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Chapter 1 Introduction 

 

1.1  Applications of multi-beam antenna technologies 

Multi-beam technologies have garnered significant interest and attention in recent 

times, owing to their ability to create antennas with spatially orthogonal multiple beams. 

This innovative approach has found extensive applications in various domains such as 

broadband satellite communications, massive MIMO systems, terrestrial and non-

terrestrial 5G/6G wireless networks [1-1]-[1-4], and more. The widespread adoption of 

multi-beam technologies can be attributed to their remarkable potential in revolutionizing 

communication systems and facilitating enhanced connectivity. According to the current 

development tendency, in order to further expand the communication capacity and 

disciplinaries, a large number of airborne and space-borne nodes will be added in the 

future sixth-generation communication system network or other application scenarios. 

For example, [1-5] has proposed a 60GHz drone-ground communication system by 

employing drones as air-borne nodes to act as small cell base stations, as depicted in 

Fig.1.1.  

For the time being, the digital signal process MIMO is deemed as a reliable approach 

in the current terrestrial 5G communication system, particularly applicable in extensive 

reflection circumstances [1-6]. However, digital MIMO containing bulk plenty of 

components will generate large power consumption, which is reckoned to be not proper 

for most non-terrestrial communication systems with very limited power supply. Instead, 

analogue beam-forming technology, including active and passive beamforming can be 

more adequately for target applications. Analog active beamforming generally 

incorporates phase shifters and amplifiers to steer and shape the beam pattern. While 

passive beam-forming technologies, including circuits type beam forming networks 

(BFNs), as well known as beam-switching circuits, and quasi-optical devices, like lens 

antenna, generates multi-beam with fixed beam direction with spatial orthogonality. 

Passive beam-forming, despite its larger antenna size and higher cost, offers unparalleled 

potential when it comes to low-loss multi-beam antenna technologies. In comparison to 
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active beam-forming and digital beamforming, passive beam-forming boasts the 

significant advantage of the lowest power consumption, as it eliminates the need for 

amplifiers. This becomes especially crucial in non-terrestrial communication systems, 

which often involve numerous air-borne or space-borne nodes operating under strict 

power constraints. Consequently, the undeniable suitability of analogue passive beam-

forming technologies arises, ensuring optimal performance in scenarios where efficiency 

and limited power supply are paramount considerations. 

   

 

1.2  Beam forming networks  

Beam-switching matrices [1-3] and lens-based antennas [1-4] are widely utilized for 

the purpose of multi-beam applications. In general, most lens antenna will be more 

applicable to higher frequencies to the THz band, due to electromagnetic wave can be 

simplified as the behavior of light of sight at those frequencies. Beam-switching circuits, 

consisting of microwave components like couplers and phase shifters, are more efficient 

in the microwave frequency bandwidth.  

1.2.1 Beam-switching matrices  

  A beam-switching matrix is to divide the input signal into identical signals and 

produces an equal phase difference between adjacent output ports to determine the main 

direction of the radiation beam in dependence on input ports. Conventional well-known 

1-D beam-switching matrices include Blass matrix [1-7], Butler matrix [1-8] and Nolen 

matrix [1-9][1-10]. In [1-11], a new way of designing generalized matrices with an 

arbitrary number of beams was put forward, which combines some of the advantages of 

the Butler and the Nolen matrices, thus broadening the range of 1-D beam-switching 

matrices.  

  Fig.1.2 shows the general configuration of a Blass matrix, incorporating M-input and 

N-output ports. The Blass matrix contains MN nodes, which is composed of a Hybrid 

coupler and phase shifters. Meanwhile, M+N termination leads are uploaded at the edge 
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of matrix network for the purpose of generating traveling wave. The advantages of Blass 

matrix mainly reflect on the flexibility in design to designate beam direction and number 

of beams, as well as crossover levels among each beam. However, due to the employment 

of termination loads to match, Blass matrix usually behaves with low efficiency, 

restricting its application in most scenarios.  

  Fig. 1.3 shows a general configuration of 4-way Butler matrix. Butler matrix comprises 

Hybrid couplers, crossovers and phase shifters. Butler matrix is limited to identical 

number of both input and output ports as 2𝑁 . Each signal path of Butler matrix is 

independent, and theoretically without interactions, thus, Butler matrix is always deemed 

as most wideband-enabled beam-switching matrices. Meanwhile, attributed to its 

symmetrical configuration, the design complexity of Butler matrix is reduced in half. For 

a conventional 1-D 2𝑁 -way. Some new conceptions of Butler matrices with unequal 

number of input and output ports are put forward [1-12], but it could be regarded as simply 

oversizing matrices configuration, simultaneously utilizing some matching loads.  

