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Chapter 1

Introduction

1.1 Introduction

Since the introduction of Bitcoin by Nakamoto [100] decentralized digital pay-
ment systems enjoyed great popularity. The technology behind Bitcoin, namely
blockchains, inspired derivatives as well as new approaches to blockchain based
payment systems. At the time of writing 8423 blockchains with a market cap-
italization of a little more than $1.371 trillion exist 1. This popularity served
to highlight scalability limitations of blockchain based systems. Transactions,
e.g. payments, have to be processed through a consensus mechanism by a set
of parties called miner to be included in the ledger. However, the number of
transactions that can be processed by the consensus mechanism in any given
time is limited which is necessary to ensure security of the system. Transac-
tion issuers include a fees for the miners to incentivize that their transaction
is processed by the consensus mechanism and included in the ledger. More-
over, this monetary fee additionally serves to incentivize miners to collaborate
in the consensus mechanism and by doing this improve the system’s security
as a whole. However, in times of popular demand the number of transactions
issued outpaces the number of transactions that can be processed through the
consensus mechanism, which results in transaction issuer to include higher fees.
For instance, the highest average transaction fee on any given day for Bitcoin
equalled $55.27 2.

Improving scalability of blockchain based systems is a research focus of the
community. Possible solutions range from improving the network infrustructure
[75] using dedicated server or improving the network protocol 3. These proposals
are commonly referred to Layer-0. Layer-1 approaches focus on adjusting the
consensus protocol itself and a plethora of proposals have been introduced [56,
73, 52, 125, 22, 59, 107, 106, 134, 84, 77]. Lastly, Layer-2 proposals aim to reduce

1https://coinmarketcap.com
2https://ycharts.com/indicators/bitcoin average transaction fee
3https://en.bitcoin.it/wiki/Stratum mining protocol
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the number of transactions that are issued by creating shared accounts between
parties, having these parties exchange transactions among themselves, and only
submitting transactions that summarize the transaction history between the
parties. These shared accounts are commonly called channels [44, 108, 112]
and approaches to concatenate channels into payment channel networks (PCN)
extend this approach. The arguably most prominent PCN is built for the Bitcoin
blockchain and is called the Lightning Network [112].

Scalability proposals on Layer-2, commonly called offchain protocols, are
particularly promising as they potentially reduce the number of transactions
issued to the consensus mechanism by an arbitrary amount. While channels
themselve allow two parties to perform an arbitrary amount of payments with
another, methods as Hash Timelocked Contracts (HTLC) [112] allow parties
to perform payments across a path of payment channels. Parties who join a
PCN using a channel can potentially perform payments with any other party
in the same PCN without issuing any transaction to the ledger. To our knowl-
edge, as of now HTLCs are the only method to perform payments within the
Lightning Network. It has been shown that HTLCs are vulnerable to denial
of service and griefing attacks [99, 109]. Smart contracts, which are programs
that are executed within the consensus mechanism for Ethereum, can be used
to add features and improve operations on channels and PCNs. The payment
protocol Sprites [98] allows for payments across PCNs while mitigating the im-
pacts of denial of service and griefing attacks. Moreover Virtual State Channels
[46, 49] use existing channels to allow for the creation of new channels in a PCN
while not requiring any issuing of a transaction which is in contrast to regular
channel constructions. While these works are important contributions to the
family of Layer-2 protocols, requiring smart contract capability severely limits
the employability of these protocols. The vast majority of blockchains, includ-
ing Bitcoin, do not possess smart contract capability and as such are barred
from utilizing these protocols. The Atomic Multi-Channel Updates (AMCU)
protocol [51] attempts to close this gap by providing a payment protocol for
PCNs, that are based on blockchains without smart contract capability, that
mitigates denial of service and griefing attacks, but the protocol itself is shown
to be vulnerable in the face of a malicious adversary.

This work aims to close this gap. Concretely, our contributions are as follows.

• We summarize the related work on Layer-2 scalability solutions and present
a taxonomy.

• We present a novel framework to construct offchain protocols for ledgers
based on the Unspend Transaction Output (UTxO) paradigm and without
smart contract capability such as Bitcoin.

• We present the Channel Closure Attack. An attack on the AMCU protocol
that allows a malicious adversary to steal funds from honest participants.

• We present the Lightweight Virtual Channel protocol that allows for the
creation of virtual channels
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• We prove security of Lightweight Virtual Channels in Canetti’s Universal
Composability (UC) Framework [29]

• We present the Payment Trees protocol; an payment protocol for PCNs
that mitigates denial of service and griefing attacks.

Our work presents Layer-2 scalability solutions previously only available for
blockchains with smart contract capability. This work reduces the gap between
solutions that require smart contract capability and those that do not, and it
shows resulting trade-offs.

1.2 Structure

In the following, first we give an overview of scalability solutions for blockchains
with particular focus on Layer-2 protocols. Moreover, we structure the existing
body of work and propose a taxonomy in Chapter 2. Afterwards, we formally
define our model for blockchains operating under the UTxO paradigm, present
our security model and introduce our framework for construction of offchain pro-
tocols in Chapter 3. Next, we introduce and discuss two protocols constructed
with our framework, namely Lightweight Virtual Payment Channel in Chapter
4 and Payment Trees in Chapter 5. Lastly, we conclude and present possible
directions for future work in Chapter 6.
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Chapter 2

Background: Offchain
Protocols

2.1 Introduction

Blockchains are behind the successful rebirth of digital cash from its first at-
tempts [34, 35], firstly by Bitcoin [100] and now with several decentralized cryp-
tocurrencies [52, 125, 59, 56, 132]. Although Bitcoin’s relative success in offering
worldwide payment alternatives to the more traditional mechanisms, like VISA
Network [102] and Paypal [101], is undeniable, it still has a long way ahead in
terms of handling a larger number of transactions.

The technical challenge of increasing the number of transactions per sec-
ond (TPS) of a blockchain system is urgent, and it is closely related to the
inner workings of the system itself. Namely, to its consensus protocol. As a
more concrete example, we refer to the Bitcoin network [100] whose consensus
protocol depends on the joint hash power of its nodes to perform the election
of a block leader, i.e. the new block issuer, which is calibrated by design to
happen every 10 minutes on average. In Proof-of-Stake (PoS) based systems,
like Cardano/Ouroboros [56, 73] and EOS [52], analogous elections exist within
a carefully designed (and strongly dependent on security guarantees) time slot
for the generation of the new block. In order to confirm a transaction a mini-
mum number of blocks has to be added to the ledger resulting in a confirmation
time. The confirmation time, despite its central role in the security and sta-
bility of the system, imposes severe restrictions to the TPS rate of the overall
platform. Alternatives had been suggested, such as alternative structures for
blockchains [53, 122, 80, 121, 123], change in the size of a block [131], signature
aggregation [24] or different consensus protocols [59, 36, 22, 107, 106]. It is
common to divide these approaches in three cases:

• Layer-0 (the network infra-structure): Here, optimization and special
servers are employed to decrease the latency of the network to increase
the TPS. An example of such approach is given by BloXroute [75];

11
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• Layer-1 (the consensus protocol): Arguably the layer which has more
approaches in literature. There are different consensus architectures [56,
73, 52, 125, 22, 59, 107, 106], where a complete taxonomy can be found
in [57], different data-structures for blockchains [122, 121, 123, 53], valid
chain criteria [80], sharding [134, 84, 77] and federation [91];

• Layer-2 (the off-chain channel/protocol): Protocols that perform mini-
mal interaction with the blockchain. Typically for opening, paying, closing
and disputing a channel. In the realm of cryptocurrencies, concrete ex-
amples are given by Decker and Wattenhofer [44], the Lighting Network
(LN) [112], and others. This layer encompasses many more protocols and
algorithms than the channel construction alone, as we review in later sec-
tions. One of the contributions of this work is to present a taxonomy, a
coherent list of protocols, for different levels in the stack of protocols in
this layer.

Layer-2 channel constructions have few names in literature: off-chain, pay-
ment or, yet, state channels, seemingly without consensus among the research
community about their meaning. Here, in the face of the lack of standard ter-
minology, we settle to name payment channels, constructions that do only store
a distribution of coins among two parties, and state channels otherwise. Fur-
thermore, we rely on the term off-chain channel when referring to either one
regardless of its inner workings.

In a nutshell, a payment channel between two players, is when two partic-
ipants decide to trade several transactions during a period of time, and in the
end they, without access to smart-contracts, settle on a final balance based on
the transactions exchanged, then the channel is closed. This transaction method
is suitable for very small amounts, i.e. micropayments, which has a long his-
tory of research [130, 83, 96, 115, 54, 128, 103, 133]. A fairly complete survey,
which includes centralized solutions, was done by Ali et al. [15]. More recently,
micropayments were also studied by Pass and Shelat [105] in the setting of de-
centralized currencies, and for specific applications [65, 37]. The main advantage
of such a setting is that all transactions made during the period of the channel
do not need to be published in the blockchain, which is a clear advantage as
concluded by McCorry et al. [93]. That is a set of transactions can be settled
independently of the confirmation time of the blockchain system.

2.1.1 More than Pairwise Channels and State of Knowl-
edge

The channel constructions themselves are building blocks into a stack of proto-
cols (or algorithms). A simple payment/state channel only paves the way for
exchanging funds, which is of limited use since the channel yields a capacity, i.e.
the sum of funds initially deposited by the two players. A more interesting, and
realistic, use is the concatenation of single channels into a payment-channel net-
work (PCN). In this setting, a node A can send payment to C without creating
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a specific channel from scratch with C, as long as both A and C are connected
to a third node B, which relays transactions, typically by collecting fees.

A practical example of such a network is the already mentioned LN [112],
which has multiple implementations [6, 9, 2, 110]. Although it extends the
channel functionality, a lurking problem persists: how to find suitable routes
within the network? The resemblance with theory of networks is inevitable,
naturally similar problems appear. For example, a node sending a payment
needs to find a route, similarly to routing problems in computer networks. On
the other hand, payment networks also present differences, for example, the cost
of the fees in a particular route. Yet, assuming the mentioned routing problem is
solved, another one still exists: How about the stability of the channel/network?
Do all nodes need to be online during all the time of the channel? Is the capacity
of each pairwise channel a bottleneck for the whole network?

All those questions are legit and relevant, and there are more as we will
see in later sections. Protocols and ideas to tackle them are currently being
considered and studied by the research and practitioner community very often
in an independent fashion without a comprehensive framework or compilation.
Given that these ideas can be scattered through several journals and conference
papers, as well as Internet forums and repositories, compiling them is a major
task, let alone relate them to each other accordingly with their approaches and
functionalities.

2.1.2 Our Contribution

We provide an extensive coverage payment and state channels, i.e. Layers-2 so-
lutions for scalability, in cryptocurrencies and their related protocols. Namely
the off-chain channel constructions, including probabilistic, simplex, and duplex,
in addition with payment network constructions and network management pro-
tocols, i.e. the upper levels protocols that assume the existence of a network of
channels. More concretely, we introduce a single framework (Table 2.1), which
structures off-chain protocols therefore our contribution somewhat differs of the
work in [62], which does not aim to structure the research literature in such a
way. Furthermore, in comparison, we focus on the general description and the
functionalities of the protocols.

A Taxonomy for the Layer-2 stack. Our single framework is a taxonomy
with further classification for the three cited levels: off-chain construction, chan-
nel network, and network management. The levels compose a stack of protocols
for Layer-2, as illustrated by Table 2.1 in Section 2.2. As expected, different
levels and their respective set of functions define specific technical challenges,
which by the best of our knowledge, were never organized in a comprehensive
framework. A quick look on Table 2.1 reveals intense research on areas and
few works in others, or even no works for specific problems. We believe these
observations are of strong interest by the research community, which, otherwise,
would have to collect these works through numerous internet forums and repos-
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itories in addition to scientific journals, even to distinguish among very distinct
functionalities, let alone more subtle differences of implementation.

2.2 A Taxonomy for Layer-2

Here we propose a taxonomy for the existing channel based protocols in Layer-
2. We start by presenting an overview of our approach and justification for our
choices. Later we present our classification illustrated by Table 2.1.

2.2.1 Overview

We organize the different sets of protocols in three levels 1. Each level gathers
related functions it performs, then we further subdivide the level into “func-
tions”. The intuition is that a protocol deployed on Layer-2, is expected to
fulfill a certain function within a level.

In order to illustrate and justify this design, take for example the most
popular Layer-2 PCN technique: HTLC [112]. Briefly, for the sake of example,
HTLC allows LN nodes to establish connections between themselves in order
to transfer funds. A major challenge in this setting is to find a suitable route
among the nodes, thus the function required is Routing. A routing protocol
for the LN fits into the “Routing” function within the “Network Management”
level. Later, Table 2.1 summarizes our taxonomy and the levels we identify in
the literature. However, first, consider the following levels:

• Off-chain Channels: Here are the constructions of the channels. In
other words, how the nodes, relying on the transaction design of a cryp-
tocurrency, can construct single pairwise-channels. These are the building
blocks of the upper levels.

• Network: Here are the techniques employed to create the networks them-
selves. Typically by concatenating existing pairwise channels, or establish-
ing a network of more than two nodes right from start.

• Network Management: This is the level for the protocols that maintain
the channels and network of channels, and allow their efficient use while
keeping them “alive” and usable.

2.2.2 Functions on Each Level

Given the earlier identified levels, in this section we further break them down
into functions and provide a brief intuition behind the classification.

1We justify the choice of the term “level”, instead of the more natural “layer”, as an
alternative to avoid ambiguity with the terms Layer-0, Layer-1 and Layer-2 which permeate
this work.
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Off-Chain Channels. The terminology in the literature is not standard.
However it is possible to observe two big functionalities (1) make payments
and (2) keeping state. The first is the simplest, since it does not require to
keep a state in order to perform a payment, whereas the second is more general
and it does require the aid of smart contracts (typically to support more com-
plex operations). While in our classification (2) cannot be divided, therefore it
represents the state channel variety, we further break down (1) into the three
existing types: Duplex, Simplex, and Probabilistic.

Network. In order to establish PCN, special techniques are required, in ad-
dition to carrying out the payments. There are off-chain channels that do not
support network construction capabilities, therefore this level depends on the
capabilities of the channels. We further discuss this topic on Section 2.4.

Network Management. Over the network of channels, as further discussed
in Section 2.5, several functionalities are required, and we identify the following
main ones in the existing literature:

• Routing: The payments can be carried over several nodes, however it is
necessary to select the set of nodes as the route, and several maybe be
available.

• Re-Balancing: A difference from regular computer networks is that each
pairwise channel has a capacity which may exhaust during the course of
the exchange of transactions, and therefore it needs to be rebalanced.

• Stability: Another difference from regular computer networks, is that
some constructions require the nodes to be online in order to perform the
dispute phase of the protocols. Therefore there are protocols that mitigate
or solve this requirement.

• Anonymity/Privacy: Information of nodes within a network, can be
leaked as well as information about the performed transactions. Typically,
the nodes in the middle of the channel can see the flow of funds.

A major difficulty on gathering the information on protocols for Layer-2 is
that, in contrast to scientific community literature, several protocols had been
proposed in forums and Internet repositories, and not in conference proceed-
ings or journals. A unified compilation of issues and open problems is also,
apparently, non existent. We address this with our suggested classification in
Table 2.1, and further discuss them.

Secure multiparty computation. The reader should note that our defi-
nition of channel does not cover, for example, secure multiparty computation
protocols, i.e. several users interact off-chain and provide correctness proof of
the computation. Here, purposely we focus only in protocols that realize a chan-
nel between two nodes, and PCNs through concatenation of channels. In other
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Level Function Protocols

Network
Management
Section 2.5

Routing
Section 2.5.2

Silent Whispers [85]
Speedy Murmur [118]
Spider Routing [120]
Flare Routing [113]

Splitting Payments [111]
Hoenisch and Weber [64]
Atomic Multi-path [104]

Re-Balancing
Channels

Section 2.5.2
REVIVE [69]

Channel
Stability

Section 2.5.2

PISA [92]
Avarikioti et al. [19]

Anonymity/
Privacy

Section 2.5.2

Fulgor & Rayo [86]
Tumblebit [63]

Network
Section 2.4

Construction
Section 2.4.2

HTLC [112]
Sprites [98]

State Assertion [27]
Virtual Channels [46]
Counterfactual [38]

Off-chain
Channels

Section 2.3

State
Section 2.3.2

Z-Channel [136]
Perun [46]

NoCUST [70]

Duplex
Payment

Section 2.3.2

Raiden [7]
Lightning [112]

Decker et. al. [44]
BOLT [61]

Teechan [81]
Burchert et al. [28]

TumbleBit [63]
Simplex
Payment

Section 2.3.2

Simplex [13]
Dimitrienko et al. [45]
Takahashi et al. [126]

Probabilistic
Payment

Section 2.3.2

Pass et. al. [105]
Hu and Zhang [65]

Table 2.1: The channels stack and concrete protocols.

words, we leave out of our classification protocols with multiuser distribution of
funds, as used in [21, 41, 43, 42], given that this is a wide research area.

Network construction technique. The reader should note that Table 2.1
arranges LN [112] in the Off-chain Channels Level, not in the Network Level,
and this can be considered unusual, given that LN is associated with PCN. We
highlight that the construction technique used in both cases is the HTLC, also
introduced in [112], therefore a more accurate setting is to locate the technique
in the Network level instead. Moreover, this arrangement is consistent with the
literature as in [94]. Similarly, we acknowledge that both [46] and [38] could be
classified in the Off-chain channel.

Comparison on the body of work in each level. Briefly, given the sim-
ilarities with computer networks, researchers realized that techniques can be
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borrowed from currently known network algorithms, albeit the need to adapt
them. This trend is promoted by Hoenisch and Weber [64], for routing, a crucial
functionality within the Network Management Level. This trend contrasts with
the technicalities of the off-chain channel and network levels. Our taxonomy
decouples these different issues, and we further discuss them in Sections 2.3
(channels), 2.4 (networks) and 2.5 (management).

As expected the off-chain channels body of work, described in Section 2.3,
presents a greater number of works, in comparison to, for instance, the Network
level as described in Section 2.4. The reason is that most of the protocols in
Section 2.4 derive from a single technique to realize conditional payments, the
HTLC, which was recently fully formalized by Kiayias et. al [71]. An example
of derived similar technique is Sprites [98] which employs a derived technique
but with smart-contracts.

On the other hand, the amount of work on off-chain channels is comparable
to that of the Network Management level, because of the significant amount of
effort put on the functionality of routing among the nodes of the network by
researchers and developers as later illustrated by Table 2.1 and also described in
Section 2.5. It is easy to note that even in this level there are discrepancies on
the attention given by the community on the function within the level, as the
single work on re-balancing the network, i.e. the REVIVE protocol [69], shows.

Security and privacy preserving constructions. In order to illustrate
the type of problems between the levels, we observe that privacy and security
permeates the layers, and some problems are well known in the literature. For
example, exchange of funds, in off-chain channels, needs to be consistent with the
payments, i.e. the channel constructions should not allow parties to steal coins
from each other, that is they should provide balance security, which is a property
common to all safe channel constructions. Similar concerns exist for payment
networks, but extended to the intermediate nodes, i.e. the nodes that allow the
connection between two other nodes with not common channel. Furthermore,
PCN should prevent information to be leaked to intermediate nodes. Finally,
network management systems should provide several features such as routing
for payers and payees, rebalancing and others while guaranteeing safety, in the
sense of balance security, and preventing information leakage.

2.3 Off-Chain Channel Level

Before reviewing the constructions for off-chain channels, it is convenient to
review the structure of transactions and how they can be issued on typical
cryptocurrency. That clarifies for the reader how channels can be established.

2.3.1 Preliminaries: Transaction Design Review

Payments done on a blockchain are recorded in the form of transactions, as in
Figure 2.5. Each transaction consists of n inputs and m outputs, n ∈ N, m ∈
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N0. Each output consists of coins as well as a spending requirement. A plain
payment has as requirement a signature with the private key of the payee. Inputs
on the other hand consist of a reference to an output of a previous transaction
on the blockchain (which was not referenced by another input before) as well as
a witness for the spending requirement, e.g. a witness is a signature with the
private key of the payee.

Spending requirements can be more complex than simply asking for the
payee’s signature. A relevant spending requirement for us is the k-out-of-l mul-
tisignature supported by Bitcoin with the opcode CHECKMULTISIG within
its scripting language. A witness to such a requirement needs to contain sig-
natures of k out of l specified parties. Channel construction techniques rely on
the k = l = 2 spending requirement. A transaction can specify a timelock to
enforce that miner will not include a transaction before a specified point in time.
Timelocks can either be defined per input or for a whole transaction. Moreover
timelocks can specify an absolute time or a point in time relative to when the
referenced inputs were included in the blockchain. In Bitcoin an absolute time-
lock for a whole transaction can be specified with the field nTimelock, a relative
timelock can be defined for each input using the field nSequence [1]Lastly, in the
following we denote ∆ as the maximum time required for a transaction to be
committed by a party and subsequently be included in the blockchain, which is
critical in the Dispute phase of the channel (outlined in Section 2.3.2).

2.3.2 Technical Challenges/Channel Constructions

Most of the interaction in a pairwise channel happens only between the players
in the channel. Therefore, the players need to keep the balance through all the
transactions performed in the channel, in other words the protocol should offer
balance security. As we see next, very often, in order to have balance security,
the nodes need to be online to take action in the case the partner in the channel
misbehaves.

General Description.

The terminology is fuzzy since both terms, “payment” channel and “state”
channel are used. Both terms refer to the idea of relying on off-chain direct
communication between two players, i.e. a channel. That is, initially, both
parties open the channel by committing a certain amount of coins, which will be
the channel capacity or the maximum amount that is passed from one player to
the other. The state of the channel can be tracked by simple signed transactions
with or without the aid of smart-contracts. Channels utilizing smart-contracts
have the capability to storage arbitrary state thus realizing state-channels.

The simplest form of channel relies on instructions for timelocks, e.g. the one
described in BIP65 [23], and threshold signatures2 using the early mentioned
CHECKMULTISIG opcode. Typically channels have four phases:

2Often denoted multisig by the Bitcoin community.
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• Setup: Two parties lock funds into the blockchain which the sum of funds
is the capacity of the channel. It is important to note that the parties need
to account for the confirmation time of the chain to start the channel.

• Payment: This phase the parties can exchange funds without interaction
regardless of the confirmation time of the system. During this phase the
initially locked funds cannot be used outside of the channel.

• Dispute: At any moment, a user can start a dispute in the case the other
party do not follow the protocol.

• Closing: When two players decide to close the channel, they publish
transactions in the blockchain, which reflect the exchange of funds that
happened in the Payment Phase. Again, in this phase the players need to
rely on the confirmation time of the blockchain. Furthermore, this phase
can also trigger the Dispute Phase, whenever the parties do not agree on
the current state.

Typical Channel.

The current balance of the channel is kept between the parties by directly ex-
changing mutually signed transactions with the amount being passed from one
player to the other. When the channel is closed the last pair of exchanged trans-
action are committed to the blockchain, which makes the coins available to be
redeemed by parties. A safety mechanism is in place by locally keeping the
signed transactions representing the new state of the channel. When a player
does not correctly perform the protocol, e.g. by not confirming a payment, thus
the protocol enters in the dispute phase. During this phase, for [112], the part-
ner can publish its locally kept (and mutually signed) transaction claiming the
coins of the channel. Alternatively, in Decker and Wattenhofer [44], the channel
is closed in the previous state. The consistency of all signed transactions are as-
sured to be correct due to the use of timelock operation code in the transaction
verification script language [23]. In comparison, state channels rely on smart-
contracts since they offer more complex operations. A contract, by design, can
keep track of the balance and transactions made into it. Therefore it can ex-
ecute payments accordingly based on previously set conditions. In particular,
the execution of a protocol can be triggered by presenting proofs of correctness
on secure multiparty protocols [21, 43, 41, 78, 79]. More formally, given witness
that a protocol was correctly performed, the contract can be executed.

Payment Channels.

