工業 大学佐藤研究室の共同研究の成果の一部をまとめたものです。ここ に記して謝意を表します。

参考文献

- 中川理,原田幸博:鉄骨造免震建築物における座屈拘束ブレ ースの集中配置の有効性、日本建築学会技術報告集, Vol.22, No.52, pp.959-964, 2016.10
- 石井正人,北村春幸,他2名:粘弾性型制振部材付き架構のモデル化に関する検討,日本建築学会構造系論文集,Vol.65, No.531, pp.55-62, 2000.3
- 3) 新井雄大, 佐藤大樹, Alex Shegay, 戸張涼太, 安永隼平, 植木卓 也, 金城陽介: ブレースを有する中低層免震建物における免 震支承の引抜き判定手法, 日本建築学会構造系論文集, Vol.88, No.806, 2023.4(掲載予定)
- 4) 笠井和彦, 岩崎啓介:様々な形式の制振構造における自由度 縮約法と水平バネ系への変換法,日本建築学会構造系論文集, Vol.71, No.605, pp.37-46, 2006.7
- 5) 石井正人, 笠井和彦: 多層制振構造の時刻歴解析に用いるせ ん断棒モデルの提案, 日本建築学会構造系論文集, Vol.75, No.647, pp.103-112, 2010.1
- 6) 新井雄大,佐藤大樹,他5名:免震物流倉庫の地震応答に関す る検討その3異なる剛性・配置のブレースを有する上部構造 の骨組特性値の比較,日本建築学会関東支部研究発表会, pp.349-352,2022.3
- 7) 笠井和彦, シムアンパン・サラン, 松田和浩: 免震建物の上部 構造周期を考慮した免震性能曲線の提案, 日本建築学会構造系 論文集, Vol.81, No.720, pp.239-249, 2016.2
- 8) Zhengle CHEN, Daiki SATO : Design for isolated building considering stiffness distribution for inhomogeneous mass, Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, Structure-II, pp.569-570, 2021.9

Graduate Student, Tokyo Institute of Technology*1

Associate Professor, FIRST, Tokyo Institute of Technology, Dr.Eng*² Assistant Professor, FIRST, Tokyo Institute of Technology, Ph.D.*³ JFE Civil Engineering & Construction Corporation*⁴ JFE Steel Corporation*⁵