  Nolen matrix, as shown in Fig.1.4, has improved the topology progressively compared 

with Blass matrix, in discarding all the match loads, and decreasing number of nodes. 

Parallel configuration of Nolen matrix can be proposed in lieu of a conventional diagonal-

shape network [1-13], which as well indicates that a lossless Nolen matrix should have 

identical number of input ports as output ports. Similar to Blass matrix, each node of 

Nolen matrix contains a quadrature coupler and a phase shifter. A parallel N-way Nolen 

matrix is composed of N(N-1)⁄2 units with the couplers having several different values, 

leading to a complicated design process. In addition, the Nolen matrix in its original form 

is usually not wideband, as a direct consequence of the series-fed configuration. 

  The new generalized 1-D matrix with an arbitrary number of beams introduced in [1-

11], generates output phase difference between adjacent ports as  

 

𝑝𝑘 =
2𝑘𝜋

𝑁
−

(𝑁+1)𝜋

𝑁
       𝑘 = 1,2…𝑁                  (1-1) 
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Here N signifies the number of beams and k means input port number. It combines 

merits of both the Butler matrix and the Nolen matrix, especially reflected on even 

number of beams case, which is originated from two mirror-like Nolen matrix connected 

by crossover network. As such, this kind of matrices are deemed to be enhanced 

bandwidth performance compared with Nolen matrix. According to the methodology in 

[1-11], a 1-D 2n-way matrix having all (2n)! permutations of the beam assignments and 

associated adjacent output phase differences can be obtained by adjusting the values of 

the phase shifters. Fig.1.5 (a) and (b) present a general configuration of 4-way and 5-way 

1-D beam switching matrices, which can be a reference to broaden its disciplinary to any 

even or odd number of beams cases. It could be induced that for both an even and an odd 

number of beam, the matrix will comprise 2N layers and (N-1)N/2 nodes, which is same 

as Nolen matrix. The most meaningful contribution of [1-11] turns on even number ways 

of matrix, as shown the general configuration in Fig.1.5 (c). The 2N-way matrix 

comprises Hybrid coupler layer, two pyramid shape crossover networks and two N-way 

Nolen matrix. In this manner, it is deemed that this 2N-way matrix will have a wider 

bandwidth than a normal 2N-way Nolen matrix, as its close-knit depth is reduced in half. 

Meanwhile, some solutions to a 2N-way matrix proposed by [1-11], will possess a 

completely symmetrical configuration by properly adjusting value of couplers and phase 

shifters, leading to diminished complexity of design. Furthermore, retrofitted 

configuration of 2𝑁-way matrices will manifest fewer layers than Butler matrices, which 

may contribute to miniaturization of some target application.  

  Table. 1.1 lists a comparison table for above mentioned beam-switching matrices in the 

case of N-input and N-output. Overall, Butler matrix will manifest a simple design 

complexity and widest bandwidth, but limited to its beam number as 𝑁 = 2𝑛. The newly 

proposed matrix configuration [1-11] will have a wider bandwidth than Nolen matrix, and 

have liberty in number of beams, which is superior to Butler matrix.  

1.2.2 Lens-based antenna  

  Lens antenna is deemed to be a proper candidate for spatially orthogonal beams 

generator in very high frequency like Terahertz bandwidth to support dynamic and long-
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range communication [1-4]. Owning to the high frequency and short wavelength, lens 

antennas are generally quasi-optical natures. Rotman lenses [1-14] and Luneburg lens [1-

15] have very wide applications in high-frequency multi-beam demanded systems. In 

recent years, due to fast development of meta-surface related conception, many multi-

beam antenna, such as transmit array [1-16]-[1-19] and reflect array [1-20]-[1-22] based 

on meta-surface structure are proposed and investigated in-depth. As these meta-surface 

antennas, theoretically have same physical mechanism with lens antenna, to generate 

difference of physical path to attain phase distribution at aperture, thus generating beams 

in desired directions. 