Here we describe the main works on payment channels, from simplex, and prob-
abilistic, to duplex constructions. Afterwards, we review state channels. Finally,
we present constructions for privacy preserving channels.
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Figure 2.1: Setup
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Figure 2.2: Payment
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Figure 2.3: Updated version of payment

Figure 2.4: Figure 2.1 shows the initial state of a payment channel upon setup.
Figures 2.2 and 2.3 show payments. The former makes use of sequence numbers
and timelocks to replace previous payments. For example, for a channel between
A and B, with capacity CA and CB , the coins committed, respectively, by A
and B, after a transaction with value δ from A to B, therefore the new state
is CA − δ, for A’s balance and CB + δ for B’s balance. In 2013 this protocol
was updated, as illustrated in Figure 2.3. This update removes the use of the
sequence number. Moreover the timelock in the initial Refund Transaction is
kept, however, updated Refund Transactions do not contain a timelock.

Simplex Payment. The earliest proposal of payment channels that we could
find was posted on the Bitcoin Wiki [13] and is illustrated in Figure 2.4. Note
that the first proposal mentioned here makes use of a sequence number to replace
previous transactions, however, the respective, and already cited, Bitcoin field,
nSequence has been disabled on 20th August 2010 [1, 13] 3.

Figure 2.4 illustrates a simplified form of the protocol in [13] between two
parties: The payer and payee, and they initiate the Setup Phase. In order to do
this the payer prepares two transactions as depicted in Figure 2.1. The first is
the so called Funding Transaction which takes as input funds from the payer and
spends them within one output that requires the signatures of both payer and
payee to spend. The second is the Refund Transaction which spends the output

3https://github.com/bitcoin/bitcoin/commit/05454818dc7ed92f577a1a1ef
6798049f17a52e7#diff-118fcbaaba162ba17933c7893247df3aR522
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Input 1: 
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Output 1: 
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…
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…
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Signature: 
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Figure 2.5: A simplified illustration of a transaction, with n inputs (left side)
and m outputs (right side).

of the Funding Transaction and pays them back to the payer. Moreover the
transaction has the sequence number set to 0, and a timelock in the near future
by adjusting the value of nLocktime. Then, without signing the transactions, the
payer sends both transactions to the payee who signs them and sends them back.
After verifying the payee’s signatures, the payer signs both transactions itself
and sends them back. Then, one of the parties commits the Funding Transaction
to the blockchain.

If the payer wants to pay a certain amount, it happens in the Payment
Phase, it creates a new version of the Refund Transaction that still spends the
output of the funding transaction but instead of giving all funds back to the
payer, it contains an output that allocates some funds to the payee as depicted
in Figure 2.2. Moreover, the sequence number is set to a higher value to replace
the previous transaction. The payer signs this transaction and sends it to the
payee. This process can be repeated for subsequent payments that all adjust
the funds more and more in Payee’s favor and increase the sequence number
respectively.

Correctly keeping track of balances. The timelock and the sequence num-
bers prevent the payer to double-spending the funds. If the payer publish its
Refund Transaction, created at Setup Phase which gives all funds back to the
payer, to the blockchain, the payee could commit any Refund Transaction with a
higher sequence number to replace Alice’s committed transaction. However, the
payee needs to commit his Refund Transaction before expiration of the timelock
on payer’s Refund Transaction. Since then the protocol has been adjusted on the
Bitcoin-development mailing list [124] and the Bitcoin Wiki entry [13].

Probabilistic Simplex. Pass et al. [105] propose a probabilistic payment sys-
tem to reduce the number of transactions on the blockchain and subsequently
reduce the amount of transaction fees enabling micropayments. Moreover their
solution provides near-instantaneous payments without requiring confirmation
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delays. Their work is based on the work of Wheeler [129], Rivest [116] as well
as subsequent work [82, 97], and proposes three protocols. The first is naive,
therefore vulnerable, construction for two parties. The second and third proto-
cols are similar, with both relying on verifiable third party with the difference
that the latter is optimistic, and relies on the verifiable third party in case of
a dispute. In these protocols the payer sets up an escrow address and put an
amount a of coins into it. After the payment is performed the payer can poten-
tially use the same escrow to pay another merchant after some time has passed.
This work was improved by Hu and Zhang [65] using a time-locked deposit.

Duplex Payment. In a duplex payment channel both parties can allocate
funds into their mutually shared channel and these funds can be redistributed
between both parties arbitrarily. Both the constructions for duplex channels
proposed by Decker et al. [44] and the LN [112] extend the idea of simplex
payment channel4. That is, first, parties create a funding transactions in which
both parties allocate their funds by paying coins into it. Moreover the funding
transaction contains one output which requires signatures of both parties to
spend. Second, the parties create a refund transaction which spends the funding
transaction and has two outputs which pays back the coins to their respective
parties. Note that each party needs to hold off signing the funding transaction
until it holds a fully signed refund transaction since, otherwise, the other party
might hold the funds in the funding transaction as hostage by committing the
funding transaction and refusing to sign the refund transaction. After signing
the refund transaction both parties sign the funding transaction and commit it
to the blockchain to lock their funds into the channel, for the setup phase of
the channel. Parties execute a payment by creating a new refund transaction
and exchanging signatures. The payment is considered executed when both
parties hold the new fully signed refund transaction and invalidate all previous
refund transactions. If both parties cooperate for channel closure the parties
sign and commit a closing transaction that spends the funding transaction and
pays each party the amount of coins that are denoted in the most recent refund
transaction.

Dispute Phase differences. The way previous refund transactions are in-
validated differs in [44] and [112]. While in [44], the dispute is solved using
timelocks, to enforce the most recent mutually agreed status, in [112] it is done
by punishing the party by giving all channel coins to the honest party. Briefly,
the former structures channels within a, so-called, invalidation tree. The fund-
ing transaction represents the tree’s root and refund transactions are the leaves
of the tree. Each payment adds a node in form of a transaction into the tree.
There are two methods that enforce that only one path in the tree, and there-
fore only one refund transaction, is valid. For one, each node in the tree has
a relative timelock to its parent. A node in the tree can invalidate all of its
siblings by setting its timelock to be ∆ less than the minimal timelock on all of

4A comparison can be found in [95].
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its siblings. Note that refund transactions are always set to the highest locktime
possible as agreed by both parties.

Channel factories. The general framework for channels imposes restrictions
on the creation of channels. Namely, the confirmation time for the Setup
Phase may still be unacceptable for micropayments. Furthermore, upon chan-
nel creation the funds are locked for only that channel. The relaxation in these
requirements is the motivation for the creation of channel factories proposed
by Burchert et al. [28]. The core idea is to introduce a layer between the
blockchain and the payments. This translates into a step where a group of
collaborators jointly fund a factory. This first step, still requires blockchain in-
teraction, therefore still is subject to the limitations of the consensus algorithm.
However any new pairwise channel can be created, among the initial users, from
this point, upon communication between the collaborators, hence creating chan-
nels. Although the factory creation still requires time and funds locking into the
blockchain, the advantage of this design is that it allows reallocation of funds
between the pairwise channels.

Embedding script into signature. An interesting idea to preserve space
in the blockchains, which is the case for major cryptocurrencies, is to embed
more instructions into the signature issuing procedure by relying on a more so-
phisticated, i.e. one that offers more properties, signature scheme. That is the
approach introduced by Poelstra [5, 10] denoted scriptless script for the Schnorr
signatures and LN, which was recently extended by Malavolta et al. [88] to the
more suitable, for cryptocurrencies, ECDSA signature scheme. Alternatively, [5]
outlines an approach with the Schnorr signature scheme to embed the value of
the pre-image x, i.e. for the HTLC hash challenge, into the signature com-
putation algorithm, jointly carried by the payer and the payee of the channel.
Although the formalization effort displayed in [88], the authors point out it
is not the case for other proposals. Furthermore, main cryptocurrencies, e.g.
Bitcoin and Ethereum, may not be compatible to the Schnorr scheme.

Privacy preserving channels. BOLT [61] is a channel construction focused
on anonymity. Assuming either an anonymous blockchain such as Zcash [14] or
anonymization techniques such as mixer, the BOLT protocol provides anonymity
for one of both parties. A use case for this is a merchant that receives payments,
however, has no means to learn the identity of the customer. A drawback is that
the BOLT protocol requires the anonymous customer to be honest as they can
otherwise block closure of the channel locking the merchant’s coins indefinitely.

State Channels. Until now, in this work, the channels are built based on
special instructions for transactions, as described in Section 2.3.1. Smart con-
tracts, as in Ethereum, enable more complex offchain structures which has been
investigated in [46, 98]5. A particular use for smart-contracts aims to enforce

5We discuss [46] and [98] in more detail in Section 2.4.
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fairness and correctness on distributed systems. The approach of relying in
penalties to guarantee correctness and fairness of computation, in particular,
on secure multiparty computation protocols, has been independently explored
for efficient protocols on the top of blockchain. For the general case, this idea
has been introduced by Andrychowics et al. [17, 16], and later by Bentov and
Kumaresan [20]. For specific purposes, e.g. card-games, it was further explored
by Bentov et al. [21] and David et al. [41, 43, 42].

Compared to the previously mentioned constructions for payment-channels,
the state channel can be implemented more straight forwardly. They are opened
by committing the respective smart contract onto the blockchain, whose state
can be changed using a message signed by both parties as well as a sequence
number. Parties change the state offchain by computing a message to the smart
contract that would make transition into that state including a sequence number
and exchanged signatures for this message but without committing the message
onto the blockchain.

NoCUST [70] is another protocol which relies heavily on smart-contracts.
Here two parties wishing to exchange small amounts create a channel by making
their deposits into a smart-contract, therefore two on-chain operations. All the
payments from that point on, are executed off-chain via a third trusted node
which intermediates the off-chain operations between the two participants, and
each payment requires issuing request payments and receipts. This design has
the advantage, in comparison to regular payment hub over off-chain channels,
of not requiring the hub node to allocate/lock a large amount of funds, hence
no custodian, while intermediating payments between large group of pairs of
nodes.

2.4 Network Level

In this level, the goal is to focus on how the channel network can be established,
in contrast to how it is managed (which is the topic of Section 2.5). Concretely,
how channels can be concatenated securely to carry payments through several
nodes.

2.4.1 Technical Challenges

The main function of this level is the construction of a payment route. More
concretely, how the pairwise “inner” channels can be concatenated and used to
provide a medium for payments between two nodes that are more than one hop
apart. Within this setting, it is important to keep, balance security, specially
in the inner nodes of the route. Here the challenge is harder than in the early
sections, because in the network cases, the nodes within the route can also
collude against the honest players.
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2.4.2 Construction Function

The payment networks and related concepts had been previously studied:
trust networks [58, 67, 114], credit networks [40], path-based transaction (PBT)
[119] and privacy in PCN [86]. Here we are interested in construction techniques
for pairwise channels, in order to concatenate several channels into a channel
network. Such networks can enhance even more the scalability of a system,
because two nodes do not need to contact each other to open a channel. Instead,
they can create a “virtual channel”, it the sense of Dziembowski et al. [48] via
a mutually connected node (more on this, later in the section). The most
known technique is the early cited HTLC [112], which is currently being used
in the Bitcoin network and paved the way to new propositions for different
cryptocurrencies, as in the Raiden Network [7] for the Ethereum [132].

HTLC overview and conditional transfers. Nodes can execute a payment
atomically on a set of channels using HTLC. A payment can be routed across a
sequence of channels without payer and payee having to create a channel between
themselves that would require committing transactions onto the blockchain.
Briefly, in [112], two nodes exchange funds by relying on a middle node, say, B,
and the two channels between A and B, and B and C. Node A wants to send
coins to C, and, as the first step, C computes a hash value on an arbitrarily
chosen random number x and shares it with A via a direct channel, however
without establishing a payment channel. The actual transaction is carried by
A sending the funds to B, using their mutual channel with the extra condition
that node B shows the secret value x. Analogously, node B forwards the funds
to C in a similar fashion, relying in their mutual channel. Apart from LN based
channels [112], several types of channel constructions support HTLC: Raiden [7],
Decker et. al. [44], and Perun [46]. Recently a full formalization of the HTLC
technique was done by Kiayias et al. [71].

Mitigating Dispute Phase costs. In general, the channel networks are op-
timistic, i.e. they assume the nodes will cooperate, therefore the dispute phase,
as outlined in Section 2.3.2, is expected to be rarely triggered. However this
phase execution can be costly both in terms of time complexity and financially
given that the arbitrage can involve the execution of smart-contract to compute
penalties. The Sprites Protocol [98] introduced by Miler et al. is designed for
Ethereum’s smart contracts, and has the goal of reducing the time complexity
of resolving a dispute. Note that this work is independently done in Raiden [7].
The main observation of [98] is that in case of dispute, all of the internal pair-
wise channels have to solve the dispute in its own respective HTLC agreement,
i.e. between each of the two consecutive nodes. Hence, [98] substitutes HTLC
values by a single Ethereum smart-contract which solves the dispute. That dif-
fers from the HTLC technique since there is no need to increment the time-lock
parameter on each hop of the payment route.
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A recent idea introduced by Buckland and McCorry [27] named State Asser-
tion Channels, and it is analogous to [98] but for computational costs. The goal
of [27] is to guarantee that during the Dispute Phase, which can also be trig-
gered by closing a channel, the honest party always can be paid back regardless
of the cost of performing the verification of the full state of the application in the
blockchain deployed smart contract. What Sprites [98] does for the expiration
time of channels, the State Assertion technique does for the cost of computa-
tion, which indeed can be significant if done on chain. The main setting for state
assertion channels is to deploy two smart contracts, the application (AC) and
the assertion (SC) ones, with the requirement that the latter has to receive the
funds before the creation of the channel itself. The states are not disputed in
the AC, but in SC which can pay back the honest user whenever it challenges an
invalid state transition proposed by ta malicious user. The crucial observation
is that SC verifies without the full state of the application, but, instead, with
a digest of it via hash values. The work in [27] provides a simulation on this
novel approach, and it is a first step in the rigorous formalization of the idea.

Generalizing State Channels: “Virtual Channels” and “Counterfactu-
als”. There are approaches to construct more general structures over offchain-
channels. More notably, we can find in the literature the works of Dziembowski
et al. [48] and Coleman et al. [38]. The work in [48] extends their virtual state
channel construction in [46] by enabling virtual payment channels exceeding one
intermediary party. It is done by recursively applying their construction on top
of state channel as well as a “virtual state channel”, which allows the creation of
a multi-hop state channel across a sequence of single-hop state channels. This
technique allows payer and payee to operate on a shared state channel instead of
having to setup a new HTLC instance for each individual payment. More con-
cretely, consider the scenario where parties Alice, Bob and Charles, such that
Alice and Charles, as well as Charles and Bob share a state channel respectively.
For comparison, in [112] and [44], Alice and Bob can issue payments between
each other relying on the existing infrastructure and without having to create a
new channel between Alice and Bob. However, this requires that Charles joins
the protocol for each executed payment between Alice and Bob. In contrast,
virtual payment channels allow the creation of a payment channel on the top of
the existing state channels, enabling payments between Alice and Bob without
Charles’ participation outside of virtual channel setup, closure and any dispute.
The protocol is proven in the UC framework [29], and requires smart contract
capabilities6 and therefore it is not applicable to cryptocurrencies with limited
smart contracts capabilities as Bitcoin.

In a sense, Coleman et al. [38] also aims to build a richer structure on the
top of the off-chain channels. They introduced the notion of counterfactual,
which is, in a nutshell, all the events of the channel, which can, or cannot,
be committed to the blockchain. In this paradigm, a payment in the off-chain

6A proof-of-concept implemented for Ethereum is available at
https://github.com/PERUNnetwork/Perun.
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channel, changes a so-called counterfactual state of the system. In addition, it
is also possible to create counterfactual contracts via commitments and signa-
tures, which generalizes the channels even further. The work in [38] presents a
framework, focused on practical implementation.

The Wormhole attack and improved HTLC. The attack introduced by
Malavolta et al. [88] affects all the PCN constructions based on 2-step interaction
between the nodes, therefore HTLC based PCNs are in general, vulnerable to it.
The colluding nodes aim to capture the transaction fee which the inner nodes
on a payment route would expect to receive in order to carry the payments in
the network. Although the gravity of the attack, the authors of [88] succeeded
in proposing a fix for the main protocol and even warned the LN team about
the protocol weakness, which triggered new developments. In particular the
implementation of the two party ECDSA construction from [88], and its later
incorporation into the system [12]. Briefly, the attack is carried by two colluding
nodes within the same payment route. The two nodes share the pre-image
value of the HTLC, while keeping the nodes in between them oblivious to the
payment condition value. Consequently, in the point of view of the nodes in
the extremities of the path, the payment is carried out, while the nodes in the
middle of the path see it as failed. This condition allows the colluding nodes to
jointly receive the transactions fee from the nodes which did not executed the
payment.

2.5 Network Management Level

This is the upmost level in our classification, and, arguably, this level offers a
greater variety of technical issues in comparison to the other levels. Thus, before
reviewing the existing protocols, we described the known technical problems.

2.5.1 Technical Challenges

Here we assume that a network of channels is established, and all the nodes
have access to it. Therefore we identify the following main functions:

Routing.

Similarly to a regular computer network, in order the find a payment path, it
is necessary to probe the network for nodes available to route the payments. In
the case of channel networks, variables such as particular availability and fees
can heavily influence routing. A close look into routing in the LN is given by Di
Stasi et al. [60] and McCorry et al. [94]. A more general desiderata for routing
over channel networks is given by Hoenisch and Weber [64] based on similarities
between channels and Mobile Ad Hoc Networks (MANET).



28 CHAPTER 2. BACKGROUND: OFFCHAIN PROTOCOLS

Re-balancing route.

Each pairwise channel is associated with a channel capacity, which is how much
funds the channel can handle. A PCN can concatenate several channels, i.e.
different capacities, that need to harmoniously work together. The consequence
is that inner channels in a path have its capacity exhausted forming bottlenecks
in the whole route.

Stability of the route.

The current techniques for channel constructions very often rely on the assump-
tion that the users of the channel, and therefore of a PCN, will be online during
all the lifespan of the channel. This is crucial in the case a Dispute Phase, as
described in Section 2.3.2, when the parties need to act timely. Failing to claim
the correct state of the channel, lead to the honest user to lose funds.

Privacy and anonymity.

Intermediate nodes within a payment route, in principle, watch all the flow of
transactions, since they are intermediating all the payments. Moreover, when
enabling a payment path through, for example routing, information may be
leaked about the payer and the payee.

2.5.2 Constructions

For each of the technical challenges detailed earlier, we now detail and discuss
the existing approaches in the literature.

Routing.

Here the challenges are similar to computer networks, however there are impor-
tant differences due to the payment network nature. For one, routing should be
scalable, i.e. both the stored state per node as well as communication complex-
ity when routing should be logarithmic on the number of nodes. Moreover, the
amount of funds that can be routed through a path depends on the capacity of
the channel with the lowest capacity on the path. Furthermore, nodes within
a path can be either controlled by a malicious adversary or spontaneously go
offline. Also the network should be able to handle multiple concurrent routing
attempts and payments. In addition to all these challenges intermediate routes
that participate in forwarding a payment can ask for a fee and therefore nodes
need to consider this and might want to optimize for a reduction of payment
fees. Nevertheless, we note that as a fallback nodes can always create a new pay-
ment channel between payer and payee, however, this counteracts the scalability
efforts of offchain payment networks so most approaches attempt to accomplish
routing without relying on the fallback method.



2.5. NETWORK MANAGEMENT LEVEL 29

Approaches for routing. A common limitation for long payment channels
is that the intermediate nodes need to be online during the transaction period.
Therefore, often routing algorithms rely on landmark routing techniques [127],
where a landmark, i.e. a node with extra guarantees regarding its connectivity.
Briefly, there are two ways to approach routing in these networks: through
landmarks, and embeddings. In landmark routing all nodes know the route to
a set of landmarks. In such a protocol payments are, first, routed from the
payer to a landmark and, second, routed from the landmark to the payee. This
approach promotes centralization of payment channel networks. Nodes close to
a landmark would have the advantage of being better connected and might need
to pay less fees for routing as well as have a better routing success rate. They
also might get more income through fees because payments would more often
be routed through them compared to nodes far off from landmarks. Another
approach is routing using embeddings, where nodes, among themselves decide,
on an address space of the network and, then they can find routes using these
addresses. This approach enables more decentralization however it requires
more communication for maintaining routing tables.

SilentWhispers Protocol [85] proposes using landmark routing, where all
landmarks are publicly known and semi-honest. All routing is done through
these landmarks by computing the shortest routes. This is done in epochs such
that node’s routing tables can update to changes within the network. The
work [85] also defines privacy notions for credit networks and provides security
proofs of their construction in the UC framework. The work also proposes mul-
tiple extensions. One of these allows for malicious landmarks whereas the other
extension proposes routing through nodes that are offline. In the latter case
nodes create secret shares of their long-term private keys and distribute those
across the landmarks who can then impersonate offline parties, however, this
requires that at least one landmark is honest and does not try to reconstruct
long-term private keys of which it holds secret shares. The author’s of [85]
evaluate their work using Ripple’s [8] payment network topology from 2013 and
2016 [11]. They compare success ratio, path length of payments and message
complexity between their approach, a protocol based on the Ford-Fulkerson
max-flow algorithm [55], and SilentWhispers [85] among others. They show
a better success ratio as well as smaller paths in average compared to Silen-
tWhispers, albeit a lower success ratio than the one based on [55] which had an
unfeasible message complexity.

Similarly, the SpeedyMurmurs routing protocol [118] is an embedding based
routing protocol, for path-based transaction networks based on the work in [117].
In [118] some nodes are designated landmarks, and are used as roots of respective
spanning trees are computed to create an address space within the network. A
route can be computed using a distance function on nodes’ addresses to find
the next hop on route to the target. In comparison, LN/HTLC [112] relies
on a gossip protocol for channel maintenance and recovery 7 and onion style

7A description can be found in https://github.com/lightningnetwork/lightning-
rfc/blob/master/07-routing-gossip.md



30 CHAPTER 2. BACKGROUND: OFFCHAIN PROTOCOLS

routing for privacy 8. However, it is not clear how nodes can find routes, and an
attempt to tackle this is the routing proposal algorithm for LN: Flare [113]. The
protocol in [113] is probabilistic, and proceeds in two ways: (1) each node stores
the topology of its neighborhood, (2) each node chooses a set of beacon nodes
globally and at random according to a uniform distribution. Routing between
two nodes is done by first checking both peers neighborhoods for intersections,
and if this does not work checking whether a beacon node is within the other
peers neighborhood. The nodes continue by using the neighborhoods of a few
beacon nodes when searching for mutually known nodes to route through.

Hoenisch and Weber [64] pioneered the adaption of techniques from Mobile
Ad Hoc Networks (MANET), by compiling a list of requirements for off-chain
channel networks. An interesting feature of their adapted protocol, named On-
Demand Distance Vector (AODV), is that it takes into account the balance and
fees of intermediate nodes, a feature not present in MANET but highly relevant
given that these values can change arbitrarily and without coordination in the
Layer-2 scenario.

Splitting payments. Routing success does not only rely on whether a route
can be found or not, but also whether the route has enough capacity for the
payment to be executed through it. Large payments have low routing success
rates 9. Approaches to tackle this issue aim to split payments through mul-
tiple routes as AMP [104] that provides a protocol to split a payment across
multiple paths, Moreover [104] also considers privacy as well as sender/receiver
anonymity. The Split Payment Protocol [111] tackles similar problem as in [104],
however [111] allows for payments to complete only partially. Another approach
is the Spider Network [120] which employs packet-based routing including con-
gestion control to do payments through multiple paths. Each payment is split-up
into smaller packets which can be routed through separate routes and claimed
atomically by the sender as proposed in [104] or non-atomically. Nodes involved
in routing payments can employ congestion control techniques when multiple
payments are routed concurrently. Channel capacities and possible imbalances
are considered when selecting paths for packages.

The work in [120] compares the success ratio of routing using an approach
based on [55] as well as SpeedyMurmurs [118] and SilentWhispers [85]. They
evaluated these approaches using network topologies existing in the Internet as
found in [76], and Ripple’s [8] payment network topology from 2013 [11] which
has also been used for the work on SpeedyMurmurs [118], showing that the
approach proposed in the paper works better on the former topologies than the
latter ones where they are outperformed by the algorithm from [55]. Noteworthy
is that they report significantly lower success ratios for SpeedyMurmur than
have been reported in their paper [118]. Moreover, Speedy Murmurs does not
consider privacy notions or malicious adversaries.

8A description can be found in https://github.com/lightningnetwork/lightning-
rfc/blob/master/04-onion-routing.md

9Reported in https://diar.co/volume-2-issue-25/ and https://thenextweb.com
/hardfork/2018/06/26/lighting-network-transactions/
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Channel Re-balancing.

Given the limited capacity of a channel, it may be necessary to rebalance a set of
payment channel to avoid that the channel turns into a simplex one because of
exhausted capacity. For instance, let Alice and Charlie, Charlie and Bob as well
as Charlie and Alice share a payment channel respectively. Moreover assume
that initially everyone has one coin allocated as their funds for each channel.
Now, if Alice sends one coin to Bob, Bob sends one coin to Charlie and Charlie
sends one coin to Alice, all within their respective channels then we would end
up in a situation where in each channel one party has two coins and the other
has no coin. In this case we would not be able to repeat this payment without
routing the payments over an intermediate node even though the total funds of
all nodes remain unchanged. In order to circumvent the skewness in funds, the
REVIVE protocol [69] relies on an untrusted third party that creates a block
of transactions rebalancing funds. Each peer will lose money on one or more
payment channels but gain an equal amount on others. After each peer verifies
this on the rebalancing transactions they can apply the changes off-chain.

Channel Stability.

The channel between two nodes assume that both stay online on the duration
of the channel. Any misbehaviour of any node, can trigger the response and
respective claim of the partner node, which have to be online in order to perform
the dispute phase of the network protocol. An approach to address this is to
assume that the receiver can assign a custodian node, sometimes also referred as
watchtower [18, 19], to watch over their payment channel while they are offline.
Similarly, this is the idea of the PISA [92]. The custodian can dispute malicious
commitments of the other peer while its customer is offline. The custodian gets
a fee for the service and has a deposit that gets destroyed when it fails to make
a dispute on behalf of its customer. However, the custodian’s customer are not
public and the custodian can use the same deposit as a safety for all customers.
This leads to the problem that if there are enough customers the custodian
can possibly get more funds by cheating on its customers than it would lose
by having its deposit destroyed. Moreover, if the deposit is not destroyed and
instead is payed out to all customers a malicious custodian can create customers
for itself to mitigate the funds lost.

Privacy and Anonymity.

The network management layer may leak crucial pieces of information from
nodes belonging to a route to the origin node of a payment. Malavolta et
al. [86] investigate privacy notions on PCN and how to enforce them, and pro-
pose routing protocols Fulgor and Rayo [86] that consider concurrent routing
processes and attempt to avoid deadlocks in a sense that at least one pay-
ment completes. Unfortunately their privacy notions rely on assumptions that
the underlying routing protocol does not store the state (capacity) of payment
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channels within the network, which if done could be used to circumvent their
attempts for privacy.

Fees and node reputation. Since each node in the network can charge an
arbitrary fee in order to conduct the payment along the path, an interesting
question to investigate is the game-theory behavior of rational nodes within
the network and other economic questions. In comparison to other works, as
seen in previous transactions, these questions seem to be, to this day, largely
understudied. A framework to study network topologies and economic aspects
is given by Brânzei et al. [26]. Similarly, a reputation system, which would take
account of fees and success payment rate, seems to be missing in the literature
and are highly relevant for practical systems.

2.6 Final Remarks

We provided a major review, as shown in Table 2.1, of the body of work on
off-chain channels, networks and related protocols for Layer-2 solutions, an
emerging area targeting scalability of cryptocurrencies. We believe it provides
a significant value for the community because it contains a wide overview of the
landscape on the ideas and approaches present in the scientific literature and
Internet repository and forums. We focused this work on providing a through-
out overview of the landscape with emphasis on problems and approaches of the
available protocols.

We highlight the rich literature on routing protocols, for Network Manage-
ment Level, in comparison to, for instance, channel Re-Balancing protocols.
That difference can be explained by the similarities of the off-chain channel and
computer networks, which can be seen as a source of already tested ideas to find
routes.

More recently, we can also note a trend on network construction protocols
for the Network Level, in particular the works on Virtual Channels [46] and
Counterfactual [38]. In both cases, they distinguish themselves by providing a
richer framework for constructions on the top of off-chain channels. Further-
more, we also highlight that the most established technique, i.e. HTLC, was
recently fully thoroughly studied [71].

Along the same lines, works on the economic aspects of the channels, i.e.
fees charged by nodes, and reputation of nodes seem also to be underreported
in the literature. In both cases, they are important, because they are critical to
pave the way of more practical systems. Finally, it is important to emphasise
that this work left out the topic of interoperability of systems, e.g. Cosmo [4],
XClaim [135] and Comit [3].



Chapter 3

A Framework for UTxO
Based Offchain Protocols

In this chapter, first we introduce the notation that we use throghout this work
in section 3.1 we introduce the UTxO model for blockchains in Section 3.2 before
introducing our framework for UTxO based offchain protocols in Section 3.3.
Lastly we present our security model in Section 3.4.

3.1 Notation

Tuples. Throughout this work we make use of tuples and use short-hand
notations as follows. Let (a1, a2, . . . , an) be a definition of a tuple of type A and
let α be an instantiation of A. Then α.ai equals the i-th entry of α.

Sets. Let ∪, ∩ and \ denote set union, intersection, subtraction, and ∅ be the
empty set.

3.2 The UTXO Paradigm

In the following we define the model of UTxO based ledgers.

Transaction Outputs. A UTXO is a tuple of the form (b, π) where b ∈ N
is an amount of coins and π ∈ {0, 1}∗ is a script. The b coins of the UTXO
are claimed by providing a witness w ∈ {0, 1}∗ s.t. π(w) = True. The state of
the ledger is represented by a set of UTXO Sutxo, which can be changed by a
transaction of the form (Uin, Uout, t) where t ∈ N is the (absolute) timelock
represented as a point in time, Uout is the list of unique UTXO for the outputs
of the transaction, and Uin is the set of transaction inputs of the form (ref(u),
wu) where ref(u) is the pointer to the UTXO u, and wu is the witness.

33
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Transactions. A transaction (Uin, Uout, t) needs to fulfill the following con-
ditions. (1) The locktime has passed, i.e. t ≤ τ where τ is the current time,
(2) all witnesses are valid, i.e. ∀(ref(u), w) ∈ Uin : u.π(w) = True (3) the coins
within the newly created UTXO are less or equal to those in the transaction’s
inputs, i.e. Σ(ref(u),w)∈Uin

u.b ≥ Σu∈Uout
u.b, (4) all UTXOs in the transaction’s

inputs exist and have not yet been spent, i.e. ∀(ref(u), w) ∈ Uin : u ∈ Sutxo.
The transaction has the following effect on the ledger. All UTXOs referenced
within Uin are removed from Sutxo and all UTXOs defined in Uout are added to
Sutxo. A transaction T is included in the ledger within a duration ∆ ∈ N. Con-
dition (4) implies that no UTXO can be claimed by two different transactions.
After sending T to the ledger, if within time ∆ another transaction T ′ claiming
a subset of the same UTXOs as T is sent to the ledger, it would result in a
race condition, in which it is non-deterministic whether T or T ′ will change the
ledger’s state. We note that while we use ∆ as a ledger parameter in practice
this value has to be estimated for real-world implementations. Special care has
to be taken when selecting a value. A value that is too low breaks our assump-
tions and the protocol’s security. A value too high increases the collateral and
therefore the impact of attacks such as congestion and lockdown[99, 109].

Scripting. Scripts in this work specify a UTXOs owner by requiring a signa-
ture of the transaction that spends the UTXO with the recipient’s verification
key. This is extended to 2-out-of-2 multisignatures that require verification keys
of two parties P and P ′ effectively creating a shared wallet between both parties
that can only be spent with consent of both parties.

Simplified UTXO. Throughout this work we simplify scripts by only stat-
ing the set of parties which need to provide their signatures to spend the re-
spective UTXO, i.e. UTXO are tuples (b, Party), where b ∈ N is the amount
of coins and Party is a set of parties. UTXOs requiring 2-out-of-2 multisig-
natures are termed Funding UTXO. An instantiation of a Funding UTXO is
F UTXO(x,P0,P1) which is of the form (x, {P0,P1}) where x ∈ N and P0,P1

are parties.

Partial Mappings. In the case of working with functionalities, we abstract
away from transactions and represent them as partial mappings of UTXO of
the form (In, Out) where In,Out are UTXO that represent the transaction’s
inputs and outputs respectively. Informally a partial mapping consists of two
sets of UTXO representing the inputs and outputs of a transaction. Submitting
a partial mapping to a ledger results in a state change where the UTXO in the
inputs are replaced by the in the outputs. We assume there is a function φ that
takes a mapping (In, Out) and time t and outputs a respective transaction with
timelock t. Analogously φ−1 is a function that takes a transaction and outputs
a mapping and timelock.
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3.3 The Framework for UTxO Ledgers

3.3.1 Offchain Protocols

Transaction Graphs. All transactions included in the ledger form a directed
and acyclic graph. The set of all transactions form its vertices. An edge (T0,
T1) from transaction T0 to transaction T1 exists, if T1’s inputs contain a pointer
to one of T0’s outputs, i.e. ∃u : u ∈ T0.Uout ∧ (ref(u), w) ∈ T1.Uin. Note that
a transaction can only be included in a ledger if all of its ancestors have been
included in the ledger before. In the remainder of this work we reference sets of
transactions that are connected to form a sub-tree as transaction trees.

Channels. A channel γ between two parties consists of sub-protocols setup,
closure and dispute. In setup both parties create a transaction Trf containing
a Funding UTXO between each other which locks their funds into the chan-
nel. They create a transaction tree with the Funding UTXO as its ancestor
that represents the channel which we reference in the remainder of this work as
channel-tree. Only after the channel-tree is created and either party holds sig-
natures of its transactions, both parties sign and commit Trf to the ledger while
holding off commitment of transactions within the channel-tree. Both parties
can perform closure of the channel by committing a transaction to the ledger
that spends the Funding UTXO unlocking the channel’s funds according to its
most recent state. In case of a dispute, the dispute sub-protocol enforces the
channel’s state by committing the channel-tree’s transactions onto the ledger.

Offchain Protocols perform a state transition of a channel by transforming
its channel-tree. Any honest party must be able to enforce the new channel’s
state which might require an explicit invalidation step that disables commitment
of an older version of the channel-tree or allows for punishment of a party that
does so. An efficiency requirement of offchain protocols is that performing them
n ∈ N times grows the channel-tree by at most O(1) transactions.

3.3.2 Operations on Transaction Trees

Updating a Transaction Tree. Timelocks can be used to define at which
point a transaction can be committed to the ledger. Assume there are two
transactions that spend the same UTXO, but which have timelocks that are 1)
in the future and 2) have a difference of at least ∆. In this case parties can
enforce commitment of the transaction with the lower timelock to the ledger.
The transaction with the lower timelock invalidates the transaction with the
higher timelock.

Constructing Transaction Trees Atomically. We observe that commit-
ting a transaction to the ledger requires that all of its ancestors are committed
to the ledger beforehand. For a transaction to be able to be committed to the
ledger it needs to contain all required witnesses, i.e. signatures. Therefore,



36CHAPTER 3. A FRAMEWORK FORUTXO BASEDOFFCHAIN PROTOCOLS

we can atomically create a transaction tree rooted in a transaction trroot that
is common ancestor to all other transactions. First, we add signatures to all
transactions except trroot. Afterwards, adding signatures to trroot makes the
whole transaction tree committable to the ledger at the same moment.

Constructing Transaction Trees Atomically Across Two Channels.
We assume two transactions, tr0 and tr1, that require signatures of Alice and
Bob, as well as Bob and Charlie respectively. Bob can enforce that both trans-
actions are created atomically by only providing his signature after he received
signatures from Alice and Charlie. We note that techniques (1) and (2) can be
used in tandem.

3.4 The Security Model

Communication Model. We assume synchronous communication where time
is split into communication rounds. If any party sends a message to a receiving
party within a round, the message reaches the receiving party at the beginning
of the following communication round. The duration of any round has an upper
limit.

Indistinguishability. Let negl(n) denote the negligible function. The stan-
dard definition for computational indistinguishability X ≈c Y is that there is
no PPT algorithm D such that D can distinguish between two ensembles of
probabilistic distributions X = {Xn}n∈N and Y = {Yn}n∈N, in other words
Pr[D(Xn, 1

n) = 1]− Pr[D(Yn, 1
n) = 1]| ≤ negl(n).

3.4.1 The Adversarial and Computational Model

We model the execution of our protocol π via the Universal Composability
(UC) Framework with Global Setup by Canetti et al. [31] where all the enti-
ties are PPT Interactive Turing Machines (ITM), and the global setup is given
by the global functionality G, and the execution is controlled by the environ-
ment Z. In this simulation based model, all parties from π have access to
the auxiliary functionality Faux, i.e. πFaux , in the hybrid world execution
HYBRIDπFaux ,A,Z in the presence of the adversary A which can see and de-
lay the messages within a communication round. Whereas the ideal execution,
i.e. IDEALF,S,Z , is composed by the functionality F in the presence of the
simulator S. In both executions, the environment Z access the global func-
tionality G. Given the randomness r and input z, the environment Z drives
both executions IDEALF,S,Z and HYBRIDπFaux ,A,Z , and output either 1 or 0.
Therefore, let IDEALF,S,Z and HYBRIDπFaux ,A,Z be respectively the ensembles
{IDEALF,S,Z(n, z, r)}n∈N,z∈{0,1}∗ and {HYBRIDπFaux ,A,Z(n, z, r)}n∈N,z∈{0,1}∗ of
the outputs of Z for both executions. Thus, we say that πFaux realizes F in the
Faux-Hybrid model when, there exist a PPT simulator S, such that for all PPT
Z, we have IDEALF,S,Z ≈c HYBRIDπFaux ,A,Z .
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Corruption. Assuming a protocol is executed between a set of n ∈ N mutually
distinct parties. At the beginning of protocol execution, the adversary can
statically corrupt up to n − 1 of n parties, receiving their internal state and
having all communication to and from these parties be routed through the
adversary. The adversary is malicious and can make any corrupted party deviate
from a protocol.
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Chapter 4

Lightweight Virtual
Payment Channels

4.1 Introduction

Blockchains implement decentralized ledgers via consensus protocols run by
mutually distrustful parties. Despite the novelty of such design, it has inher-
ent limitations, for example, effectively all transactions committed to the ledger
have to be validated by all parties. Croman et al. [39] showed that this severely
limits a blockchain’s throughput. Moreover, there is a minimal delay between
submission of a transaction and verification thereof that is intrinsic to the sys-
tem’s security, e.g. one hour in the case of Bitcoin.

Layer-2 protocols, such as payment channel networks, allow confirmation of
transactions outside the consensus protocol while using it as fallback. These
protocols are referred as “off-chain” protocols in contrast to processing trans-
actions via the consensus protocol “on-chain”. An elementary protocol realizes
channels and commonly works as follows: Two (or more) parties put together
their funds and lock them on-chain by requiring a 2-out-of-2 (n-out-of-n) mul-
tisignature to claim them. Then these funds are spent by another transaction
or a tree of transactions. These transactions represent the distribution of funds
between both parties and are not committed to the blockchain except when par-
ties enforce the fund distribution on-chain and unlock the funds. The parties
can perform a payment, i.e. update the balance distribution within the channel,
by recomputing that tree of transactions while invalidating previous transaction
trees. Payments between parties are processed immediately and only involve in-
teraction between the two parties. Channels can be extended to form channel
networks by using Hashed Time Lock Contracts (HTLC) [44, 112]. Payments
are performed by finding a path from payer to payee within the network and
atomically replicating the payment on each channel along that path. A draw-
back of HTLCs is that a payment requires interaction with all intermediary
nodes within a path. Virtual State Channels as proposed by Dziembowski et al.
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[46, 49] devise a technique for creation of channels that allow execution of state
machines instead of being limited to payments, and use an off-chain protocol
that expands the network with new channels. The latter reduces the network’s
diameter yielding shorter payment paths, and allowing parties to perform pay-
ments without interacting with any intermediary nodes if they are adjacent in
the now extended network. However, this construction requires blockchain with
smart-contract capability, therefore not applicable to Bitcoin. Later we will see
that this work addresses this limitation with a novel construction.

Use cases for virtual channels are manifold. A virtual payment channel
provides the same benefits to the two parties sharing one as pairwise payment
channels without the need to set it up by committing transactions to the ledger
that can incur expensive fees. Payments can be executed offchain, without
interaction with a third party and without incurring any fees, e.g. for routing
an HTLC, making rapid micro-payments viable. This could enable new services
such as a service-gateway. Such a gateway would consist of a node that sets
up payment channels with different service provider that operate using micro-
transactions, e.g. Video on Demand (VoD) services that bill by watch-time. A
user could then create one payment channel with the gateway node and with
the use of virtual channels created ad-hoc connections to the different (VoD)
services instead of having to set up individual payment channels with each
service they want to use. A more general use case is that virtual channels allow
payment hubs, that have a high degree within a payment channel network, to
interconnect their individual partners in exchange for a fee.

Related Work. HTLCs allow atomic payments across multiple hops. This is
done by performing a conditional payment in each channel along a path from
payer to payee. Executing a payment requires revealing a secret x ∈ N such
that H(x) = y where H is a cryptographic hash function. After setup, starting
from the payee each node within the payment path reveals x to its predecessor.
This proofs that the payment can be enforced on-chain which allows parties to
resolve the payment by performing it off-chain. A timelock is used to cancel
the transaction after a preset amount of time which unlocks the funds from the
conditional payment. Although our construction can be used to enable payments
across a payment channel network by creating a virtual channel between payer
and payee, we argue that our work is orthogonal to HTLCs and both techniques
can be used in tandem. First our construction is used to expand the underlying
payment channel network with additional virtual channels and then HTLCs can
be used to perform payments across this expanded infrastructure.

Dziembowski et al. introduced Virtual State Channels [46] and State Chan-
nel Networks [49]. A state channel depends on a smart contract previously
committed to the blockchain. It contains (1) application specific code, and (2)
code for state channel management. More specifically parties can send mes-
sages to the smart contract changing its state according to (1), or compute a
state-transition message where the resulting state is computed by the parties
and summarized in the state-transition message for (2). The state-transition
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message can be kept off-chain, and only committed to the blockchain in case
of parties’ dispute. A virtual state channel can be built on top of two chan-
nels that were previously created in this manner. Similar to our work, virtual
channels cannot be open indefinitely but have a fixed lifetime that is decided
upon construction. In contrast to our work this technique requires a blockchain
with smart-contract capability. Chakravarty et al. proposed Enhanced Unspent
Transaction Outputs (EUTxO) [32] and constructed the Hydra Protocol [33].
EUTxO enables running constraint emitting state machines on top of a ledger
which is used to setup a Hydra heads among a set of parties. This allows them to
take their funds off-chain and confirm transactions with these funds among the
participants of the Hydra head. Although parties can interact with each other
using arbitrary transactions as they would on-chain, no new participants can
be added to the Hydra head which is in contrast to payment channel networks.
Moreover implementing Hydra requires blockchains with EUTxO capability lim-
iting its applicability.

Our Contributions. This work proposes a new variant of Virtual Channels,
we name it Lightweight Virtual Payment Channels, that is based on UTXO
and requires only multisignatures and timelocks, that is, it does not require
smart-contracts, yielding the first virtual channel construction implementable
on blockchains such as Bitcoin, which currently has the highest market capital-
ization of all cryptocurrencies 1 and still is the most widely used, and blockchains
operating with the recently introduced EUTxO [32] effectively improving the
state of the art in both cases.

In a nutshell, our Layer-2 protocol for Virtual Payment Channels takes two
payment channels between three parties as input, and opens three payment
channels, i.e. one for each pair of parties. Our protocol can be applied itera-
tively allowing for virtual payment channels across multiple hops of the under-
lying payment channel network. Our construction (1) can be used to expand a
payment channel network with virtual payment channels, (2) allows payments
without interaction with intermediary nodes if payer and payee share a virtual
payment channel, (3) can be used in tandem with HTLCs and (4) can be used
with different payment channel implementations as Duplex Payment Channel
[44], Lightning [112], Eltoo [108]. We formalize our work in Canetti’s Uni-
versal Composability (UC) Framework [29] by introducing a functionality for
lightweight virtual payment channels FLVPC,FPWCH

. Although formalizations for
ledgers, including Bitcoin, within the UC framework exist [49, 46] we present
the first global functionality GUTXO−Ledger for an Unspent Transaction Output
(UTXO) based ledger. Moreover we present an auxilliary functionality FScript

modeling a scripting language modelling access to timelocks and multisigna-
tures. Our construction makes use of GCLOCK by Katz et al. [68], modified by
Kiayias et al. [74, 72] and FSIG by Canetti et al. [30]. We present pseudo-code
protocols Open VC, Close VC and Enforce VC.

1https://coinmarketcap.com
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Structure of this Work. In the remainder of this work, first, we briefly
introduce notation and the model used in this work in Section ??. Next we
formalize a UTXO based ledger and their components in Section ?? and re-
view pairwise payment channel in Section 4.2. Afterwards we give a high-level
description and analysis of our approach in Section 4.3 before presenting pseudo-
code protocols in Section 4.4. Following this we formalize our approach in the
UC framework by, first, introducing auxiliary functionalities in Section 4.5.4,
then the pairwise payment channel functionality FPWCH in Section 4.6.3 and
the virtual channel functionality FLVPC,FPWCH

in Section 4.7. Next we introduce
formal protocols implementing FPWCH and FLVPC,FPWCH

namely protocols PWCH
and LVPCv

PWCH in Section 4.8.3 and Section 4.9 respectively. We provide simu-
lation based proofs that the protocols implement the respective functionalities
in Section 4.10. Lastly we discuss directions for future work in Section 4.11.

4.2 Pairwise Payment Channel

A pairwise payment channel allows two parties to exchange funds without com-
mitting a transaction to the ledger for the individual payments. Such a channel
is setup by having parties commit a transaction on the ledger that collects some
of each party’s UTXO and spends all of it within a Funding UTXO. Committing
this transaction on the ledger locks these funds. The Funding UTXO is spent
by a transaction subtree representing the channel’s state where committing it
to the ledger unlocks and returns all of the parties’ funds, however, instead,
the parties hold off committing them. When executing a payment, they up-
date the transaction subtree to represent the new state while invalidating the
previous subtree. Invalidation can be done by spending the Funding UTXO
with a transaction that has a timelock of at least ∆ less than the previous sub-
tree. We remark that alternative invalidation methods do exist [44, 108, 112].
The channel is closed by committing the transaction subtree or a transaction
summarizing it onto the ledger.

4.2.1 Types of Transactions

We design our construction to be agnostic of the underlying pairwise payment
channel construction, however, for the sake of having a complete formal treat-
ment we formalize a simple pairwise payment channel construction based on
timelocks. This construction consists of two types of transactions called Fund-
ing and Refund transactions.

Funding. A Funding transaction is parametrized with (x, P0, P1) where x ∈ N
is an amount of coins and P0, P1 are parties where P0 6= P1. It is an arbitrary
valid transaction Tr for which holds that there exists a Funding UTXO f out ∈
Tr.Out parametrized with (x,P0,P1) and its timelock is 0.
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Alice : �X

Bob : �Y

Alice  
& Bob : 
�X + Y

�0
Funding

�t
Refund

� Bob : �Y + δ

Alice: �X − δ

(a) Simple Payment Channel.

Alice : �X

Bob : �Y

Alice  
& Bob : 
�X + Y

�0
Funding Channel

� Bob : �Y + δ

Alice : �X − δ

(b) Abstract representation.

Figure 4.1: Figure 4.1a depicts a possible implementation of a simple pairwise
payment channel whereas Figure 4.1b depicts an implementation independent
abstraction.

Refund. A Refund transaction is parametrized with (ref, tr, xr, yr) where
ref is a reference to a Funding UTXO f out = F UTXO(xf ,P0,P1), tr ∈ N is a
point in time, and xr, yr ∈ N are amounts of coins. It is a transaction Tr of form
({ref},Out, tr) where Out = {(x, f out.P0), (y,P1)}, xf ≥ x+y. In the following
we denote a Refund transaction with these parameters with REFUND TR(f out,
tr, xr, yr) and an analogous mapping with REFUND MAP(f out, xr, yr).

4.2.2 Pairwise Payment Channel

The implementation of a timelock-based pairwise payment channel is depicted
in Figure 4.1a. It consists of a Funding transaction that locks both parties funds
into the channel as well as a Refund transaction that holds the current state,
i.e. fund distribution, of the channel. Two parties who want to create such
a channel proceed as follows. (1) Create and exchange Funding and Refund
transactions, (2) sign and exchange signatures of Refund transaction, (3) sign
and commit Funding transaction to the blockchain.