  Rotman lens is initially proposed by Rotman and Turner [1-14]. The general topology 

and a layout of Rotman lens by planar transmission line is shown in Fig.1.6 (a). Rotman 

lens contains a focal arc where input ports are loaded, an inner contour and an outer 

contour where radiation elements are placed. The mechanism of Rotman lens is ascribed 

to difference of propagation path independence of input ports, which generates different 

phase intervals at inner contour. And these physical length differences are theoretically 

keeping unchanged with the frequency variation, thus, Rotman lens manifest very wide 

bandwidth. However, performances of Rotman lens are impaired due to its spillover path, 

which is out of expectation, and will lead to higher side lobe levels and low efficiency. 

And the condition degrades more when feeding is more far away from the center of focal 

arc.  

  Luneburg lens [1-15] is optical devices with spherical [1-23] or cylindrical shape [1-

24], counterpart to different applications. Luneburg lens is a dielectric compound with 

varying dielectric constant 𝜀𝑟(𝑟) = 2 − (𝑟/𝑅)2  from center to edge, as Fig1.6 (b) 

shows. Luneburg lens greatly decreases the designing complexity compared with beam-

switching circuits and other lens-based antennas, also with less network loss. However, 

the most concerned disadvantages of Luneburg lens reflect on its varying dielectric 

constants. In practical design, it is achieved by stacking different dielectric materials layer 

by layer. Some investigation has put efforts in designing Luneburg lens based on meta-
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surface cells, which might potentially improve the fabrication complexity of Luneburg 

lens. 

  Overall, in a perspective view of comparison of beam-switching matrices and lens-

based antennas, lens antenna will have a wider bandwidth and more compact physical 

layout comparing with beam-switching matrices when number of ports turns out to be 

larger, however, beam-switching matrices will manifest to be more effective in 

microwave frequency, as a consequence of natures for quasi-optical characteristics of 

lens-based antenna is not dominant at this frequency [1-3][1-4], which may lead to low 

antenna efficiency and high side lobe levels. This could be reflected on Fig.1.6(a), as there 

will be reflection between inner surface of lens and outer surface of lens, which will 

generate undesired propagation path and spillover, thus leading to increasing side lobe 

levels. And this phenomenon degrades the performance more when feeding point deviates 

from center. A solution for this is to upload some matching load or absorber surrounding 

Rotman lens, and at the same time bring about more decreased efficiency and realized 

gain, as a matter of this, to level up efficiency of Rotman lens in microwave frequency 

band is always a challenging topic. Besides, considering fabrication complexity, beam-

switching matrices are obviously simpler than lens-based antennas, as lens antenna 

generally incorporates curvature shape or varying dielectric constants, with higher 

difficulty on high precision and low-cost manufacturing. Another challenge for lens 

antenna is the integration with feeding or radiation ports, which can inherently be 

equipped by beam-switching matrices.  

1.2.3 2-D beam-switching  

As anticipated in [1-8], 2-D beam switching can be achieved by direct cascading 1-D 

multi-beam matrices in two directions. For instance, as Fig.1.7 (a1) shows, a 2-D 4×4-

way Butler matrix is attained by cascading horizontally-stacked 4-way Butler matrices 

and vertically-stacked 4-way Butler matrices. And a 2-D 4× 4-way one-body Butler 

matrix is developed instead of a directly cascading structure, as depicted in Fig.1.7 (a2) 

Similarly, a 2-D beam-switching Rotman lens can be attained by cascading stacked 1-D 

Rotman lens at two orthogonal directions, as Fig1.7 (b1) shows. And a 2-D one-body 
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Rotman lens is proposed in [1-25], which significantly reduces the physical size of the 

network as shown in Fig.1.7 (b2). For a spherical Luneburg lens, it can achieve 2-D beam-

switching inherently by placing input incidence as per 2-D distribution. 

 

1.2.4 Beam-switching matrices by different transmission line 

technologies 

Various transmission line technologies, as shown in Fig.1.8, like microstrip line [1-26]- 

[1-31], substrate integrated waveguide (SIW) [1-32]-[1-37], also known as post-wall 

waveguide, and metal-wall waveguide [1-38]-[1-40], have been applied to beam-

switching networks. Among them, the low loss of hollow-waveguide in high frequencies 

is undeniably superior to other planar transmission lines or dielectric-filled waveguides 

[1-41]. As shown in Fig.1.8(d), the transmission loss by waveguide around 25.6GHz is 

only 0.003dB/cm, which is deemed to be extremely minor compared to microstrip line 

and SIW, as for metal-wall waveguide, ideally only conductor loss will exist, but for 

microstrip line and SIW, there will be accompanying dielectric loss and radiation loss, 

which will be dominant in the very high-frequency bandwidth. 