As soon as the Funding transaction is included in the blockchain, a payment
can be done by creating a copy of the Refund transaction with a new balance
distribution, a timelock that is smaller by at least ∆ to the previous Refund
transaction’s timelock, but higher than the current time, and exchanging sig-
natures for it. The channel is closed by either party by committing the latest
refund transaction to the blockchain at expiration of its timelock. Alternatively
a channel can be closed by creating a Refund transaction with a timelock of 0
and committing it to the blockchain.

4.3 Overview of the Construction

The construction consists of three protocols, Open VC, Close VC and Enforce VC
used for setup, tear-down and dispute of virtual channels respectively. We re-
mark that the executions of Open VC and Close VC require consent between
all involved parties, and Enforce VC can be executed by a party unilaterally.
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Alice 
& Bob : �X
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Alice: 
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Figure 4.2: Illustrations of transactions used through out this work represented
as nodes of a transaction graph. A transaction’s inputs are listed on the left-
hand-side whereas a transaction’s outputs are on the right-hand-side. The value
on top represents the transaction’s timelock.

Types of Transactions. We use three types of transactions, they are are
Split, Merge and Punish transactions as illustrated in Figure 4.2. A Split trans-
action spends a Funding UTXO and creates two new Funding UTXO between
the same pair of parties. A Merge transaction takes two Funding UTXO be-
tween three parties and equal balance as input, and creates two UTXO with the
same amount of funds as the inputs each. One is a Funding UTXO between the
two parties that do not share a Funding UTXO within the inputs, and one is a
UTXO that gives funds to the third party. Lastly the Punish transaction takes
a Funding UTXO as input and creates an UTXO that gives it all to one of the
parties.

Assumptions. Timelocks are used to invalidate transactions. That is, a
transaction invalidates another one if it spends the same UTXO within its in-
puts, but has a timelock that is lower by at least ∆. We assume that the original
payment channel between Alice and Bob has a timelock of at least t0 + ∆, and
the one between Bob and Charlie has a timelock of at least t1 + ∆. After tear-
down of our construction the timelocks of both channels will be t0−∆ and t1−∆
respectively. We note that this does not make the construction incompatible
with pairwise payment channel constructions that do not rely on timelocks for
transaction invalidation, such as lightning network style channels. Such chan-
nels can perform a state updates using their invalidation method that introduce
a timelock before construction, and remove the timelock after tear-down.

Malicious Behavior. Parties abort protocols Open VC and Close VC when
they observe another party deviating from the protocol, or if a party delays exe-
cution until expiration of the virtual channel, i.e. t0−∆ and t1−∆ respectively.

4.3.1 Intuition of the Protocols

Open VC takes an amount of coins δ ∈ N and two pairwise payment channel
between three parties as input and creates three new pairwise payment channels,
one between each pair of parties. In the following we assume the parties are
Alice, Bob and Charlie with payment channels between Alice and Bob, and
between Bob and Charlie. Our construction creates a set of transactions as
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illustrated in Figure 4.3. In a nutshell, the purpose of the construction is to allow
parties to enforce payout of all of their funds distributed among the offchain
channels, while providing fall-back security of their funds in case all other parties
misbehave.

First, two Split transactions are created, each spending one of the Fund-
ing UTXO that are spent by the original pairwise payment channels. Their
timelocks are t0 and t1 respectively s.t. they invalidate the original payment
channels. One of the UTXO of each Split transaction contains δ coins and is
used as input into a Merge transaction. The other UTXO of each Split transac-
tion is used as Funding UTXO to re-create the original payment channels, albeit
each party has δ/2 coins less in these channels. The Merge transaction takes the
UTXO with δ coins as input, creates a Funding UTXO for a channel between
Alice and Charlie where each possess initially δ/2 coins, and another UTXO
gives δ coins to only Bob which represents his collateral. Lastly, two Punish
transactions spend the same UTXO as the Merge transaction but give all coins
to Alice and Charlie respectively. They have a timelock of max(t0, t1)+2∆ such
that they are invalidated by the Merge transaction.

Close VC takes a virtual channel construction as input and closes them while
setting up the original pairwise payment channel but with a balance distribu-
tion reflecting the balances in the three payment channel built on-top of the
construction. Effectively Alice pays Bob the funds she owes Charlie while Bob
forwards these funds to Charlie - and vice versa. The channels have timelocks
t0 −∆ and t1 −∆ respectively to invalidate the Split transactions. Note that
a virtual channel construction can only be closed until time min(t0, t1) −∆ as
otherwise the newly constructed payment channels cannot invalidate the Split
transactions. Note that having Bob take out δ/2 coins out of both of his original
channels within the construction ensures that no party has a negative balance
within a pairwise payment channel upon tear-down.

Enforce VC lets a party enforce the current state by having it commit a
transaction to the blockchain as soon as its timelock expires.

Atomic Construction. We require that all transactions within our construc-
tion are created and respectively invalidated atomically. This is enforced by the
order in which transactions are signed. First, parties have to exchange signa-
tures for all transactions except of those spending the original Funding UTXO,
i.e. the Split transactions in Open VC and the root of the pairwise payment
channel sub-trees in Close VC. Afterwards, Alice and Charlie sign these remain-
ing transactions and send the signatures to Bob. Lastly Bob signs them and
sends his signatures to Alice and Charlie. Only if a party holds all signatures for
all transactions it is involved in, it will consent in performing payments. This
ensures security as we will discuss in the following.
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Figure 4.3: Overview of the virtual channel construction as a transaction tree.
On the left-hand side are Funding UTXO either on the ledger or within previous
virtual channels. Boxes with round corners represent the transactions of our
construction while the boxes on the right-hand side abbreviate pairwise payment
channel’s transaction sub-trees. We omit stating inputs explicitly as they are
clear from context.

Only Alice is honest. (1) As Bob is the last one to sign, he might interrupt
the protocol before Alice receives a signature for the Split transaction. In this
case Alice will not consent to any payments and the construction does not change
her total balance. Alice can receive her funds by waiting for expiration of her
original payment channel’s timelock or commitment of the Split transaction by
Bob. (2) Bob and Charlie can collude and spend the Funding UTXO that is
referenced by their Split transaction. As such the whole transaction sub-tree
with the Split transaction as root cannot be committed to the ledger, including
the Merge transaction. In that case Alice can commit the Split transaction,
and subsequently the Punish transaction. Alice will receive δ coins which is the
maximum amount of coins she can receive within her pairwise payment channel
with Charlie, as such she does not lose coins. Note that Alice’s channel with Bob
is unaffected as it is not within the sub-tree that Bob and Charlie invalidated.

4.3.2 Discussion of Attack Scenarios

Only Bob is honest. (1) As Bob is the last to sign transactions, he can as-
sure either both Split transactions are fully signed and they can be committed
to the ledger, or none. Moreover he can assure that either both Split trans-
actions will be invalidated upon lockdown or none. (2) Spending the Funding
UTXO referenced by the Split transactions always require Bob’s consent by re-
quiring a signature such that Alice and Charlie cannot invalidate any part of
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the construction’s transaction sub-tree, making Bob to pay out his collateral
via a Punish transaction.

Iterative Construction. The pairwise payment channels used as input can
either have a Funding UTXO located on a ledger, or a Funding UTXO created
by a previous virtual channel construction. In that case timelocks have to be
chosen such that within its transaction sub-tree any transaction has a timelock
larger than its predecessor’s timelock by at least ∆ in order to ensure there is
sufficient time to commit them to the ledger. Moreover virtual channel construc-
tions have to be torn-down in reverse order in which they were setup. Iterative
constructions requires further analysis of security. The key part to make itera-
tive construction work is the design of the Punish transactions as they secure a
party’s funds, including potential collateral payments, while not over-punishing
a potentially honest intermediary party: The punishment amount cannot exceed
a party’s collateral. Assume the channel between Bob and Charlie is created
using a virtual channel construction with channels between Bob and Ingrid and
between Ingrid and Charlie. In that case Ingrid and Charlie can collude by
spending their Funding UTXO invalidating the Split transaction between Bob
and Charlie making Bob have to pay coins within the Punish transaction be-
tween him and Alice. However, these funds as well as the funds Bob has in
his channel between him and Charlie are covered by a Punish transaction he
has between him and Charlie. Indeed this is the reason why the same amount
of coins δ has to be paid into the Merge transaction from both of its Funding
UTXO and only those coins are covered by the Punish transaction. This ensures
that all funds are covered while not over-punishing the intermediary party in
case of iterative virtual channel construction.

Mitigating Wormhole attacks. Malavolta et al. [89] showed an attack in
which two colluding parties skip intermediary parties within a HTLC payment
within a payment channel network (1) withholding fees that would have been
paid to the intermediary parties and (2) obtaining the fees themselves instead.
A variant of this attack could be applied to our construction as we do not require
parties to verify that all pairwise payment channel but the ones they partici-
pate in were validly constructed. We discuss how to mitigate possible attacks.
Although detailed discussion about payout of fees is beyond the scope of this
work, we suggest that fees are paid to the intermediary party as compensation
for locking up collateral. We note that due to this attacker cannot obtain more
fees than they are owed (2). However, attackers could still collude to with-
hold fees of intermediary parties (1). A mitigation to this attack is that parties
would need to proof that such a payment channel was previously constructed,
but showing the Funding UTXO that were used and are located on the ledger
as well as the whole transaction subtree originating those. A party that receives
this information can do a sanity check and store the sub-tree in case they have
to do the same proof. This poof serves to show that fees have been paid to the
intermediate parties, however, we note that the information might be out-of-
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date as malicious parties can close their pairwise channel effectively invalidating
the whole subtrees.

4.4 Protocols

Here we informally introduce the constructions for Open VC, Close VC and
Enforce VC for setup, tear-down and dispute protocols of virtual channels. To
help intuition these are heavily simplified but derived from the formal proto-
col LVPCPWCH in Section 4.9 that implements Functionality FLVPC,FPWCH

from
Section 4.7.

In the following protocols we assume that: When executing any protocol all
involved honest parties check that execution with the given parameters is per-
missible, i.e. it will not result in transactions with negative balances, timelocks
in the past and that the pairwise payment channel in Open VC or the virtual
channel in Close VC are not currently in use with another virtual channel con-
struction. Moreover, for protocols Open VC and Close VC they check that all
parties consent execution. Lastly, they abort execution if they observe a party
deviating from the protocol including when their signatures fail verification or
when execution times-out. For details we refer to Functionality FLVPC,FPWCH

.

4.4.1 Types of Transaction

Before introducing the protocols, first we define the individual types of transac-
tions used in our construction as well as pairwise payment channel and virtual
payment channel.

Punish. A Punish transaction takes a Funding UTXO as input but gives all
funds to one party. It is parametrized with (ref, P, tp) where ref is a reference
to a Funding UTXO f out, P ∈ f out.Party is a party and tp ∈ N is a round
number. It is of form ({ref}, {out}, tp) where out = (f out.b,P). In the following
we denote a Punish transaction with these parameter by PUNISH TR(f out, P,
tp), and an analogous mapping by PUNISH MAP(f out, P).

Split. A Split transaction takes a Funding UTXO as input and splits funds
across two funding UTXO. It is parametrized with (ref, δ, tS) where ref is a
reference to a Funding UTXO f out, δ ∈ N, δ ≤ f out.b is a balance and tS ∈ N is
a point in time. It is of form ({ref}, {outch, outδ}, tS) where outch = (f out.b−
δ, f out.Party) and outδ = (δ, f out.Party). In the following we denote a Split
transaction with these parameter by SPLIT TR(f out, δ, tS) and an analogous
mapping by SPLIT MAP(f out, δ). The routines OUT CH and OUT DELTA take
either a Split transaction or analogous mapping as input and return outch and
outδ respectively.

Merge. A Merge transaction takes two funding UTXO by three parties and
creates a new Funding UTXO. It is parametrized with (tM , f outA, f outB , b)
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where tM ∈ N is a round number, f outA, f outB are two Funding UTXO and
b ∈ N, b = f outA.b = f outA.b is an amount of coins. Moreover for the involved
parties PA,PB ,PC holds PA,PB ∈ f outA.Party,PB ,PC ∈ f outB .Party. Given,
outch = (b, {PA,PC}) and outB = (b, {PB}), then a Merge transaction is of
the form ({ref(f outA), ref(f outB)}, {outch, outB}, tM ). We denote a Merge
transaction with these parameter by MERGE TR(f outA, f outB , b, tM ) and an
analogous mapping by MERGE MAP(f outA, f outB , b). The routine OUT CH
takes a Merge transaction or analogous mapping as input and returns outch.

4.4.2 Definitions

Function open virtual(f,P,P ′, b, b′, t) is used to open a pairwise payment channel
with the provided, Funding UTXO f , between the two parties P,P ′, respective
balance distribution b, b′ and optional timelock t. See Section 4.6.3 and Section
4.8.3 for details.

Definition 4.4.1. A pairwise payment channel γ is a tuple of form γ = (id,
f , PA, PB, bA, bB, t, t0) where id ∈ N is a unique identifier, f is a funding
UTXO, PA,PB are parties, bA, bB ∈ N are balances of PA, PB respectively.

Definition 4.4.2. A lightweight virtual payment channel γv is a tuple of form
(id, γ0, γ1, γA,B, γB,C , γA,C , PA, PB, PC , δ, t) where PA,PB ,PC are three
parties, γ0, γ1 are pairwise payment channel between PA,PB and PB ,PC re-
spectively provided as inputs, γA,B, γB,C , γA,C are pairwise payment channel
created by the construction between each pair of parties, δ is the capacity of chan-
nel γA,C between PA,PC and t ∈ N is a point in time until which the channel
can be closed.

For simplicity we omit stating id explicitly.

4.4.3 Protocols

We present opening of a virtual channel in Figure 4.4 and closure of a virtual
channel in Figure 4.5. A protocol for resolving dispute is presented in Figure
4.6.

4.5 The UC Setting

While focusing on the intuition and readability of our approach up until this
point, the remainder of this work is about formal treatment of our protocol in
the UC framework including, potentially harder to read, but necessary detail.
First we give an overview of the setting followed by introduction of all auxil-
iary functionalities used throughout this work. We follow up by detailing the
pairwise payment channel functionality FPWCH the lightweight virtual channel
functionality FLVPC in the following sections.
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Algorithm 1 Open Virtual Channel

1: function Open VC(γ0, γ1, δ)
2: tr0,S ← SPLIT TR(γ0.f , δ, γ0.t−∆)
3: tr1,S ← SPLIT TR(γ1.f , δ, γ1.t−∆)
4: tr0,p ← PUNISH TR(OUT DELTA(tr0,S), PA, max(γ0.t, γ1.t) + ∆)
5: tr1,p ← PUNISH TR(OUT DELTA(tr1,S), PC , max(γ0.t, γ1.t) + ∆)
6: trmrg ← MERGE TR(OUT DELTA(tr0,S), OUT DELTA(tr0,S), δ,

max(γ0.t, γ1.t))
7: (γA,B , trroot,A,B) ← open virtual(OUT CH(tr0,S), PA, PB ,

balance(γ0, PA)− δ/2, balance(γ0,PB)− δ/2)
8: (γB,C , trroot,B,C) ← open virtual(OUT CH(tr1,S),PB ,PC ,

balance(γ1,PB)− δ/2, balance(γ1,PC)− δ/2)
9: (γA,C , trroot,A,C) ← open virtual(OUT CH(trmrg),PA,PC , δ/2, δ/2)

10: ∀ transactions except Split: Exchange signatures
11: PA and PC : send Split transactions’ signatures to PB
12: PB : Send Split transactions’ signatures to PA and PC
13: return γv = (γ0, γ1, γA,B , γB,C , γA,C , PA, PB , PC , δ, min(γ0.t, γ1.t)−

2∆)
14: end function

Figure 4.4: Creation of a virtual channel. Takes two pairwise payment channel
γ0 and γ1, and an amount of coins δ as input, and outputs a virtual channel γv.

Algorithm 2 Close Virtual Channel

1: function Close VC(γv)
2: sumA = γv.γA,B .bA + γv.γA,C .bA
3: sumB = γv.γA,B .bB + γv.γA,C .bB
4: sum′B = γv.γB,C .bA + γv.γA,C .bA
5: sumC = γv.γB,C .bB + γv.γA,C .bB
6: (γ0, trroot,A,B) ← open virtual(γv.γ0.f,PA,PB , sumA, sumB , γ

v.t)
7: (γ1, trroot,B,C) ← open virtual(γv.γ1.f,PB ,PC , sum′B , sumC , γ

v.t)
8: ∀ transactions except trroot,A,B and trroot,B,C: Exchange signatures
9: PA signs trroot,A,B, PC signs trroot,B,C. Send signatures to PB

10: PB signs trroot,A,B and trroot,B,C. Sends signatures to PA and PC respec-
tively

11: return (γ0, γ1)
12: end function

Figure 4.5: Closing of a virtual channel γv by recreating the original channels
γ0 and γ1. The constructions Split transactions are invalidated by having the
roots of the pairwise payment channels have timelocks of at most γv.t.
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Algorithm 3 Enforce Virtual Channel

1: function Enforce VC(γv)
2: for all tr in transactions of γv do
3: if tr.t < τ ∧ ∀o ∈ tr.In : o is on the ledger then
4: Commit tr to the ledger
5: end if
6: end for
7: end function

Figure 4.6: Parties enforce the state presented by the virtual payment channel
construction by committing transactions to the ledger whenever possible, i.e. as
soon as their timelocks expire and UTXO referenced in their inputs are present
on the ledger.
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Figure 4.7: Overview of our setup within the UC framework.
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Overview. Figure 4.7 depicts an overview of our construction. The setting
is split up in an Ideal world and a (GCLOCK, GUTXO−Ledger, FSIG, FScript) - hy-
brid world. The global functionality GUTXO−Ledger is associated with the global
GCLOCK functionality and accessible from either world. The lightweight virtual
channel functionality FLVPC is associated with the pairwise payment channel
functionality FPWCH receiving access to its internal state and helper functions.
FPWCH includes and replicates the interfaces and behavior of FSIG, FScript.

4.5.1 The Global Clock Functionality GCLOCK.

We adapt the global clock functionality formalized by Katz et al. [68], modified
by Kiayias et al. [74, 72] and is depicted in Figure 4.5.1. The functionality
keeps track of a round number τ that can be read by any party. After finishing
computations a party sends a clock update request to the functionality. The
round number is incremented after the functionality receives update requests
from all parties as well as the ledger functionality. Parties agree upon a starting
time of their protocol as well as a duration for each round, such that time can
be derived from the round number.

Functionality GCLOCK

The functionality is accessible by any entity and associated with a global
functionality GUTXO Ledger.
State: Stores time τ ∈ N, a set of parties P, bit dGUTXO Ledger

∈ {0, 1} as well
as bits dP for each party in P.
Initialization: Sets τ = dGUTXO Ledger

= 0 and P = ∅.
Register: Upon receiving message (register, sid) from party P, set P =
P ∪ {P}, store a bit dP ∈ {0, 1} initialized with dP = 0 and send message
(register, sid,P) to the adversary.
Clock Update Ledger: Upon receiving message (clock-update, sid) from
GUTXO Ledger set dGUTXO Ledger

= 1 and send message
(clock-update, sid,P) to the adversary.
Clock Update Party: Upon receiving message (clock-update, sid) from
party P set dP = 1. If dGUTXO Ledger

= 1 and dP = 1 for all honest parties
in P, set τ = τ + 1, dGUTXO Ledger

= 0 and dP = 0 for all honest parties in P.
Lastly send message (clock-update, sid,GUTXO Ledger) to the adversary.
Clock Read: Upon receiving message (clock-read, sid) from any entity reply
with message (clock-read, sid, τ).

4.5.2 The Global Functionality GUTXO−Ledger

models a UTXO based ledger maintaining a publicly readable set of UTXO.
The ledger maintains a set U that holds all UTXO. The interface Transaction

is used to modify U by providing a UTXO mapping. It can be called by Z
modeling transactions done by parties outside the protocol, however, parties
themselves are only able to change U indirectly by interacting with the FScript

functionality. When receiving a request the functionality checks that all coins
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within the Outputs of the mapping are covered by the coins referenced in the
Inputs. Any party can read U by calling the Check UTXO sub-function.

The differences between GUTXO−Ledger and the ledger functionality by Kiayias
et al. [74] are twofold. For one instead of using a verification predicate to check
the validity of transactions, we move this verification into a second functionality
FScript representing required parts of a blockchains scripting language similar
to the separation of ledger and smart contract functionalities in the work of
Dziembowski et al. [49, 46]. For another we explicitly make use of UTXO as
required in our construction.

Functionality GUTXO−Ledger
State: Stores set of UTXO U.
Initialization: Z sends the initial state U0. Sets U := U0.
Additional interface: The functionality wraps the FScript and FSIG func-
tionalities internally and replicates their interface. Any messages to these
functionalities are processed according to their definition.
Transaction: Upon receiving, from either Z or functionalities, the message
(transaction, sid,M) where M is a partial UTXO mapping, do : Let
(In, Out) = M . Check that In ⊆ U,

∑
i∈In i.b ≥

∑
o∈Out o.b. Upon success

within ∆ rounds set U = (U \ In) ∪ Out.
Check UTXO: Upon receiving (check, sid, out) where out ∈ Output reply
(check okay, sid, out) if out ∈ U and (check failure, sid, out) other-
wise.

4.5.3 The signature functionality FSIG

by Canetti et. al. [30] as depicted in Figure 4.5.3 provides access to signature
generation and verification as well as facilities to create verification keys.

Functionality FSIG

State: Stores set K which contain tuples of form (P, v) where P is a party
and v is a verification key. Set S with entries of form (m,σ, v, b) where m
is a message, σ as signature, v a verification key and b ∈ {0, 1}.
Key Generation: Upon receiving message (KeyGen, sid) from party P verify
that sid = (P, sid′) for some sid′. In that case hand (KeyGen, sid) to the
adversary. Upon receiving (VerificationKey, sid, v) from the adversary,
forward the message to P and store (P, v) in K.
Signature Generation: Upon receiving message (Sign, sid,m) from party
P verify that sid = (P, sid′) for some sid′. If that is true, send (Sign, sid,m)
to the adversary. Upon receiving (Signature, sid,m, σ) from the adver-
sary, if (m,σ, v, 0) 6∈ S send an error message to P and halt. Otherwise
store (m,σ, v, 0) in S and send (Signature, sid,m, σ) to P.
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Signature Verification: Upon receiving message (Verify, sid,m, σ, v′) from
a party P forward it to the adversary. Upon receiving
(Verified, sid,m, φ) from the adversary do:

1. If v′ = v and (m,σ, v, 1) ∈ S set f = 1.

2. Else if v′ = v, (m,σ′, v, 1) 6∈ S for any σ′ and P is not corrupted by
the adversary, store (m,σ, v, 0) in S and set f = 0.

3. Else if (m,σ, v′, f ′) ∈ S for any v′, f ′ set f = f ′.

4. Else store (m,σ, v′, φ) in S and set f = φ.

Send (Verified, sid,m, f) to P.

4.5.4 The Script functionality

represents the elements of a blockchain’s scripting language we need to enable
our construction. Parties interact with it using the Transaction interface provid-
ing a transaction as input. Then it does two checks: (1) the time specified in the
transaction is lower than the current time. For this matter it interacts with the
GCLOCK functionality to derive the current time. (2) It checks whether all parties
mentioned in the transaction’s referenced UTXO provided as inputs, provide a
signature of the transaction. For this it interacts with the FSIG functionality.

Functionality FScript

State: Stores set K with entries of form (P, v) where P is a party and v is
a verification key.
Registering Verification Key: Upon receiving
(VerificationKey, sid, v) from a party P store (P, v) in K.
Transaction: Upon receiving (transaction, sid, tr) from P, let (In, Out,
t, Σ) = tr and stub = In′,Out, t where In′ = {(u)|(u,w) ∈ In}, i.e. the
transaction with omitted witnesses.

• Update time: Send (get-time, sid, ·) to GCLOCK and receive
(get-time, sid, τ)

• Verify that ∀utxo ∈ In: t ≤ τ . Halt, otherwise.

• Verify ∀ref ∈ In: For each P ∈ ref.u.Party retrieve (P, v) from K.
Verify that ref.w contains a signature of stub from P. For each σ ∈
ref.w send (Verify, sid, stub, σ, v) to FSig and verify that FSIG replies
with (Verified, sid, stub, 1) exactly once.

• Send (transaction, sid,Removes,Adds) to GUTXO−Ledger
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4.6 The Pairwise Payment Channel Functional-
ity

The FPWCH functionality creates, maintains and closes pairwise payment chan-
nel between two parties. For simplicity we opt to model a simple payment
channel that uses timelocks to update a channel’s state. The functionality con-
sists of functions Open, Close, Channel Update and Enforce. The Open function
creates a Funding transaction based on a Funding transaction stub provided as
input, commits it to the blockchain by interacting with GUTXO−Ledger and, after
verifying that the mapping was applied on the ledger, stores the channel’s state.
The State Update function redistributes the channel’s funds while reducing its
timelock by at least ∆ whereas Close removes the channel’s timelock while dis-
abling any further updates on it. Lastly Enforce takes a channel as input and
checks whether its timelock is lower or equal than the current round number.
If that is the case a mapping representing a refund transaction is committed to
the ledger.

4.6.1 General Behavior of our Functionalities

General Behavior. Before we detail the functionality’s interface, we de-
scribe common non function-specific behavior of both functionalities FPWCH

and FLVPC,FPWCH
, which is described in the next section.

Update time: At beginning of each round in which functionality is activated
send message (clock-read, sid) to GCLOCK and receive the reply
(clock-read, sid, τ ′). Set internal variable τ = τ ′.

Interactions with simulator: Whenever the functionality receives a message
msg from any party or from GUTXO−Ledger it leaks the message to the simulator
and appends sender and receiver.

Synchronization with the simulation: Interactions with the ledger are used to
read its state as well as trigger a state change. The state on the ledger as well as
whether a state change is permissible depends on the moment they are done as
transactions that change the set of UTXO on the ledger can be sent by a party at
any time. Therefore we need to ensure that the functionality’s interaction with
the ledger are at the same time as they happen in the simulation to achieve the
same results and receive the same replies. Whenever the functionality sends a
message msg to the ledger it waits for the simulator to leak a similar message by
a honest party. Note that a TRANSACTION tagged message from the simulator
is processed by the FScript functionality first. Then the functionality sends the
message only once and forwards any replies to the simulator.

Handling corrupted parties: We assume static corruption by a malicious adver-
sary. At the beginning of execution the functionality asks the simulator which
parties are controlled by the adversary and stores this information in set COR.
The functionality ignores requests from any party in the ideal world of which
counterpart in the simulation is corrupted by the adversary. The functional-
ity needs to learn whether a party corrupted by the adversary misbehaved or
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delayed execution of a protocol beyond a channel’s lifetime. For this matter
as soon as the simulator leaks that any simulated honest party P ′h sends mes-
sage (failure, sid,msg) to Z the functionality aborts execution of the function
triggered by receiving msg and sends (failure, sid,msg) to P ′h’s dummy-party
counterpart Ph in the ideal world.

4.6.2 The Payment Channel Functionality FPWCH

Functionality FPWCH

State: Current time τ . Set Γ of existing pairwise payment channel, set
ΓA of active pairwise payment channel. Set CONS with entries of form
(P ′,msg) where P ′ is a party and msg is a message.
Initialization: Sets τ = 0, Γ = ΓA = COR = CONS = ∅.
Helper subfunctions:
consent: A call of this sub-function is of form consent(P,Parties,msg) where
P is a party, Parties is a set of parties and msg is a message. Let Partiesh =
Parties \ COR.

1. If P 6∈ COR, add (P, msg) to CONS

2. If ∀Ph ∈ Partiesh : (Ph,msg) ∈ CONS,
then set CONS = CONS \ {(P ′h,msg)|P ′h ∈ Partiesh} and return
is consent;
Else return no consent

state update: A call of this sub-function is of form
state update(γ,PA, bA,PB , bB , δt).

1. Checks: γ ∈ ΓA, δt ≥ ∆, γ.t−δt > max(γ.t0, τ), bA+bB = γ.bB+γ.bA;
If any check fails halt

2. Update channel: γ = (γ.f,PA,PB , bA, bB , γ.t− δt, γ.t0)

Revoke: A call of this sub-function is of form revoke(γ). Set Γ = Γ \ {γ}.
Activate: A call of this sub-function is of form activate(γ). Set Γ = Γ∪{γ}.
Balance: A call of this sub-function is of form balance(γ,P) where γ is a
pairwise payment channel and P a party.

1. if P 6∈ {γ.PA, γ.PB} halt

2. if P = γ.PA return γ.bA

3. else P = γ.PB return γ.bB

Open: Upon receiving message msg = (open, sid,m,PA,PB , bA, bB , t)
from P ∈ {PA,PB} where m is a map, bA, bB ∈ N are amounts of coins
and t ∈ N is a round number do:
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1. Let (In,Out) = m, Partiesh = {PA,PB} \ COR.

2. if consent(P, {PA,PB},msg) = no consent: halt

3. Verify; if any verification fails send (failure, sid,msg) to all in Ph:

• No overspending: Σo∈Outo.b ≤ bA + bB + Σo∈In

• Sufficient funds: ∪o∈{In}o.Party = {PA,PB}
• Parties contribute sufficiently: For i ∈ {A,B} holds

Σo∈In,o.Party=Pi
o.b ≥ bi

• Valid timelock: t ≥ τ + ∆ + 1

• ∀o ∈ In send (check, sid, o) to GUTXO−Ledger. If GUTXO−Ledger
replies with (check okay, sid, o) for each o ∈ In continue, oth-
erwise halt

4. Funding: mf = (In,Out ∪ {f}) where f = (bA + bB , {PA,PB}) is a
funding output

5. Send message (transaction, sid,mf ) to GUTXO−Ledger

6. For all o ∈ (Out∪ {f}) send message (check, sid, o) to GUTXO−Ledger.
If it replies (check okay, sid, o) for all o ∈ (Out ∪ {f}) continue;
otherwise halt and repeat this step next round

Upon receiving message (success, sid,msg) from all parties in Partiesh:

1. Update internal state: Γ = Γ ∪ {γ}, ΓA = ΓA ∪ {γ} where γ =
(f,PA,PB , bA, bB , t, 0)

2. Return message (success, sid,msg) to P ∈ Partiesh

Channel Update: Upon receiving msg =
(channel update, sid, γ,P0, b0,P1, b1, δt) from P ∈ {γ.PA, γ.PB} where
bA, bB , δt ∈ N. Do:

1. Let Partiesh = {γ.PA, γ.PB} \ COR

2. if consent(P, {PA,PB},msg) = no consent: halt

3. Verify: {P0,P1} = {PA,PB}. Send (failure, sid,msg) to all in Ph
if it fails

Upon receiving message (success, sid,msg) from all parties in Partiesh:

1. Execute state update(γ, (P0, b0), (P1, b1), δt)

2. Return message (success, sid,msg) to all P ∈ Partiesh
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Close: Upon receiving msg = (close, sid, γ) from P ∈ {PA,PB} where
PA = γ.PA and PB = γ.PB do:

1. Let Partiesh = {γ.PA, γ.PB} \ COR.

2. if consent(P, {PA,PB},msg) = no consent: halt

3. Verify: {P0,P1} = {PA,PB}. Send (failure, sid,msg) to all in Ph
if it fails

Upon receiving message (success, sid,msg) from all parties in Partiesh:

1. Execute state update(γ, (γ.PA, γ.bA), (γ.PB , γ.bB), γ.t− γ.t0)

2. ΓA = ΓA \ {γ}

3. Return message (success, sid,msg) to all P ∈ Partiesh

Enforce: Upon receiving msg = (enforce, sid, γ) from party P do: Let
PA = γ.PA and PB = γ.PB .

1. Do the following. If any check or verification fails, immediately return
message (enforce, sid, failure) to P and halt.

• Check: P ∈ {PA,PB}; γ.t ≤ τ
• Send message (check, sid, γ.f) to GUTXO−Ledger. If it replies

(check okay, sid, o) continue, otherwise if it replies
(check failure, sid, o) halt

2. mr = REFUND MAP(γ.f , γ.bA, γ.bB)

3. Send message (transaction, sid,mr) to GUTXO−Ledger

4. Γ = Γ \ {γ}; ΓA = ΓA \ {γ}

5. Return message (success, sid,msg) to P

4.6.3 An Extension to the FPWCH Functionality

Functionality FvPWCH is an extension of functionality FPWCH by providing an
alternative function to open a pairwise payment channel which is required for
the virtual payment channel functionality. This function takes a Funding UTXO
instead of a Funding transaction stub as input and creates a pairwise payment
channel without committing a Funding transaction to the ledger.
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Functionality FvPWCH

Functionality that behaves as FPWCH but includes the following helper
function to facilitate use with virtual channels.
Open Virtual: A call of this sub-function by an associated functionality
is of form open virtual(f,PA,PB , bA, bB , t, t0) where f is a funding output,
bA, bB ∈ N are amounts of coins and t, t0 ∈ N is a round number. Then:

1. mr = REFUND MAP(f , bA, bB)

2. Channel: γ = (f,PA,PB , bA, bB , t, t0)

3. Update internal state: M = M ∪ {(γ,mr, t)}; Γ = Γ ∪ {γ}; ΓA =
ΓA ∪ {γ}

4. Return γ

4.7 The Ideal Virtual Channel Functionality

In the following we present formal treatment of our protocol in the UC frame-
work by introducing a functionality for lightweight virtual payment channel
FLVPC,FPWCH

, associated with functionality FPWCH. For this we make use of
auxiliary functionality FScript, global UTXO ledger functionality GUTXO−Ledger,
global clock functionality GCLOCK, and functionality FSIG. These functionalities
are defined in Section 4.5.4.

The Ideal Virtual Channel Functionality. The lightweight virtual pay-
ment channel functionality FLVPC,FPWCH

is used to create and close virtual pay-
ment channel between three parties. It provides access to functions VC-Open,
VC-Close and VC-Enforce. Function VC-Open takes two pairwise payment chan-
nel between three parties as input, disables state updates on those, and creates
three new pairwise payment channel, one between each pair of parties. To be
able to enforce these channels it creates and stores mappings that represent
Split, Merge and Punish transactions together with the time at which they
become valid. Function VC-Close takes a virtual channel as input. First it
checks whether no virtual channel have been created using the pairwise pay-
ment channel created with it. If positive it disables state updates on these
channels, re-enables state updates for the original channels, updates their bal-
ance to reflect the latest balance distribution among the three channels and sets
the channel’s timelocks to be lower than the one of the Split mappings by ∆.
Function Enforce is used to commit any mapping representing Split, Merge or
Punish transactions if their timelocks have expired. This disables closure of the
virtual channel because the funding UTXO of the original pairwise payment
channels are removed from the ledger.

The functionality shares the same non-function specific behavior as FPWCH,
i.e. time management, interactions with the simulator and handling of corrupted
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parties. We refer to the previous section for details.

Functionality FvLVPC,FPWCH

Has access to FvPWCH’s helper functions.
State: Set of closable virtual payment channel Γv of virtual payment chan-
nels. List Mv of entries (γ′v,m, t) where γ′v is a virtual payment channel,
m is a partial mapping and t is a round number. It has access to the inter-
nal state of FvPWCH including set Γ of pairwise payment channels. Moreover
it shares common state with FvPWCH which is the current round number τ ,
list of corrupted parties COR and set of consent giving parties CONS.
Initialization: Initializes FvPWCH and shared state τ,COR,CONS. Sets Γv =
Mv = ∅.
VC-Open: Execute upon receiving message msg =
(open, sid, γ0, γ1, δ, t,PA,PB ,PC) from P ∈ {PA,PB ,PC} where
γ0, γ1 ∈ Γ, δ ∈ N is an amount of coins and t ∈ N is a round number. Let
Partiesh = {PA,PB ,PC} \ COR:

1. if cns = consent(P, {PA,PB ,PC},msg) = no consent: halt

2. Verify; if any verification fails send (failure, sid,msg) to all in Ph:

• {PA,PB} = {γ0.PA, γ0.PB} and {PB ,PC} = {γ1.PA, γ1.PB}
• for each γ ∈ {γ0, γ1}: if {γ.PA, γ.PB} \ COR 6= ∅ then

– γ ∈ Γ; γ.t > τ + 2∆; γ.t0 > τ + 2∆; γ.bA ≥ δ/2 and
γ.bB ≥ δ/2

Upon receiving message (success, sid,msg) from all parties in Partiesh:

1. Create Mappings

• Split: m0,S = SPLIT MAP(γ0.f , δ); m1,S = SPLIT MAP(γ1.f ,
δ)

• Merge: mmrg = MERGE MAP(OUT DELTA (m0,S),
OUT DELTA( m1,S), δ)

• Punish: m0,p = PUNISH MAP(OUT DELTA(m0,S), PA)

• m1,p = PUNISH MAP ( OUT DELTA(m1,S), PC)

2. Create new channel, revoke old

• γA,B = open virtual(fA,B ,PA, PB , balance(γ0,PA) − δ/2,

balance(γ0,PB) − δ/2, t, γ0.t)

• γB,C = open virtual(fB,C ,PB , PC , balance(γ1, PB) − δ/2,

balance(γ1,PC) − δ/2, t, γ1.t)
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• γA,C = open virtual(fA,C , PA, PC , δ/2, δ/2, t, max(γ0.t, γ1.t) +
∆)

• Revoke old channel: revoke(γ0) and revoke(γ1)
Virtual channel: γv = (γ0, γ1, γA,B , γB,C , γA,C ,PA,PB ,PC , δ,

3. min(γ0.t, γ1.t)− 2∆)

4. Update: Γv = Γv ∪ {γv} and Mv = Mv ∪ {(γv,m0,S , γ0.t − ∆),
(γv,m1,S , γ1.t − ∆), (γv,mmrg,max(γ0.t, γ1.t)), (γv,m0,p, max(γ0.t,
γ1.t) + ∆), (γv,m1,p,max(γ0.t, γ1.t) + ∆)}

5. Return message (success, sid,msg) to P
VC-Close: Upon receiving message msg = (close, sid, γv, ) from P ∈
{PA,PB ,PC} where PA = γv.PA, PB = γv.PB and PC = γv.PC . Let
(γ0, γ1, γA,B , γB,C , γA,C ,PA,PB ,PC , δ, t) = γv. Moreover let Partiesh =
{PA,PB ,PC} \ COR. Do:

1. if cns = consent(P, {PA,PB ,PC},msg) = no consent: halt

2. Verify; if any verification fails send (failure, sid,msg) to all in Ph:

• γv ∈ Γv; {γA,B , γB,C , γA,C} ⊆ FvPWCH.Γ; t > τ ; γ0.t0 > τ + 2∆,
γ1.t0 > τ + 2∆

Upon receiving message (success, sid,msg) from all parties in Partiesh:

1. Revoke old channel, reactivate and update original channel:

• activate(γ0), activate(γ1)

• state update(γ0,PA, bA,PB , bB , 2∆) and state update(γ1, PB , b′B ,
PC , bC , 2∆) where bA = γA,B .bA + γA,C .bA; bB = γA,B .bB +
γA,C .bB ; b′B = γB,C .bA + γA,C .bA; bC = γB,C .bB + γA,C .bB .

• revoke(γA,B), revoke(γB,C), revoke(γA,C)

2. Update internal state: Γv = Γv \ {γv}

3. Return message (success, sid,msg) to P

VC-Enforce: Triggered upon receiving msg = (enforce, sid, γv) from
party P where γv is a lightweight virtual payment channel. Let PA =
γv.PA, PB = γv.PB and PC = γv.PC .

1. Check if P ∈ {PA,PB ,PC}, γ ∈ Γ

2. Let Mγ = {(γ′v,m′, t′)|(γ′v,m′, t′) ∈ Mv; γ′v = γv; t′ ≤ τ,∃utxo ∈
m′.In : P ∈ utxo.Party}
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3. for each m ∈Mγ

• Let (In,Out) = m. For all o ∈ In send message (check, sid, o)
to GUTXO−Ledger. If it replies (check okay, sid, o) for all o ∈ In:

– Send message (transaction, sid,m) to GUTXO−Ledger
– Channel cannot be closed: Γv = Γv \ {γv}

4. Return message (success, sid,msg) to P

Definition 4.7.1. Balance Security: The sum of a honest party’s funds only
changes with its consent.

Definition 4.7.2. Liveness: Eventually all of a party’s funds are unlocked and
committed to the ledger within UTXO that are spendable by the party alone.

Security of Funds and Liveness. In the following we briefly argue that
functionality FLVPC,FPWCH

fulfills these two properties for honest parties by de-
sign. We expect a honest party to call sub-function VC-Enforce as soon as they
would lead to submission of a mapping to the ledger, i.e. at times γv.γ0.t−∆,
γv.γ1.t − ∆, max(γv.γ0.t, γ

v.γ1.t) and in case a punish transaction has to be
committed at time max(γv.γ0.t, γ

v.γ1.t)+∆. Eventually all funds that a honest
party holds will be accessible over UTXOs on the ledger such that liveness holds.
Balance Security holds since only FPWCH’s channel update function, which re-
quires the party’s consent, changes a honest parties’ balance.

4.8 The Pairwise Payment Channel Protocol

Analogous to the functionalities we define protocols PWCH and it’s extension
PWCHv for pairwise payment channel, as well as a protocol for virtual payment
channel LVPCPWCHv in the following section. They are designed similar to their
functionality counterparts, however, parties involved in such a protocol need to
additionally do:

• Instead of abstract mappings, transactions need to be created. Parties
need to exchange signatures as ways to provide consent

• In the Channel Update method, in addition to updating an internal state,
parties need to create a transaction to make it enforceable

• Order matters: The root of a transaction subtree spending the Funding
UTXO needs to be signed last. In VC-Open and VC-Close the intermediary
party is allowed to sign the root of the transactions subtree only after
receiving signatures of those from the other parties
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4.8.1 General Behavior

The following behavior is always performed by any honest party and for either
protocol and is the analogous component of the functionalities’ common non-
function specific behavior:
Update time: Sub-function that is executed at the beginning of each round.
Send message (clock-read, sid) to GCLOCK and receive reply
(clock-read, sid, τ ′). Set internal variable τ = τ ′.
Handling corrupted parties: During execution as soon as another party is ob-
served deviating from a protocol send message (failure, sid,msg) to Z and
halt.
Timeouts: Upon receiving message(open, sid,m,PA,PB , bA, bB , t),
(state update, sid, γ, δ) or (close, sid, γ′), if the execution of the subpro-
tocol triggered by these messages does not finish until round number t, γ.t
or γ′.t respectively the counterparty is considered to be unresponsive. Send
(failure, sid,msg) to Z and halt the sub-protocol’s execution.

4.8.2 The PWCH Protocol

Protocol PWCH
State: Each party stores current time τ , verification key v, set of other
party’s verification keys V , set Γ of created pairwise payment channel and
ΓA of active pairwise payment channel, set CONS with entries of form
(P,msg), Refund transactions RFND(γ) for each created channel γ ∈ Γ.
Initialization: Send message (register, sid) to GCLOCK followed by
(clock-read, sid) to receive (clock-read, sid, τ ′, fast). Initialize τ = τ ′.
Set Γ = ΓA = CONS = ∅. Lastly send message (KeyGen, sid) to FSIG

and wait for reply (Verification Key, sid, v′). Set verification key v =
v′. Send message (Verification Key, sid, v) to FScript and broadcast
(Verification Key, sid, v) to all parties.
Verification Keys: Whenever receiving a message
(Verification Key, sid, v) from another party P store tuple (P, v) in V .
Subprotocol sign broadcast: Takes as input signing parties PartiesS , trans-
action tr, set of receiving parties PartiesR.

1. Set stub = (tr.t, tr.Ref, tr.Out)

2. Each P ∈ PartiesS :

• send message (Sign, sid, stub) to FSIG and receive reply
(Signature, sid, stub, σ)

• ∀(out,Σ)∈Tr.UIn
: if P ∈ out.Party set Σ = Σ ∪ {σ}

• send message (Signature, sid, stub, σ) to all parties in Parties
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3. Each party in Parties upon receiving (Signature, sid, stub, σ) does:

• Lookup entry (P, v′) ∈ V and send (Verify, sid,m, σ′, v′) to
FSIG

• if such an entry does not exist, or if FSIG replies with
(Verified, sid,m, f) where f = 0 then return failure

• else ∀(out,Σ)∈Tr.UIn
: if P ∈ out.Party set Σ = Σ ∪ {σ}

4. Return success
Consent: Whenever a party receives a message of form (req, sid,msg)
from a party P ′′ they store tuple (P ′′,msg) in CONS.
Subprotocol consent verification:

Inputs: Parties,msg

1. Send message (req, sid,msg) to all P ∈ Parties

2. If ∃(P,msg) 6∈ CONS wait; proceed upon receiving (req, sid,msg)
from P

3. Set CONS = CONS \ {req}

Request Verifications: Upon receiving message msg from Z triggering
execution of a subprotocol below, if any verifications fails send
(failure, sid,msg) to Z.
Revoke: A call of this sub-protocol is of form revoke(γ). Set ΓA = ΓA\{γ}.
Activate: A call of this sub-protocol is of form activate(γ, tr). Set ΓA =
ΓA ∪ {γ}; RFND(γ) = tr.
Balance: A call of this sub-protocol is of form balance(γ,P) where γ is a
pairwise payment channel and P a party.

1. if P 6∈ {γ.PA, γ.PB} halt

2. if P = γ.PA return γ.bA

3. else P = γ.PB return γ.bB

Open: A party P upon receiving msg = (open, sid,m,PA,PB , bA, bB , t)
from Z where PA and PB are parties, m is a map, bA, bB ∈ N are amounts
of coins and t ∈ N is a round number does:

1. Party is addressed: Check P ∈ {PA,PB}. Otherwise ignore request.
In the following let Pc be P’s counterparty.

2. Consent: Execute sub-protocol consent verification({Pc},msg)
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3. Let (In,Out) = m. Verify:

• Σo∈Outo.b ≤ bA + bB + Σo∈In; ∪o in{In}o.Party = {PA,PB}; for
i ∈ {A,B} holds Σo∈In,o.Party=Pi

o.b ≥ bi; t ≥ τ + ∆ + 1

• ∀o ∈ In, after sending message (check, sid, o) to GUTXO−Ledger
(check okay, sid, o) is returned

4. If check of verification fails the party sends (failure, sid,msg) to Z

5. Funding: mf = (In,Out∪{f}) where f = (bA+bB , {PA,PB}). Trans-
action trf = φ(mf , 0)

6. Refund: trr = REFUND TR(f , t, bA, bB)

7. Perform sign broadcast({PA,PB}, trr, {PA,PB})

8. Perform sign broadcast({PA,PB}, trf , {PA,PB})

9. Send (transaction, sid, trf ) to FScript.

10. Poll result: Send message (check, sid, f) to GUTXO−Ledger. If it re-
turns (check okay, sid, f) continue; otherwise if it returns
(check failure, sid, f) halt and repeat next round

11. Set γ = (f,PA,PB , bA, bB , t, 0)

12. Update state: Γ = Γ ∪ {γ}; ΓA = ΓA ∪ {γ}; RFND(γ) = trr

13. Return message (success, sid,msg) to Z
Channel Update: A party P, upon receiving msg =
(state update, sid, γ,P0, b0,P1, b1, δt) from Z does: Let PA = γ.PA and
PB = γ.PB .

1. Party is addressed: Check P ∈ {PA,PB}. Otherwise ignore request.
In the following let Pc be P’s counterparty

2. Verify P ∈ {PA,PB}. Otherwise ignore request. In the following let
Pc be P’s counterparty

3. Perform consent verification({Pc},msg)

4. if P0 = PA then bA = b0, bB = b1 else bA = b1, bB = b0

5. Verify (PA,PB , γ) ∈ Γ; γ ∈ Γ; δt ≥ ∆; γ.t − δt > max(γ.t0, τ);
bA + bB = γ.bB + γ.bA

6. Refund: trr = trr = REFUND TR(γ.f , γ.t− δt, bA, bB)

7. Perform sign broadcast({PA,PB}, trr, {PA,PB})
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8. Update state: γ = (γ.f,PA,PB , bA, bB , γ.t− δt, γ.t0); RFND(γ) = trr

9. Send message (success, sid,msg) to Z
Close: A party P, upon receiving msg = (close, sid, γ) from Z does: Let
PA = γ.PA and PB = γ.PB .

1. Verify P ∈ {PA,PB}. Otherwise ignore request. In the following let
Pc be P’s counterparty.

2. Execute consent verification({Pc},msg)

3. Verify (PA,PB , γ) ∈ Γ

4. Refund: trr = trr = REFUND TR(γ.f , γ.t, γ.bA, γ.bB)

5. Perform sign broadcast({PA,PB}, trr, {PA,PB})

6. Update state: γ = (γ.f,PA,PB , γ.bA, γ.bB , 0); RFND(γ) = trr

7. Return message (success, sid,msg) to Z

Enforce: A party P upon receiving msg = (enforce, sid, γ) from party Z
does: Let PA = γ.PA and PB = γ.PB .

1. Verify:

• γ ∈ ΓA; γ.t ≤ τ . In the following let φ−1(RFND(γ)) = (m, t,Σ),
(In,Out) = m

2. Let (In,Out) = m. For all o ∈ In send message (check, sid, o) to
GUTXO−Ledger. If it replies (check okay, sid, o) for all o ∈ In continue,
otherwise if it replies (check failure, sid, o) for any o ∈ In halt

3. Set Γ = Γ \ {γ}, ΓA = ΓA \ {γ}

4. Send (transaction, sid, tr) to FScript

5. Return message (success, sid,msg) to Z.

4.8.3 An Extension to the PWCH Protocol

Similar to the functionality we provide an extension of our protocol which is
PWCHv that includes an interface of opening a pairwise payment channel that
can be used with the virtual channel construction. More specifically it allows
for the Funding UTXO to not be committed to the ledger.
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Protocol PWCHv

Protocol that behaves as PWCH but is modified to facilitate use with
virtual channels by providing following sub-protocol:
Open Virtual: A call of this sub-protocol is of form
open virtual(f,PA,PB , bA, bB , t, t0) where f is a funding output, bA, bB ∈ N
are amounts of coins and t, t0 ∈ N are round numbers. Let P be caller of
this function. Then:

1. Set trr = REFUND TR(f , t, bA, bB)

2. Perform sign broadcast({PA,PB}, trr, {PA,PB})

3. Channel: γ = (f,PA,PB , bA, bB , t, t0)

4. Update internal state: Γ = Γ ∪ {γ}

5. Return γ, trr

4.9 The Formal Virtual Channel Protocol

Protocol LVPCPWCHv utilizes protocols PWCHv to implement FLVPC,FPWCH
. In

addition to the sub-protocols stated below, parties perform non-function specific
behavior to track time, and handle misbehaving parties. This behavior is shared
with protocol LVPCPWCHv and we refer to the previous section for details.

Analogous to protocol PWCHv the protocols’ design is derived from func-
tionality FLVPC,FPWCH

and follows its structure, however, in turn it has to handle
creation and storage of transactions and it has to handle signatures of transac-
tions as well as their order to enforce atomic setup of our construction.

Protocol LVPCPWCHv

Has access to PWCHv’s internal state and helper sub-protocols.
State: Each party P stores the following state. Set of closable virtual pay-
ment channel Γv, set Trv of entries (γ′v, tr) where γ′v is a virtual payment
channel, tr is a transaction. It has access to the internal state and helper
protocols of PWCHv and shares common state with PWCHv which is the
current round number τ , verification key v list of other parties’ verification
keys V and set of consent giving parties CONS.
Initialization: Execute PWCHv’s Initialization sub-protocol. Moreover set
Γv = Trv = ∅.
VC-Open: Executed upon receiving message msg =
(open, sid, γ0, γ1, δ, t,PA,PB ,PC) where γ0, γ1 ∈ Γ, δ ∈ N is an amount
of coins and t ∈ N is a point in time. In the following let PCMP =
{PA,PB ,PC} \ {P} and Partiesh = {PA,PB ,PC} \ COR.
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1. Party is addressed: Check P ∈ {PA,PB ,PC}, otherwise ignore re-
quest

2. Perform consent verification(PCMP ,msg)

3. Verify:

• {PA,PB} = {γ0.PA, γ0.PB} and {PB ,PC} = {γ1.PA, γ1.PB}
• for each γ ∈ {γ0, γ1}: if P ∈ {γ.PA, γ.PB} then

– γ ∈ FvPWCH.Γ; γ.t > τ + 2∆; γ.t0 > τ + 2∆; γ.bA ≥ δ/2 and
γ.bB ≥ δ/2

4. PA and PB : tr0,S = SPLIT TR(γ0.f , δ, γ0.t−∆)

tr0,p = PUNISH TR(OUT DELTA(tr0,S), PA, max(γ0.t, γ1.t) + ∆)

5. PB and PC : tr0,S = SPLIT TR(γ1.f , δ, γ1.t−∆)

tr1,p = PUNISH TR(OUT DELTA(tr1,S), PC , max(γ0.t, γ1.t) + ∆)

6. trmrg = MERGE TR(OUT DELTA(tr0,S), OUT DELTA(tr0,S), δ,
max(γ0.t, γ1.t))

7. PA and PB :

γA,B , trA,B = open virtual(OUT CH(tr0,S),PA,PB , balance(γ0,PA) −
δ/2, balance(γ0,PB)− δ/2, t, γ0.t)

8. PB and PC : γB,C , trB,C = open virtual(OUT CH(tr1,S), PB , PC ,
balance(γ1, PB) − δ/2, balance(γ1, PC) − δ/2, t, γ1.t)

9. PA and PC : γA,C , trA,C = open virtual(OUT CH(trmrg), PA, PC , δ/2,
δ/2, t, max(γ0.t, γ1.t) + ∆)

10. Perform sign broadcast({PA,PB ,PC}, trmrg, {PA,PB ,PC})

11. Perform sign broadcast({PA,PB}, tr0,p, {PA,PB})

12. Perform sign broadcast({PB ,PC}, tr1,p, {PB ,PC})

13. Perform sign broadcast({PA}, tr0,S , {PA,PB})

14. Perform sign broadcast({PC}, tr1,S , {PB ,PC})

15. Perform sign broadcast({PB}, tr0,S , {PA,PB})

16. Perform sign broadcast({PB}, tr1,S , {PB ,PC})

17. PA,PB : Γ = Γ ∪ {γA,B}; activate(γA,B , trA,B); revoke(γ0)

18. PB ,PC : Γ = Γ ∪ {γB,C}; activate(γB,C , trB,C); revoke(γ1)
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19. PA,PC : Γ = Γ ∪ {γA,C}; activate(γA,C , trA,C)

20. Setup virtual channel: γv = (γ0, γ0.t, γ1.f , γ1.t, γA,B , γB,C , γA,C ,
PA, PB , PC), δ, min(γ0.t, γ1.t)− 2∆)

21. State Update: Γv = Γv ∪ {γv} and Trv = Trv ∪ {(γv, tr0,S , tr0,S .t),
(γv, tr1,S , tr1,S .t), (γ

v, trmrg, trmrg.t), (γ
v, tr0,p, tr0,p.t), (γ

v, tr1,p, tr1,p.t)}

22. Return message (success, sid,msg) to Z
VC-Close: Executed upon receiving message msg = (close, sid, γv, ) from
Z. Let PA = γv.PA, PB = γv.PB and PC = γv.PC . Let (γ0, γ1, γA,B ,
γB,C , γA,C , PA, PB , PC , δ, t) = γv; PCMP = {PA, PB , PC} \ {P}. Do:

1. Party is addressed: Check P ∈ {PA,PB ,PC}. Otherwise ignore re-
quest.

2. Perform consent verification(PCMP ,msg)

3. Verify:

• γv ∈ Γv; {γA,B , γB,C , γA,C} ⊆ FvPWCH.Γ; t > τ ; γ0.t0 > τ + 2∆,
γ1.t0 > τ + 2∆

4. revoke(γA,B), revoke(γB,C), revoke(γA,C)

5. For PA,PB do: tr0,r = REFUND TR(γ0.f , γ0.t − 2∆, sumA, sumB)
where sumA = γA,B .bA + γA,C .bA and sumB = γA,B .bB + γA,C .bB

6. For PB ,PC do: tr1,r = REFUND TR(γ1.f , γ1.t − 2∆, sum′B , sumC)
where sum′B = γB,C .bA + γA,C .bA and sumC = γB,C .bB + γA,C .bB

7. Perform sign broadcast({PA}, tr0,r, {PA,PB})

8. Perform sign broadcast({PC}, tr1,r, {PB ,PC})

9. Perform sign broadcast({PB}, tr0,r, {PA,PB})

10. Perform sign broadcast({PB}, tr1,r, {PB ,PC})

11. PA,PB :

(a) γ0 = (γ0.f,PA,PB , bA, bB , γ0.t− 2∆, γ0.t0)

(b) activate(γ0, tr0,r)

12. PB ,PC :

(a) γ1 = (γ1.f,PB ,PC , bB , bC , γ1.t− 2∆, γ1.t0)

(b) activate(γ1, tr1,r)

13. Update internal state: Γv = Γv \ {γv}
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14. Return message (success, sid,msg) to Z
VC-Enforce: Triggered upon receiving msg = (enforce, sid, γv) from
party Z where γv is a lightweight virtual payment channel. Let PA =
γv.PA, PB = γv.PB and PC = γv.PC .

1. Check there is an enforceable mapping: Let TRγ = (γ, tr) ∈ {(γ′, tr′)
| (γ′, tr′) ∈ TRv, γ′ = γ, tr′.t ≤ τ}.

2. ∀(γ, tr) ∈ TRγ :

• Let φ−1(tr) = (m, t,Σ), (In,Out) = m.

• ∀o ∈ In send message (check, sid, o) to GUTXO−Ledger
• if ∀o ∈ In it replies (check okay, sid, o) then send message

(transaction, sid, tr) to FScript.

• Set Γv = Γv \ {γv}

3. Return message (success, sid,msg) to Z

4.10 Simulation Based Security Proof

In the following we provide simulation based proof of the security of our pro-
tocols. First we construct simulators SPWCH and SV LPC . Thereafter, using
those we introduce and prove security as stated in Theorems 4.10.1 and 4.10.2
below.

Simulator SPWCH

State: Simulates protocol PWCH creating the internal states of each party
and maintaining their view. Moreover it stores a set of corrupted parties
COR.
Initialization: Creates and initializes internal state of each of the simulated
parties. At beginning of execution the adversary can corrupt any parties
in which case the simulator will leak the corrupted parties’ internal state
to the adversary and stores their identities in COR. Upon request from the
functionality, the simulator responds with the set of corrupted parties COR.
Behavior: Whenever the functionality leaks a message with sender and
receiver appended, SPWCH simulates sending of that message by the sender
to the receiver. If the message’s receiver is a corrupted party, SPWCH

forwards the message to the respective party. Whenever any simulated
party or the adversary send a message to a functionality, i.e. FScript,
FSIG, GUTXO−Ledger, GCLOCK or to Z, the simulator leaks it to FPWCH

annotating sender and receiver. If the sending entity expects a reply the
simulator waits for FPWCH to leak it.
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Simulator SV LPC
State: Simulates protocol LVPCPWCHv creating the internal states of each
party and maintaining their view. Moreover it stores a set of corrupted
parties COR.
Initialization and Behavior are analogous to SPWCH , however it interacts
with FLVPC,Fv

PWCH
instead of FPWCH.

Theorem 4.10.1. Protocol PWCH realizes FPWCH in the (GCLOCK, GUTXO−Ledger,
FSIG, FScript) - hybrid world

Sketch of Proof. First, we show that the probability that the simulated
parties and parties in the hybrid world have different state changes with the
same requests from Z is in O(negl(n)). The probability that the channel states
stored by FPWCH is different to those stored by the parties is in O(negl(n)).
The probability that the global functionality GUTXO−Ledger has different state
changes depending on whether Z sends the same requests to either the ideal or
the hybrid world is in O(negl(n)). We argue that following this the simulation
by SPWCH is indistinguishable from the execution in the hybrid world and
IDEALF,S,Z ≈c HYBRIDπFaux ,A,Z .

We briefly handle the case that two parties corrupted by the adversary are
instructed to setup a pairwise payment channel. Note that FPWCH is aware on
which parties are corrupted by the adversary by inquiring this information from
SPWCH . In this case FPWCH forwards requests from Z to SPWCH where they
are handed to the adversary, but ignores them otherwise. Any communication
between corrupted parties and GCLOCK, GUTXO−Ledger, FSIG, FScript or Z are for-
warded by SPWCH and FPWCH to the appropriate interfaces, resulting in the
same state changes in GUTXO−Ledger and the same messages received by corrupted
parties and the adversary as in the hybrid world.

In the following we assume that all pairwise payment channel created by
instructions of Z have at least one party participating that is not corrupted by
the adversary. Any requests sent by Z are forwarded by FPWCH to SPWCH to
be simulated such that all requests are received in the simulation. The same
requests are permissible in either world, either by having access to the same
functionalities, as FSIG, or by FPWCH providing an interface for the sub-protocols
in PWCH. Each request is subject to the same checks in either world. Upon
each request, the functionality as well as the protocol verify consent between
all honest parties. Consent of corrupted parties is implicit by their cooper-
ation or lack thereof. Afterwards checks on the parameter within a request
are performed which are the same. Attention has to be paid to verification
that an utxo ∈ UTXO is logged on the ledger. These require sending messages
to GUTXO−Ledger tagged with check. The replies on these messages are time-
dependent as messages tagged to GUTXO−Ledger tagged transaction can alter its
state at any time and the adversary might try to delay execution of the protocol
to provoke receiving different replies from GUTXO−Ledger. However, FPWCH waits
with sending any such message for the simulation to catch up such that they are



72 CHAPTER 4. LIGHTWEIGHT VIRTUAL PAYMENT CHANNELS

sent at the same time and the same replies are processed by functionality and
simulation. The same holds for messages sent to GUTXO−Ledger tagged transaction
in sub-functions open and enforce to account for delays created by the adver-
sary. At the end of execution, successful checks have to lead to the same state
changes to be applied between the simulated parties and the analogous state in
FPWCH. However, a corrupted party might deviate from the protocol in which
case any honest party will abort the sub-protocol. If such behavior is observed
any honest party will send a message (failure, sid,msg) to Z where msg is
the message with Z’s request which is forwarded to FPWCH by the simulator.
Respectively FPWCH will abort execution of the respective sub-function and for-
ward the message to the respective dummy party. However, if no such behavior
was observed any simulated honest party will output a message to Z of form
(success, sid,msg) which indicates to FPWCH that the respective party finished
execution by the sub-protocol including performing a state change. Only then
FPWCH performs an analogous state change.

In the enforce sub-function a refund mapping is created on the fly depending
on the channel’s state. This is not possible in the protocol as a corrupted party
could refuse collaboration. Respectively, in the protocol when a channel is setup
as well as when a channel changes state, a refund transaction representing the
latest state has to be created and signed by both involved parties to be able
to execute enforce unilaterally by any honest party. We note that whether
execution of enforce results in applying a state change to the ledger depends
on when it is executed. A honest party always attempts to apply a channel’s
latest state to the ledger. If enforce is instructed as soon as a channel γ’s
lifetime expires, i.e. at time γ.t, this will always result in the appropriate state
change as there is no transaction with timelock of less than γ.t+∆. However, if
enforce is executed later, a corrupted party might attempt to send a transaction
representing an older channel’s state applying it to the ledger. Nevertheless, as
such a transaction would be simply forwarded by FPWCH this would be the same
in either ideal or hybrid world.

Lastly, an adversary can attempt to forge the signature of a honest party to
create a transaction that spends a channel’s Funding utxo. However it is shown
that the probability for this is in O(negl(n)) [30].

Theorem 4.10.2. Protocol LVPCPWCH realizes FLVPC,FPWCH
in the

(GCLOCK, GUTXO−Ledger, FSIG, FScript) - hybrid world.

Sketch of Proof. The proof is analogous to the proof of Theorem 4.10.1,
however, in addition we need to analyze the interaction between the parties
because we moved from a protocol between two parties to a protocol between
three parties.

Functionality FLVPC,Fv
PWCH

creates and stores all mappings of a virtual channel
construction and creates, re-activates and disables pairwise payment channels
simultaneously. However, corrupted parties might try to create only a subset of
transactions by selectively providing or withholding signatures of transactions.
In the protocol, the order in which transactions are signed enforces that from
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the perspective of a honest party, either all transactions they hold are fully
signed or none of the transaction created in a sub-protocol can be committed
to the ledger before it successfully terminates.

In the case of the VC-Open protocol, all transactions a honest party is in-
volved in creating depends on whether the split transactions it holds can be
committed to the ledger. Respectively the party needs to make sure that it
holds all other transactions fully signed before proceeding to sign any split
transactions. As the intermediate party holds two split transactions, it has to
make sure that either all or no split transaction is signed. For this reason it
has to wait signing split transactions and broadcasting these signatures until
it received signatures for each split transaction from the respective counterpar-
ties. For the same reason, in the case of the VC-Close protocol, the intermediate
party has to make sure that it holds the signatures of refund transactions of
the reactivated pairwise payment channel before signing any of these itself to
ensure that either both or no pairwise payment channel is reactivated.

4.11 Conclusion

We use timelocks to create an order in which transactions in our constructions
are valid. However, different techniques for invalidating transactions or replac-
ing transactions offchain might be used instead to have less restrictions on the
lifetime of a virtual channel. For this we can adapt techniques as introduced for
the Lightning Network [112] or eltoo [108].

Lastly we argue that our construction provides incentive for research into
route discovery protocols that yield multiple paths. We reason that while virtual
channel expand the payment channel network topology, they also reduce the
total capacity of the channels involved. Even though virtual channel allow for
shorter paths as well as increase the number of possible paths from a source to
a target, larger payments that exceed the capacity of a virtual channel have to
be routed through multiple paths to be able to ulitize this, for instance using
the AMP protocol [104].



74 CHAPTER 4. LIGHTWEIGHT VIRTUAL PAYMENT CHANNELS



Chapter 5

Payment Trees

5.1 Introduction

Blockchain based decentralized ledgers as introduced by Nakamoto [100] have
enjoyed popularity and received interest from the research community and prac-
titioners. Consensus protocols allow these ledgers to be operated by mutually
distrustful parties at the cost of limited throughput. For example, Visa as a
centralized system can process orders of magnitude more transactions within a
given time frame than the most prominent blockchains as Bitcoin and Ethereum.

The main motivation for the development of offchain protocols is to close
the gap in transaction throughput. The idea is to allow parties to interact with
each other without interacting with the ledger, while still being able to use
it to resolve disputes. Offchain protocols operate on channels that are created
between two parties. Channels hold a state which can be enforced on the ledger.
Payment channels [44, 108, 112] store the number of coins the two parties have
locked inside that channel. Offchain protocols provide a means to alter this
state arbitrarily often and thus improving the transaction throughput in the
overall system.

Individual channels can be extended to channel networks, e.g. PCNs Light-
ning [112] and Raiden [7]. This is done using techniques, such as HTLC [25, 112],
that allow for payments of b ∈ N coins across a path of payment channels of
length n ∈ N. This is performed by executing the same payment on each channel
within the payment path atomically. All parties on the payment path have to
lock the payment amount for a duration of up to locktime. The opportunity cost
a party has to invest is the collateral [98] which equals the payment amount b
multiplied by the locktime. In turn, parties can impose fees to invest collateral.
In the case of HTLC, a party’s collateral equals O(nb∆) in the worst-case where
∆ is a parameter of the underlying ledger and is the upper limit of the time it
takes for a transaction to be included in the ledger.

High collateral investments can be exploited by malicious adversaries to per-
form grieving and denial-of-service attacks[99, 109]. For example, an attacker

75



76 CHAPTER 5. PAYMENT TREES

might operate a channel to collect fees by forwarding payments. However, pay-
ments might be routed through competing channels instead. To sabotage the
competitor, the attacker can route a payment through these channels without
the intent of executing it, locking the competing channel’s coins for the entirety
of the locktime. These channels experience a denial-of-service scenario by being
unable to forward any other payments, losing fees that the attacker can collect
through their own channel. Performing this attack on a large scale can result
in denial-of-service for the whole PCN. On a lower scale, a griever might force
parties to lock away their funds for as long as possible by delaying their co-
operation until the last moment. An alternative form of this attack involves
routing multiple low value payments through a competing channel, up until a
point where the channel cannot add any further HTLCs even though it contains
enough coins. In the case of the Lightning network, these types of denial-of-
service attacks can lock all of a channel’s coins for up to around 2 weeks [99].
1

For HTLC the total collateral locked over a whole payment path is O(n2b∆)
and therefore quadratic in the payment paths length. Sprites [98] reduce the
collateral of each party to O(b(n+ ∆)) and the total collateral to O(bn(n+ ∆))
by utilizing a smart contract. This is considered to be constant and linear re-
spectively, since n << ∆ such that n + ∆ < 2∆. Sprites mitigate the damage
done by a possible attacker but its implementation is limited to ledgers with
smart contract capability. The Atomic Multi-Channel Updates (AMCU) pro-
tocol [51] is an attempt to close this gap and enable payments with constant
collateral on ledgers without smart contract capabilities. However, even though
AMCU is formalized as a functionality within Canetti’s UC Framework [31],
the very last, but crucial step, of the updateState function does not seem to be
presented in the description of the AMCU protocol, and neither addressed by
the simulator [51]. This gap results in a vulnerability that can be exploited by
a malicious adversary to steal funds from honest parties.

Related Work. Payment channels [44, 108, 112] themselves allow only for
offchain payments between two parties. Offchain protocols such as HTLCs
[25, 112] and Sprites [98] allow to perform payments across paths of chan-
nels allowing for the implementation of PCNs. Prominent examples are the
Lightning Network [112] and Raiden [7]. Although offchain protocols exist that
create new virtual channels out of two existing channels as Perun [47, 50] and
Lightweight Virtual Payment Channels [66], this work focuses on performing
individual payments across a PCN. In the following we consider a payment of
b ∈ N coins across a path of n ∈ N channels involving parties P0, . . . ,Pn.

The most prominent technique is based on HTLCs [25, 112], which are scripts
that perform conditional payments within a channel: The payer locks funds
into the contract that are paid out if the payee can present a secret x such that
y = H(x) where H is a cryptographic hash function. Otherwise, after time

1https://cointelegraph.com/news/developer-reveals-biggest-unsolvable-lightning-attack-
vector.
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locktime the payment times-out and the payer can reclaim their funds. This
contract is replicated along all channels within a payment path. The payment
is performed as soon as Pn reveals x to their predecessor who then learns the
value of x allowing them to claim the payment from their predecessor in turn.
An attacker Pi, 0 < i ≤ n might attempt to delay revelation of x to their
predecessor until briefly before expiration of the locktime. To allow Pi−1 to
forward x in time, their locktime needs to be increased by at least ∆. This
results in a locktime in O(n∆) and a total locktime in Θ(n2∆).

Sprites [98] aim to reduce the locktime of a party up to a constant O(n+ ∆)
where n << ∆. This is done by setting up a smart contract entity called Preim-
ageManager, s.t. submitting x to the PreimageManager allows to broadcast it
to all nodes within a payment path in at most n communication rounds. The
protocol requires creation of a smart contract, making it unavailable to script
based ledgers as Bitcoin. AMCU [51] attempts to close this gap, i.e. compati-
bility with Bitcoin, by introducing an approach for constant locktime payments
without the need of smart contracts. AMCU sets up payments on each chan-
nel within a payment path that are performed on the condition that an Enable
transaction is created, upon which all payments are performed atomically. How-
ever, this Enable transactions results in several issues. For one, its size grows
linearly in the payment path’s length, making its implementation prohibitive for
ledgers which have an upper limit for block size and transaction size. Moreover,
no party has control over all of the Enable transaction’s inputs. A malicious
adversary can make two parties collaborate to double spend one of the Enable
transaction’s inputs, such that no party is able to enforce the payment on the
ledger. If the double-spending is timed appropriately, this can lead to an at-
tacker stealing funds from honest parties. Details are shown in Appendix 5.3.3.

Jourenko et al. [66] proposed an offchain protocol that takes two channels γA
and γB as input, one between PA and PI and one between PI and PB and creates
a new channel γv between PA and PB . As this approach is not optimized for
individual payments, using it for this purpose would result in excessive collateral
as parties would need to lock away more coins for a longer duration as in existing
approaches. However, we re-use techniques from the lightweight virtual payment
channel construction for the Payment Tree protocol.

Our Contributions. Our contributions are threefold. 1) We present an at-
tack on AMCU performed by a malicious adversary. 2) We present Payment
Trees that allow for payments across paths within a PCN without the need
of smart contracts, requiring only logarithmic individual collateral O(b∆ log n)
while requiring only linear total collateral O(nb∆) such that its performance is
comparable to Sprites. 3) We provide efficiency and security analysis of Payment
Trees, proving the properties Balance Security and Liveness.

Structure. In the remainder of this work, first, we provide background to this
work in Section 5.2. We give an outline of the Channel Closure attack in Section
5.3 while supplementing a formal description in Appendix 5.3.3. Next, we give
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an informal overview of the Payment Tree protocol in Section 5.4. Afterwards,
we introduce the types of transactions used for our construction in Section
5.5 before introducing Payment Trees in Section 5.6 followed by efficiency and
security analysis in Section 5.7. We conclude in Section 5.8.

5.2 Background

5.2.1 Hashed Timelock Contracts

Hashed Timelock Contracts. Let P0,P1, . . . ,Pn, n ∈ N be parties where
parties Pi−1 and Pi, i ∈ {1, . . . , n} control channel γi. HTLCs are used to
perform payments of b ∈ N coins from P0 to Pn by replicating the payment
on each channel γi within a payment path γ1, . . . , γn from P0 to Pn. (1) On a
channel γj , j ∈ {1, . . . , n} the payment is performed by extending the channel-
tree with a conditional payment: If the payee Pj can show the pre-image x ∈
N of a hashed value y = H(x), where H is a cryptographic hash function,
they will receive b coins from the payer Pj−1. However, after expiration of
a locktime tj the payment expires and the payer Pj−1 will have their coins
refunded instead. (2) Only after the conditional payments are set up on all
channels, the payment is executed atomically by having Pn show the pre-image
x to Pn−1, proving that they have the capability to claim the coins on the ledger
through the conditional payment. In turn, Pn−1 learns the pre-image x s.t.
they can show it to party Pn−2 reclaiming the coins they forwarded to Pn. The
information on x propagates through the whole payment path in this manner.
(3) Lastly, to keep the payment offchain, the parties need to consolidate the
payment on each channel respectively. This is done by updating the channel-
tree. The conditional-payment is removed and the b coins that were locked into
the channel are credited to the payee. At this point the channel-tree has the
same form as before the payment, but with updated balance distribution to
account for the payment. This ensures that the channel-tree does not grow in
size with each payment, thus fulfilling the efficiency requirements of an offchain
protocol. Note that, if the payer Pj−1 does not cooperate with consolidation,
payee Pi can reclaim their coins by resolving the conditional payment on the
ledger instead. Due to this the timelock tj has to be chosen s.t. Pi has enough
time to do so before the conditional payment expires, even if they learn the pre-
image from Pi+1 at the last moment just shortly before expiration of timelock
tj+1. Thus the relation ti ≥ ti+1 + ∆ has to hold, making the locktime grow
linearly with the payment path’s length. This results in a collateral cost of
bti ∈ O(bn2∆) which is quadratic in the path’s length.

The Wormhole Attack. The HTLC protocol is vulnerable to the wormhole
attack [90]. An adversary controlling two parties Pi, Pj , 1 ≤ i ≤ j + 2 ≤ n− 1
within a payment path can prevent intermediaries k, i < k < j to participate at
the payment and receive their fees by having Pi forward pre-image x to Pi−1

after Pj learns it from Pj+1 and without forwarding it to party Pj−1.
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Figure 5.1: Informal illustration of AMCU as a transaction-tree.

5.2.2 Atomic Multi-Channel Updates

Although the Sprites protocol reduces a party’s collateral toO(b(n+∆)), AMCU
is the first proposal to reduce the collateral for UTXO based ledger that do not
use smart contracts.

To perform an offchain payment AMCU operates in four phases in which
the transaction tree shown in Figure 5.1 is created. 1) In a Setup phase b coins
from Pi−1’s balance are split up from the channel using the Setup transaction.
2) In the Lock phase the Lock transaction is created which spends Pi−1’s b coins
from the Setup transaction and pays out all coins back to Pi−1 after expiration
of time Tlock. 3) In the Consume phase the parties create a Consume transaction
paying the b coins to Pi, however, instead of spending the Setup transaction
it spends a not-as-of-yet created Enable transaction. 4) In the Finalize phase,
first a Disable transaction is created that spends the Enable transaction after
expiration of time Tlock and returns the b coins to Pi−1 in the same manner as
the Lock transaction does. Lastly the Enable transaction is created spending b
coins of all Setup transactions on the payment path and creating the UTXOs
that are spent by each channel’s Consume and Disable transactions.

AMCU achieves atomic payment across the whole payment path by creating
the Consume transactions to have the Enable transaction as common ancestor.
As soon as it is signed, all Consume transactions can be committed to the ledger,
thus rendering each payment on the payment path enforceable. However, this
approach is impractical. The size of the Enable transaction grows as the number
of its inputs and outputs increases and therefore its size grows linearly with the
payment path’s length n. Payments across long parts cannot be performed if it
exceeds the limits of a transaction’s size.
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The security of the AMCU protocol is attempted to be proven within Canet-
tis UC Framework [31] by presenting a simulator that shows that the AMCU
protocol realizes an ideal functionality PCN+. However, while its updateState
function, that is used to perform payments across a payment path, concludes
with a consolidation step that atomically applies the payment on each individ-
ual channel within the payment path, this step is skipped within the AMCU
protocol and not addressed by the simulator. Exactly this gap between ideal
functionality and protocol is the vulnerability that allows a malicious adversary
to have corrupted parties potentially steal funds from honest parties. We intro-
duce the Channel Closure attack formally in Appendix 5.3.3, in which a pair of
intermediate parties within a payment path can steal funds from honest parties
executing the AMCU protocol.

5.3 The Channel Closure Attack on AMCU

In the following we present the Channel Closure attack informally to present an
overview of the approach. A formal definition, discussion and cost analysis of
the attack is provided in Section 5.3.3.

5.3.1 The Vulnerability

While the Enable transaction is the core of the AMCU construction, it also
seems to be its vulnerability. While the Enable transaction receives inputs from
each channel, no party has control over all channels within the payment path.
At any time, two parties sharing a channel can maliciously spend a UTXO that
is provided as input of the transaction, or as input to any of its ancestors within
the transaction tree. When this happens, the Enable transaction cannot be
committed to the ledger and all parties have their coins refunded through Lock
transactions. Effectively, no party can enforce payment after execution of the
AMCU protocol. On top of that, an adversary can take this further, performing
a Channel Closure attack to steal funds from honest parties. We remark that
PCN payments require a consolidation step in which a payment is included
within the parties’ individual channels. While the functionality PCN+ modeling
AMCU performs a consolidation step atomically on all channels, this step is
omitted by the AMCU protocol. Second, performing the consolidation step
atomically on all channels is highly non-trivial as atomic operations on multiple
channels is exactly the problem statement that protocols such as HTLCs, Sprites
and AMCU themselves attempt to solve.

5.3.2 Intuition on The Channel Closure Attack

The attack is performed by abusing exactly the two observation from the pre-
vious section. First, the adversary corrupts two parties within a payment path
Pi and Pi+1. These parties cooperate in execution of the AMCU protocol right
up until the consolidation step. Then, Pi performs the consolidation step with
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Pi−1 on channel γi−1 while Pi+1 does not cooperate with Pi+2 to consolidate
the payment on channel γi+1. Next, Pi and Pi+1 close their channel γi such that
the Enable transaction cannot be committed to the ledger. This allows Pi+1

to reclaim coins from Pi+2 using their shared Lock transaction. Effectively, Pi
received the payment amount from Pi−1 on γi through consolidation, while Pi+1

did not forward the payment.

5.3.3 The Formal Channel Closure Attack

Informally, an adversary can attack AMCU by corrupting two parties Pi and
Pi+1 that share channel γi along a payment path. First, parties cooperate
in execution of the protocol right until after creation of the Enable transac-
tion at which point the protocol concludes. We observe that if the protocol is
not followed up by a consolidation step as in the ideal functionality PCN+, Pi
and Pi+1 can close their channel γi maliciously, e.g. by double-spending the
UTXO used as input into their Setup transaction. This prohibits commitment
of the Setup transaction to the ledger and, as it is the ancestor of the Enable
transaction which in-turn is common ancestor of all Consume transactions, no
Consume transaction can be committed to the ledger, effectively reverting the
payment. After the execution of the protocol, no party can enforce the payment
by committing the Consume transactions. Performing the payment requires a
final consolidation step, as defined in functionality PCN+, allowing any party to
enforce the payment on their ledger through the channels they participate in.

It is essential that the consolidation step is done atomically on all channels
within a payment path, as otherwise this could lead to honest parties losing
funds. However, this step is non-trivial as performing a state transition on
multiple channels atomically is the very problem statement HTLCs, Sprites
and AMCU approach to solve. In the following we present the Channel Closure
attack that allows a malicious adversary to have corrupted parties steal funds
from honest parties as long as at most n− 2 out of n channels are consolidated
atomically.

In the following let P0, . . . ,Pn be parties where parties Pi−1 and Pi, i ∈
{1, . . . , n} control channel γi. Let Si be the setup transaction and Li be the
Lock transaction for channel γi respectively. The parties perform a payment of
b ∈ N coins over the payment channel path γ1, . . . , γn using the AMCU protocol.
If the adversary can influence the order of channel consolidation then the attack
can be performed with n ≥ 2 where at most n − 1 channels are consolidated
atomically. Otherwise, we require n ≥ 3 where at most n − 2 channels are
consolidated atomically.

The Channel Closure Attack

The Adversary. The adversary is created according to AMCU’s adversarial
model. At beginning of the protocol, the adversary can corrupt n−1 parties s.t.
it receives the party’s internal state and all subsequent incoming and outgoing
communication is routed through them instead. This corruption is static and
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the adversary cannot switch corrupted parties or corrupt any additional parties
during execution of the protocol. The adversary is malicious and can devi-
ate from the protocol arbitrarily, however, it is computationally polynomially
bounded.

The adversary succeeds if the set of corrupted parties holds strictly more
funds compared to when all Consume transactions are committed to the ledger.

The Approach. The corrupted parties steal coins by, first, executing the
protocol correctly until the consolidation phase. They pick a party Pi, i ∈
{1, . . . , n} where channel γi is consolidated before γi+1. After they receive
coins through consolidation of γi, two parties γj−1 and γj close channel j such
that Pi has their money returned through the Lock transaction Li+1 instead of
forwarding the coins. There are a few edge cases: (1) If i = j + 1 then channel
γi+1 is controlled by the corrupted parties, so we require γi is consolidated before
γi+2 instead; (2) if i = n then Pi is already the payment’s recipient. In this
case, we require P0 to be corrupted as well, such that Pn receives their funds
before P0 pays them out.

Channel Closure Attack. The adversary picks i, j ∈ {1, . . . , n}, i 6= j such
that following conditions hold: (1) If i 6= j − 1, then γi is consolidated before
γ(i+1) mod n, otherwise γi is consolidated before γ(i+2) mod n; (2) if γ(j+1) mod n

is consolidated before γ(i+1) mod n then γ(j−1) mod n is consolidated before the
channel γ(i+1) mod n. The adversary corrupts Pi, Pj−1 and Pj . If i = n the
adversary also corrupts P0. Upon starting the protocol, the adversary behaves
honestly and collaborates with the execution of the AMCU protocol up until the
Consolidation step. After Pi receives funds through consolidation of γi, they
do not respond to any parties requesting consolidation of their channels, but
instead the adversary orders Pj−1 and Pj to close γj by spending the UTXO
that is the input of their Setup transaction Sj .

Discussion

In the general case the adversary needs to corrupt at least 4 parties, thus the
attack requires n ≥ 4. However, if the adversary can influence the order in
which channels are consolidated, in the case of n ≥ 3 they can always pick
1 ≤ i = j−1 ≤ n−2 and reduce the parties they need to corrupt to 2. Moreover,
note that if the order in which channels are consolidated is not known a-priori,
the adversary has to guess values for i and j. We assume the adversary picks
values for i and j randomly out of a uniform distribution of all possible values,
i.e. 1, . . . , n. The probability to guess one out of n parties for the value for i
equals at least 1/n. As i 6= j, the value of j has to be guessed out of n − 1
parties which equals a probability of at least 1/(n − 1). Thus the probability
for the adversaries success is at least 1/((n− 1)n) which is not negligible.

Cost Analysis. Performing the attack requires the adversary to commit trans-
actions to the ledger which incurs costs to the adversary. As such the attack
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is only attractive to a rational adversary if it would not result in a net loss.
In the following we denote the adversary’s cost by the amount of transactions
that have to be committed to the ledger. We observe that, to perform the at-
tack the adversary picks two channels γi and γj and succeeds if they guessed
the order in which channels are consolidated correctly. If the adversary fails to
guess correctly they can abort the attack and proceed with the protocol hon-
estly and avoid cost. Otherwise the adversary has to spent the Funding UTXO
of γj requiring one transaction. In the highest cost scenario the adversary has
to commit all Lock transactions they are involved in to the ledger. In the worst
case the adversary has to corrupt 4 parties, i.e. Pi, Pi+1, Pj−1, Pj , such that
they are involved in up to three Lock transactions, i.e. Li+2, Lj−1, Lj+1. As γi
itself is already consolidated Li is not committed to the ledger. Moreover since
the adversary controls channels γi+1 and γj they can opt to modify the channel
states arbitrarily offchain and avoid commitment of Li+1 and Lj . Committing
a Lock transaction requires commitment of two transactions, i.e. the Setup and
the Lock transaction itself. Overall, the adversary’s cost equals committing up
to 1 + 2 · 3 = 7 transactions to the ledger.

5.4 Protocol Overview

In the following, we define communication and adversarial models, before giving
an overview of the protocol. Lastly we define the properties of our construction.

5.4.1 System Model

Communication Model. Communication between parties occurs in rounds.
Any message sent within one round is available to the recipient at the beginning
of the next round. The duration of any round has an upper limit.

Adversarial Model. We define an Adversary A consistent with related work
[66, 51, 98]: At the beginning of protocol execution, the adversary can statically
corrupt up to n of n + 1 parties, receiving their internal state and having all
communication to and from these parties be routed through the adversary. The
adversary is malicious and can make any corrupted party deviate from the
protocol. Moreover, within each communication round, the adversary can delay
and re-order all messages sent.

5.4.2 Overview

We illustrate the life-cycle of the Payment Tree protocol for a payment of 2 coins
from Alice to Charlie across two channels using Figure 5.2 and Figure 5.3. The
protocol’s approach is to take two channels, one between parties Alice and Bob,
one between parties Bob and Charlie and construct a transaction tree that effec-
tively creates a virtual channel [66] optimized for a one-time payment between
Alice and Charlie. Our construction utilizes two approaches to perform updates
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Figure 5.2: Stepwise construction of a Payment Tree across two channels. Boxes
with straight corners represent channel trees displaying their state. Boxes with
round corners represent transactions displaying output UTXOs. Edges indicate
which transactions spend the UTXO at their origin.

to transaction trees atomically. On the one hand, we use these techniques to
empower the intermediary Bob to ensure correctness of the protocol, while on
the other hand, we incentivise Bob to actually do so by means of punishment.
Our construction consists of multiple transaction tree updates. Updates are
done using the invalidation by timelock technique, but for simplicity we leave
the details to Section 5.6.

Payment Tree Construction. Figure 5.2 depicts construction of a Payment
Tree between Alice, Bob and Charlie. Construction consists of three atomic
transaction tree updates. We note that the balance distribution between the
parties remains unchanged between the updates and no payment is executed.
Alice and Bob as well as Bob and Charlie share a channel as depicted in Figure
5.2a. (1) Then, as shown in Figure 5.2b we update both trees by introducing a
Split transaction that spends the channels’ Funding UTXOs and creates two new
Funding UTXOs each. One UTXO contains the payment amount and is funded
by coins from Alice, who is payer, and Bob, who is intermediary, respectively.
The other UTXO contains the remaining coins and is used as Funding UTXO
to reopen both channels which can be used for further payments within the
channels or further Payment Tree constructions. (2) Next as shown in Figure
5.2c both separate transaction trees are combined using a Merge transaction.
This transaction creates two UTXOs. One UTXO requires Bob’s signature to
be spent and contains his collateral. The other UTXO is a Funding UTXO
requiring the signatures of Alice and Charlie and it contains Alice’s payment
to Charlie. At this point, the coins are given to Alice. (3) Lastly, as shown
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Figure 5.3: Payment and Consolidation using Payment Trees. Figure 5.3a mod-
ifies the Payment Tree to forward the funds in the Merge transaction’s Funding
UTXO to the payee. Figure 5.3b splits up the Payment Tree and distributes
funds according to the Payment Tree’s state in Figure 5.3a.

in Figure 5.2d, before we can proceed with a payment, the funds within the
Merge transaction’s Funding UTXOs need to be secured in case two parties, for
example Bob and Charlie, collude to spend their Merge transaction’s or Split
transaction’s input with a different transaction. This attack is similar to the
Channel Closure attack described in Section 5.3 and would disable commitment
of the Merge transaction. However, we observe that all UTXOs that can be
spent for this attack require Bob’s signature. Respectively, in this scenario we
can uniquely identify Bob as malicious. In order to punish Bob and secure the
funds of Alice and Charlie respectively we create Punish transactions. These
transactions spend the same Funding UTXOs as the Merge transaction but
have a timelock that is higher than that of the Merge transaction by at least
∆. Due to this, Bob can always avoid commitment of a Punish transaction
by committing the Merge transaction to the ledger. However, in case Bob
acted maliciously such that the Merge transaction cannot be committed to the
ledger, Alice and Charlie can reclaim their coins from Bob through the Punish
transactions.

Payment and Consolidation. Figure 5.3 depicts payment and consolidation
using a Payment Tree. Assuming a fully constructed Payment Tree as shown in
Figure 5.2d a payment is executed by giving the coins within the Merge transac-
tion’s Funding UTXO to Charlie instead of Alice. As shown in Figure 5.3a this
changes the balance distribution represented by the transaction tree, reducing
Alice’s coins by 2 and adding those to Charlie’s balance. A consolidation re-
quires one atomic transaction tree update as shown in Figure 5.3b. This update
spends the UTXOs within the Merge transaction’s inputs and gives the coins to
Bob and Charlie respectively. Note that this step does not change the balance
distribution between the parties. Bob needs to make sure that this update is
done atomically s.t. he avoids commitment of a Punish transaction. At this
point the transaction trees are separate and in control of each channels’ mem-
bers respectively. Both pair of parties can now perform a last transaction tree
update that replaces the respective transaction tree with a channel as shown in
Figure 5.2a but that now represents the new balance distribution instead.
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5.4.3 System Goals

In the following we define the desired properties of our protocol.

Theorem 5.4.1 (Balance Security). Outside of performing the intended pay-
ment, the sum of a honest party’s coins is not reduced by participation in the
Payment Tree protocol.

Theorem 5.4.2 (Liveness). Eventually any honest party receives access to their
coins through UTXOs spendable with a witness consisting of a signature corre-
sponding to their verification key.

5.5 Transactions

We use three types of transactions. Split transactions are used to split off
coins from one channel, making them available to our construction in form of a
Funding UTXO. Payout transactions take a Funding UTXO as input and pay
the money to one of the two parties involved in it. Lastly, the Merge transaction
is used to combine the Funding UTXOs that were split off two channels by taking
them as input, paying out the intermediary’s coins out as collateral and creating
a Funding UTXO between the two remaining non-intermediary parties.

5.5.1 Split Transactions

Split transactions are of form Trsplit = (Uin, Uout, t) where Uin = {ref(fγ)} consist
of one Funding UTXO provided by the channel-tree of γ, Uout = {fchange, fpay}
consists of two Funding UTXOs. It holds that fchange.b + fpay.b = fγ and
fpay.b = b. Moreover, fγ .π = fchange.π = fpay.π, i.e. all Funding UTXOs are
shared between the same parties. The function call SPLIT(γ, b, t) creates a Split
transaction as described above and returns fpay. A function call to UNSPLIT(γ)
consolidates the transaction into the channel by updating the channel’s balance
distribution with the split off balance. Additionally it sets up a channel between
both parties by constructing a channel-tree with Funding UTXO fchange as root.
Split transactions are used to take off b coins from each channel to be used for
our construction. They are used to avoid that the existing channels are affected
in case a corrupted intermediary misbehaves. Although we represent this by
using a Split transactions as done with Virtual Channels and AMCU, it could
be included similarly as conditional payments from HTLCs by placing a Funding
UTXO instead of a HTLC contract.

5.5.2 Merge Transactions

Merge transactions are of form Trmerge = (Uin, Uout, t) where Uin = {fpay,0, fpay,1}
and Uout = {fpay, ucollateral}. The two Funding UTXOs that are provided as
input fpay,0 and fpay,1 are shared between parties PA and PB as well as between
parties PB and PC respectively. The newly created Funding UTXOs fpay in
the output is shared between parties PA and PC . The other UTXO within
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the outputs is ucollateral which pays out funds to PB . Lastly it holds that the
coins in all UTXOs are equal, i.e. fpay,0.b = fpay,1.b = fpay.b = ucollateral.b = b.
The function call MERGE(fpay,0, fpay,1, t) is a short-hand notation to construct
a Merge transaction. We extend helper function OUT UTXO to accept a Merge
transaction as input as well. In this case it returns UTXO fpay. The helper
function IN UTXO takes a Merge transaction as input and outputs the UTXOs
that are used within its inputs, i.e. fpay,0, fpay,1. Merge transactions are used
to combine transaction trees into one, essentially opening up a virtual channel
between Alice and Charlie that can be used for a one-time payment.

5.5.3 Payout Transactions

Payout transactions are of form Trpayout = (Uin, Uout, t) where Uin = {f} is a
Funding UTXO and Uout = {upayout}. It holds that upayout pays out funds to
a party P and f.b = upayout.b. The function call PAYOUT(f,P, t) constructs a
Payout transaction as described above. We extend helper function IN UTXO
to take a Payout transaction as input in which case it outputs the UTXO f .
Payout transactions are used at several points within our construction to serve
different roles as shown in Figure 5.4. Refund transactions are used whenever
Funding UTXOs are created. They are used to ensure that no funds are locked
away within Funding UTXOs indefinitely even when any other party stops col-
laboration, which is essential to ensure the liveness property. Punish transac-
tions are used to incentivise an intermediary to collaborate and ensure Merge
transactions can be committed to the ledger. Without those, in case a Merge
transaction is not committed to the ledger it could result in the loss of coins for
Charlie in case the Refund transaction between Bob and Charlie is committed
to the ledger instead and after the payment between Alice and Charlie has been
performed. The Payment transaction is used to perform a change of the state,
i.e. balance distribution, represented by the transaction tree, effectively per-
forming a payment. Lastly, Consolidation transactions are used to deconstruct
the transaction tree by applying the payment on both original transaction trees
atomically. Without these, we cannot enforce the payment outside of commit-
ting the transaction tree to the ledger itself because of which the protocol would
not fulfill the efficiency requirements for offchain protocols and thus not being
classified as such. We note that the Refund and Punish transactions between
Alice and Bob represent the same state s.t. the Punish transaction is redun-
dant. However, for simplicity we opted to include both transactions making
the construction symmetric. Whereas similarly the Consolidation and Punish
transactions between Bob and Charlie do represent the same state in Figure
5.4, it is not possible to remove any of the transactions in the case where fees
are paid to Bob which would be included within the Consolidation but not the
Punish transactions.



88 CHAPTER 5. PAYMENT TREES
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1) Refund
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5) Consolidation
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2Δ+Δ
4) Payment / Consolidation

Charlie: b

Figure 5.4: Transaction tree of a payment of b coins across 2 hops. Beforehand,
the respective balances are bA and bB for Alice and Bob, b′B and bC for Bob
in Charlie within their channels. Transactions are boxes with round corners
containing the UTXOs they create, whereas referenced UTXOs in inputs are
indicated implicitly by arrows originating from the UTXO that is spent. Red
numbers indicate timelocks. Numbers atop the transaction indicate order of
construction whereas transactions with same numbers are constructed atomi-
cally. Channel trees are boxes with straight edges forming a black box.

5.6 Our Payment Tree Construction

We describe the construction of a payment tree in respect to our running ex-
ample. Let P0,P1, . . . ,Pn, n ∈ N, be parties where parties Pi−1 and Pi, i ∈
{1, . . . , n} control channel γi. The protocol performs a payment of b ∈ N coins
from P0 to Pn. The value τ ∈ N represents the current time, whereas ∆ ∈ N is
the maximum time it takes for a transactions to be included in the ledger after
committing it. We illustrate our approach in Figure 5.4 for a two-hop payment,
i.e. for the case of n = 2. It is designed such that it can be extended to pay-
ment paths of arbitrary lengths. The construction is based on the overview given
in Section 5.4. Numbers indicate the order in which transactions are created,
whereas transactions with the same numbers are created atomically.

The Payment Tree Protocol. The protocol for constructing a Payment
Tree across a path of n channels is depicted in Algorithm 7. It makes use of
Algorithm 4 that allows an intermediary to atomically create two transactions,
Algorithm 5 that performs a construction step of the Payment Tree, and Algo-
rithm 6 that performs a consolidation step of the Payment Tree.
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Algorithm 4 Atomically signing two Payout transaction

1: function ATOMIC SIGN(Tr0, T r1)
Require: Tr0, T r1 are Payout transactions between three parties.

2: f0, f1 ← FUTXO(Tr0),FUTXO(Tr1)
3: PI ← INTERMEDIARY(f0, f1)
4: PA,PB ← COUNTERPARY(f0,PI),COUNTERPARY(f1,PI)
5: SIGN(Tr0, {PA}, {PI}), SIGN(Tr1, {PB}, {PI})
6: SIGN(Tr0, {PI}, {PA}), SIGN(Tr1, {PI}, {PB})
7: end function

Figure 5.5: Algorithm that takes two Payout transactions as input and allows
the intermediary party to enforce that either both or no transactions are fully
signed.

5.6.1 Helper Functions and Sub-Protocols

Helper Functions. Function SIGN(Tr, PS , PR) is used to sign and exchange
signatures of transactions. It takes a transaction Tr and two sets of parties PS
and PR as input. Each party in PS signs Tr and sends the signature to each
party in PR. This includes verification of signatures by the recipients. Func-
tion PARTIES takes a Funding UTXO as input and outputs a set containing
the two parties of which a signature is required to spend the UTXO. Function
INTERMEDIARY(f0, f1) takes two Funding UTXOs f0, f1 as input, if an in-
termediary exists, i.e. |PARTIES(f0) ∩ PARTIES(f1)| = 1, then it returns the
intermediary P ∈ PARTIES(f0) ∩ PARTIES(f1). Otherwise it returns ⊥. Func-
tion COUNTERPARY(f,P) takes a Funding UTXO and a party as input, if
P ∈ PARTIES(f), then it returns its counterparty PC ∈ (PARTIES(f)) \ {P}.

Atomic Signatures. We assume a setting with two channels between three
parties. Protocol ATOMIC SIGN is shown in Algorithm 4. It enables the
intermediary party to enforce that two transactions – one on each channel –
are created atomically. This is done by having the intermediary party provide
signatures to both transactions only after they received all signatures from its
counterparties.

Merging Channels. Protocol MERGE as shown in Algorithm 5 takes two
Funding UTXOs f0, f1, an amount of coins b and a time t as input where f0

is shared between parties PA and PI , f1 is shared between parties PI and PB
and it holds that f0.b = f1.b = b. It creates a Merge transactions with time-
lock tm = t + 2∆ spending both Funding UTXOs, paying out b coins to PI
and containing a Funding UTXO holding b coins, which are paid out to PA
after time tm + 4∆ by means of a Payout transaction. This transaction tree
is created atomically as its root, which is the Merge transaction, is signed last.



90 CHAPTER 5. PAYMENT TREES

Algorithm 5 Construction Step of a Payment Tree

1: function MERGE(f0, f1, b, t)
2: PI ← INTERMEDIARY(f0, f1)
3: PA,PB ← COUNTERPARY(f0,PI),COUNTERPARY(f1,PI)
4: Trmrg ← MERGE(f0, f1, t+ 2∆)
5: Trrefund ← PAYOUT(OUT UTXO(Trmrg),PA, t+ 6∆)
6: Trpunish,A ← PAYOUT(f0,PA, t+ 3∆)
7: Trpunish,B ← PAYOUT(f1,PC , t+ 3∆)
8: SIGN(Trrefund, {PA,PB}, {PA,PB})
9: SIGN(Trmrg, {PA,PB ,PI}, {PA,PB ,PI})

10: ATOMIC SIGN(Trpunish,A, T rpunish,B) return Trmrg
11: end function

Figure 5.6: Creation of a Funding UTXO between two counterparties. The
intermediary can enforce atomic construction while Punish transactions provide
incentive.

Only after each party holds a fully signed instance of the Merge transaction, two
Punish transactions spending f0 and f1 and paying out b coins to PA and PB
respectively are created atomically using ATOMIC SIGN. These have timelocks
equal to t + 3∆. Note that the creation of the Merge transaction must not re-
distribute funds, i.e. the funds in f0 are paid by PA and the funds in f1 are paid
by PI . The Punish transactions are used to secure the funds within the Merge
transaction by paying out funds to PA and PB , if the Merge transaction cannot
be committed to the ledger. Timelocks are selected to perform transformations
on the existing transaction through the invalidation by timelock technique and
also to allow the construction to be performed iteratively. Timelock tm is se-
lected s.t. a Consolidation transaction can be placed with timelock t+∆ during
the protocol’s consolidation phase. Timelocks of the Punish transactions are
selected s.t. they are invalidated by the Merge transaction conditionally, i.e.
only if the Merge transaction can be committed to the ledger, the Punish trans-
actions are invalid. The Payout transaction acts as a Refund transaction for
the new Merge transaction. Respectively we assign it a timelock of tm + 4∆
such that Consolidation, Merge and Punish transactions can be placed with
timelocks tm + ∆, tm + 2∆ and tm + 3∆ respectively. Note that if the Merge
transaction is on top of the Payment Tree s.t. it is not used for further channel
merges, the Refund transaction’s timelock can be reduced to tm+2∆. Lastly, if
a transaction spends another transaction, its timelock needs to be larger by at
least ∆ to ensure that all transactions can be committed to the ledger as soon
as their timelocks expire.

Consolidation. Algorithm 6 takes a Merge transaction as input, invalidates
it by creating two Payout transactions atomically using the ATOMIC SIGN
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Algorithm 6 Deconstructing Step of a Payment Tree

1: function CONSOLIDATE(Trmrg)
2: f0, f1 ← IN UTXO(Trmrg)
3: PI ← INTERMEDIARY(f0, f1)
4: PA,PB ← COUNTERPARY(f0,PI),COUNTERPARY(f1,PI)
5: TrA ← PAYOUT(f0,PB , t+ ∆)
6: TrB ← PAYOUT(f1,PC , t+ ∆)
7: ATOMIC SIGN(TrA, T rB)
8: end function

Figure 5.7: Invalidating a Merge transactions and atomically updating the state
on the two original Funding UTXOs.

protocol that spend the Merge transaction’s inputs. Both consolidation trans-
actions perform a payment by giving the funds to the payee. Note that the
protocol can be adjusted to cancel a payment by refunding the funds to the
payer instead.

5.6.2 The Complete Payment Trees Protocol

Algorithm 7 performs a payment from P0 to Pn by iteratively merging Funding
UTXOs, s.t. the Merge transactions form the nodes of a balanced binary tree
as illustrated in Figure 5.9. The algorithm takes the following inputs: (1) The
payment path γ1, . . . , γn, (2) the payment amount b, and (3) time tmin. The
value tmin is negotiated by the parties and represents the maximum amount of
time the parties have to execute the protocol. The dispute protocol starts if
the protocol is not concluded until tmin. Note that even existing methods as
HTLCs have to account for tmin.

In the following we refer to a certain depth within this binary tree as level,
beginning with Split transactions on level 0. The algorithm maintains lists of
Funding UTXOs F UTXOi for each level i ≥ 0 of the binary tree, as well as
lists of Merge transactions MRGj for each level j ≥ 1 of the binary tree. The
algorithm proceeds as follows. Add a Funding UTXO from each Split transac-
tion to F UTXO0 in order (4 - 7) and create the Payment Tree by iterative
use of the MERGE protocol level-by-level (8 - 18). The Merge transactions and
Funding UTXOs created on level j are added to lists MRGj and F UTXOj
respectively and in order (12 - 13). Note that if there is an uneven amount of
Funding UTXOs within a level, we leave the odd one to be used in the level
above instead (15 - 17). The payment is executed after construction is con-
cluded (19). Afterwards the payment tree is deconstructed in reverse order by
executing the CONSOLIDATE protocol on each Merge transaction (20 - 24).
Lastly the Split transactions are removed and consolidation within all original
channels concludes (25 - 27).
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Algorithm 7 Payment Tree Construction

1: function PaymentTree(γ1, γ2, . . . , γn, b, tmin)
2: F UTXOi ← [], 0 ≤ i ≤ d(log n)− 1e
3: MRGi ← [], 1 ≤ i ≤ dlog ne
4: for 1 ≤ i ≤ n do
5: fi ← SPLIT(γi, b, tmin)
6: Append fi to F UTXO0

7: end for
8: for i = 0 until i = d(log n− 1)e do
9: for 0 ≤ j ≤ b|F UTXOi|/2c do

10: Retrieve f2j , f2j+1 from F UTXOi
11: Trmrg,j ← MERGE(f2j , f2j+1, b, tmin + 2i∆)
12: Append OUT UTXO(Trmrg,j) to F UTXOi+1

13: Append Trmrg,j to MRGi+1

14: end for
15: if |F UTXOi| mod 2 = 1 then
16: Remove last entry of F UTXOi and append to F UTXOi+1

17: end if
18: end for
19: TrPayment ← PAYOUT(OUT UTXO(MRGdlogne[0]),Pn, tmin +

2∆ log n+ ∆)
20: for i = dlog ne until i = 1 do
21: for Trmrg in MRGi do
22: CONSOLIDATE(Trmrg)
23: end for
24: end for
25: for 1 ≤ i ≤ n do
26: UNSPLIT(γi)
27: end for
28: end function

Figure 5.8: The full Payment Tree protocol from construction to consolidation.

Dispute. This protocol is executed at time tmin if the payment tree protocol
has not come to conclusion in an orderly manner. Every honest party submits
their transactions to the ledger as soon as their respective timelocks expire. This
will result in commitment of the payment tree onto the ledger where transac-
tions are committed in order of their priority. If a Merge transaction cannot be
committed to the ledger, refunds and payments are done via Punish transac-
tions.
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Figure 5.9: Payment tree in the shape of a balanced binary tree.

5.6.3 Handling of Fees

Fees can be paid by the payer P0 and payee Pn or either of them alone to
the intermediaries to compensate for their invested collateral. Our approach to
handling fees is similar to the approach used for HTLCs, however, adapted to the
binary tree structure of Payment Trees. Any party acting as intermediary when
creating a Merge transaction receives cumulative fees from the other two parties
participating in the Merge transaction’s construction. The cumulative fee paid
to the intermediary is composed of two parts. For one, it contains the fees paid
to the intermediary themselves, and for another, it contains coins the party has
to forward to the parties who act as intermediaries of Merge transactions on the
lower levels of the Payment Tree. For simplicity, in the following we assume that
the path’s length is a power of 2, i.e. n = 2i, i ∈ N, the paid fees f are equal for
each intermediary and all fees are shared between payer P0 and payee Pn equally.
Then, a party that acts as intermediary of level i of the Payment Tree receives
fi = f + 2 fi−1

2 = f + fi−1 coins, where f1 = f . The fee fi is paid equally by the
other two parties involved in the Merge transaction’s construction. Payment
of fees happens within Merge transactions by adding a fee to the collateral the
intermediary receives. However, this raises the challenge that we have to ensure
that all transactions receive sufficient funding: The coins within a transaction’s
inputs have to cover all coins within their outputs. Moreover, to ensure that the
consolidation step can be performed, the collateral of the intermediary within
a Merge transaction has to be at least as high as the coins within the Merge
transaction’s Funding UTXO [66]. Therefore, when performing the merge step

on level i every party has to have an additional balance of fi,cum =
∑h
j=i fj ,

whereas the collateral of a Merge transaction’s intermediary equals b+fi,cum+fi
where fi is paid equally from balances brought by the other two parties.

5.7 Collateral Efficiency and Security Analysis

In this section we discuss properties of the Payment Tree construction.
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5.7.1 Efficiency Analysis

Figure 5.10 depicts the efficiency properties of Payment Trees, comparing it
to existing approaches. We compare two metrics: (1) The collateral, and (2)
the number of transactions that have to be committed to the ledger in case of
dispute. We do this for individual parties, as well as for the whole payment.

Commitment of each Merge transaction unlocks the collateral of one party.
To commit a Merge transaction located on level i of the payment tree it needs
to commit i transactions beforehand, i.e. i − 1 Merge transaction as well as a
Split transaction. This will happen at time 2∆i. As the height of the Payment
tree is limited by dlog ne it follows that any party invests b2∆i ∈ O(b∆ logn)
collateral and has to commit i+ 1 ∈ O(log n) transactions. Regarding the total
payment, we observe that there are n

2i Merge transactions on level i of the pay-

ment tree. It follows that the total collateral equals the sum
∑dlogne
i=1 b2∆i n2i =

b2∆n
∑dlogne
i=1

i
2i . As

∑∞
i=1

i
2i = 2 and each part of the sum is positive, it fol-

lows that the total collateral b2∆n
∑dlogne
i=1

i
2i < 4b∆n ∈ O(b∆n) is linear in

the length of the payment path n. The number of transactions can be com-
puted in a similar fashion, however, an intuitive approach is to recall that the
transactions form a balanced binary tree of height 1+dlog ne which has at most
21+dlogne ≤ 2n ∈ O(n) nodes. Although the collateral any individual party has
to invest is logarithmic, therefore higher than Sprites but lower than HTLCs, the
total collateral incurred over the whole payment is linear in the path’s length.
This is comparable to the performance of Sprites and is by a factor of n lower
than the total collateral of HTLCs. A trade-off of Payment Trees is that an
individual party might have to commit up to O(log n) many transactions. Nev-
ertheless the total number of transactions over the whole payment is comparable
to both, HTLCs and Sprites. Payment Trees provide a performance comparable
to Sprites without requiring a ledger with smart contract capability.

5.7.2 Anonymity

There are two metrics for anonymity for offchain payments. (1) Sender and
Receiver privacy denotes whether sender and receiver of a payment are un-
known for any intermediary, (2) path privacy denotes whether intermediaries
are anonymous to other intermediaries within a payment path. We compare
these privacy notions of existing approaches in Figure 5.11. While HTLCs in
themselves do not provide privacy guarantees, further work [87] introduced ad-
justments to provide privacy notions. Similarly, smart contracts do not provide
privacy guarantees and Sprites does explicitly not address any privacy notions,
however, privacy might be addressed in future work.

The Payment Trees protocol leaks no information on intermediaries within
a path if all intermediaries use pseudonyms when creating the transaction and
do not re-use their identities within the network. However, if the intermediary
at the topmost node of the Payment Tree is forcing a dispute that leads to
the commitment of all merge transactions to the ledger, all intermediaries, i.e.
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Method pp Collateral pp Tr. Total Collateral Total Tr.
HTLC [112, 25] O(b∆n) O(1) O(b∆n2) O(n)

Sprites [98] O(b(n+ ∆)) O(1) O(b(n+ ∆)n) O(n)
Payment Tree O(b∆ log n) O(log n) O(b∆n) O(n)

Figure 5.10: Comparison of the performance of Payment Trees across the whole
payment (Total) and individually per party (pp).

Method Sender / Receiver Pr. Path Pr. Smart Contracts
HTLC [112, 25] Yes O(1) No

Sprites [98] No O(n) Yes
Payment Tree Yes O(1) / O(n) No

Figure 5.11: Comparison of the performance of Payment Trees regarding
anonymity and ledger requirements.

O(n), are leaked. However, if any part of the tree is committed to the ledger no
information is leaked on whether it is the topmost node of the tree s.t. Sender
and Receiver of the payment remain private. Thus Payment Trees has Sender
and Receiver privacy.

Nevertheless, we denote that if an adversary attempts to learn the balances
of the channels within a channel network they can potentially observe any pay-
ments done within the network, breaking all privacy independent of the protocol
used.

5.7.3 Discussion of Attacks from the Literature

Denial of Service Attacks. The Payment Tree protocol mitigates existing
attacks such as the congestion and lockdown attacks[99, 109] on HTLCs that
aim to lock a channel’s coins within unfulfilled HTLCs. This is done by reducing
the total and individual collateral of payments. While a large scale DoS attack
on multiple channels is difficult as the total collateral of Payment Trees is linear
in the payment path’s length, a specific intermediary can be targeted to act
a intermediary on the highest level of the Payment Tree to pay a logarithmic
collateral. Another aspect of the Lockdown attack is that a channel is blocked
by saturating the number of HTLCs applicable to a channel which is limited by
the maximum size of a transaction. The Payment Trees protocol mitigates this
by using Split transactions. Each pending payment requires the construction of
a Split transaction. This prevents that there is any transaction that increases in
size depending on the number of pending transactions. However, a tradeoff to
using Payment Trees is the increased number of transactions that would need
to be committed to the ledger in case of a dispute.
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Wormhole Attacks. The Payment Tree protocol pays coins to intermedi-
aries of a Merge transaction and they include fees for all intermediaries on lower
levels of respective sub-trees. An attack similar to the wormhole attack can be
performed by a corrupted intermediary when creating a Merge transaction by
replacing the Merge transaction’s inputs with UTXOs they control. Doing this
they could take all fees that were intended to be forwarded to other parties while
preventing them to participate in the protocol. In contrast to the wormhole at-
tack on HTLCs a wormhole-like attack on the Payment Trees protocol requires
making changes to the transaction tree which in-turn can be detected and pre-
vented. We assume that either P0 and Pn are honest. Otherwise, if both are
corrupted the attack would only redistribute coins between corrupted parties
resulting in no net gain to the adversary. During creation of the Payment Tree
all intermediaries send their view of the protocol to P0 and Pn, i.e. the Merge
transactions they are involved in. Having this information P0 and Pn can verify
correctness of the construction and abort the payment in the negative case.

5.7.4 Security Proofs

In the following we prove the protocol’s security properties defined in Section
5.4.3.

Theorem 5.4.1 (Balance Security). Outside of performing the intended
payment, the sum of a honest party’s coins is not reduced by participation in the
Payment Tree protocol.

Sketch of Proof. First, we consider the case in which the adversary does
not deviate from the protocol, but stops collaboration mid-way. We observe
that due to the order in which transactions are (atomically) created, the funds
accessible for any party within Merge- and Payment transaction is unchanged,
except when executing the payment between P0 and P1 explicitly. Any party
receives their Funds by having the transaction tree be committed to the ledger.
Even if a corrupted party acts as intermediary and stops collaboration after
receiving signatures and before providing signatures themselves. As only they
risk losing funds due to Punish transactions, having them selectively commit and
withhold transactions does not result in the loss of funds of their counterparties.

Next, we consider the case where the adversary corrupts two parties to
double-spend a Funding UTXO that is the input of a Merge transaction. As-
sume P ∈ {P1, . . . ,Pn−1} is neither payer or payee of the overall payment and
is honest. Moreover, the adversary double spends a Funding UTXO that is the
input of a Merge transaction Trmrg,A on level i. Note that for this to happen,
the party that acts as intermediary of Trmrg,A must be corrupted as either
Funding UTXO that is input of Trmrg,A requires its signature to spend it. If P
is not part of a transaction that is descendant of Trmrg,A they are unaffected
and do not lose funds. Otherwise, if they are part of Trmrg,A they are not the
intermediary party as they are honest and they will receive b coins through a
Punish transaction. If they are not part of Trmrg,A, let j, i < j ≥ log n be the
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lowest level on which they are part of a Merge transaction that has Trmrg,A
as descendant. Then they must not be the intermediary, as otherwise, they
would have a descendant of Trmrg,A on a lower level. Therefore they are not
intermediary and receive b coins through a Punish transaction on that level.
However, as they are neither P0 nor Pn they act as intermediary of a Merge
transaction on level k, j < k < log n which is descendant of Trmrg,A. On that
level P has to pay out b coins through one Punish transaction. Note that P does
not pay out b coins through two Punish transactions as otherwise they could
commit the Merge transaction instead to avoid payout of any Punish transac-
tion. Moreover, any party is intermediary of a Merge transaction only once
within the transaction. Overall, P’s balance equals b − b = 0 s.t. they do not
lose funds. The reasoning for P0 and Pn is analogous. As they are on the top
level of the Payment Tree, they have a Merge transaction that is descendant of
Trmrg,A and therefore do receive b coins. However, they are never intermediary
of a Merge transaction, s.t. their balance is b coins. Therefore, P0 and Pn do
not lose coins independently of whether they performed the payment between
each other or not.

Theorem 5.4.2 (Liveness). Eventually any honest party receives access
to their coins through UTXO spendable with a witness consisting of a signature
corresponding to their verification key.

Sketch of Proof. All honest parties commit the transactions they are in-
volved in as soon as their timelocks expire. First, we note that any transac-
tion containing a Funding UTXO is created atomically with a Payout trans-
action that pays out the funds to a party that receives exclusive access to
it. Therefore, the adversary cannot have funds being locked within a Fund-
ing UTXO they share control of indefinitely. Although all transactions have
increasingly higher timelocks, all transactions can be committed to the ledger
by time tmin+2∆ log n+4∆. By this time, no funds are locked within a Funding
UTXO and any funds can be claimed by one party exclusively through Payout
transactions. As Balance Security holds, no party loses funds when all Payout
transactions are committed to the ledger s.t. for any party it holds that by time
tmin + 2∆ log n+ 4∆ they have exclusive access to all their funds.

5.8 Conclusion

Payment Trees provide competitive performance to state-of-the-art approaches
as Sprites, while having fewer restrictions to its employability by not requiring
smart contract capability. Thus providing the first secure alternative to HTLCs
for the Lightning Network.
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Chapter 6

Conclusion

In the following we conclude our work in the context of the related work in
Section 6.1, and highlight possible directions for future work in Section 6.2.

6.1 Conclusion

In this work we present a framework for Offchain Protocols for UTxO based
ledger. We used this protocol to construct two protocols. (1) We constructed
a protocol to create Lightweight Virtual Payment Channels and (2) we con-
structed a protocol for low collateral payments in PCNs. Both protocols are
the first secure solutions for virtual channel construction and low collateral pay-
ments that do not rely on Smart Contracts. Thus we show the feasibility of
our framework to deduct protocols that otherwise would only be possible to be
implemented on ledgers with smart contract capability. Moreover we presented
the first secure alternative to HTLCs for UTxO Ledger based PCNs.

However, this comes with tradeoffs. The largest trade-off is the size of the
transaction trees, i.e. the number of transactions they contain, that our con-
structions require, in contrast to solutions based on smart contracts. We note
that the total amount of transactions is linear with the payment path for Pay-
ment Trees and similarly linear for the number of hops a lightweight virtual
channel spans across the underlying PCN, is both comparable to the related
work. However, practically the number of transactions that would need to be
committed to the ledger in case of a dispute is larger than in the related work by
a small constant. Moreover, while the virtual channel construction by Dziem-
bowski et. al [46, 49] can be extended to use state channels our construction is
limited to payment channels alone. However, we note that, to our knowledge,
there exists no construction for state channels that does not require smart con-
tracts. Overall our work succeeded in reducing the gap between solutions for
UTxO based ledger and solutions relying on smart contracts, however, we do
not completely bridge the difference.

99
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6.2 Potential Future Work

There are several future directions of our work. (1) We argue that our frame-
work can be used to re-visit problem statements in the related work and used
to present alternative constructions with different trade-offs. (2) The frame-
work could be used to further present alternatives to protocols previously only
available for smart contract based ledgers. (3) While the Payment Trees proto-
col presents an approach with total collateral similar to Sprites, the individual
collateral of any party is up to logarithmic. We argue that it constitutes an in-
teresting research question to verify whether this collateral is a limit for PCNs
on UTxO based ledgers. (4) While EUTxOs [32] are strict extensions of the
UTxO model such that our approach can be used directly with EUTxO with-
out any changes, the higher expressiveness of the EUTxO model might improve
the performance of our protocols. Adapting our protocols to the EUTxO model
might present the first solution that allows inter-head communication for Hydra
[33].
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state channel networks. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 949–966.
ACM Press, October 2018.

[50] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General
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