Table. 1.2 lists a comparison of some 2-D beam-switching matrices with comparable 

network complexity with some normal indexes, and it could be perceived, for hollow-

waveguide matrix, its low insertion loss is much more conspicuous than SIW and 

transmission line when it comes to over 20GHz band. 

 

1.2.5 Miniaturization of beam-switching matrices 

  Generally, the number of elementary components and thus the volume of beam-

switching matrices tend to increase with the number of ports [1-42], and this is more 

notable for 2-D beam-switching matrices, which impelled researchers to investigate 

miniaturization techniques. Some of the applied methodologies include improving the 

layout of the matrices or planarization [1-43]-[1-46]. Another method is to capitalize two-

plane couplers instead of traditional one-plane couplers in a hollow waveguide structure 
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to be assembled in a complete matrix configuration in lieu of cascading of H-plane 

couplers and E-plane couplers, which can be referred in Fig.1.9. The design of 2-D 

hollow-waveguide hybrid coupler and crossover components was first proposed in [1-

47], and subsequently applied to 2-D 4×4-way [1-39] and 2-D 8×8-way Butler matrices 

[1-40]. This design approach has extensively facilitated the development of miniaturized 

waveguide-based multibeam feeding matrices. Compared to conventional one-plane 

couplers, two-plane couplers have remarkable merits in reducing physical dimensions and 

optimizing the spatial deployment of constituent components in 2-D multibeam matrices. 

[1-48] has significantly improved designing method of two-plane couplers by FEM-Mode 

matching joint computations. Moreover, [1-49] greatly enhance the bandwidth 

performance of two-plane couplers by introducing several coupled regions with arbitrary 

shapes. The two-plane couplers reported in the literature to date are all hybrid couplers, 

i.e. balanced couplers, and crossovers. Nolen matrices as well as the newly put forward 

matrix [1-11], however, normally consist of couplers splitting power unevenly, the 

unbalance increasing with the number of ports. As a consequence, the configuration of 2-

D hollow-waveguide Nolen matrices may inevitably incorporate some unbalanced two-

plane couplers which have never been proposed before, which is exactly main motivation 

of this dissertation. 

 

 

1.3  Motivation of this dissertation  

As elaborated in section 1.2, the superiority of bean-switching matrices particularly in 

microwave frequency is embodied. Compared with other transmission line technologies, 

hollow waveguide is undoubtedly superior in low loss, as there are no dielectric loss and 

radiation loss, but only with extremely minor conductor loss, this feature will be fully 

advantageous in microwave frequency applications and high-power transmission 

scenarios. 

As emphasized in section 1.2, large volume is a dominant drawback of beam-switching 

matrices, and this might be more notable when the number of beams increase and broaden 
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in 2-D beam-switching applications. Rather than approach of improvement for layout or 

planarization utilized in most planar transmission line technologies, waveguide-type 

beam-switching matrices is to capitalize two-plane couplers instead of traditional one-

plane couplers in a hollow waveguide structure. Two-plane couplers have remarkably 

brought about promotion and stimulation of the development of miniaturized waveguide-

based multibeam feeding matrices. Compared to conventional one-plane couplers, two-

plane couplers have remarkable merits in reducing physical dimensions and optimizing 

the spatial deployment of constituent components in 2-D multibeam matrices. However, 

up to days, those reported two-plane couplers [1-39], [1-40], [1-47]-[1-49] are equal 

power splitter or crossover only, the mechanism to enable arbitrary coup-ling ratio for 

two-plane coupler still needs to be explored, as they are in all likelihood to be adopted in 

more complex beam-switching networks composed of 1-D matrices with arbitrary 

number of beams containing unbalanced coupler.  

On the other hand, up to days, for 2-D hollow waveguide beam-switching applications, 

there are only reported works on Butler matrices, such as 2-D 4×4-way and 8×8-way 

Butler matrix, with their port numbers restricted as identical in either of the dimension 

and limited to 2𝑛. Solutions for 2-D hollow waveguide beam-switching matrices, with 

beam numbers other than 2𝑛  or with different number of beams in two orthogonal 

directions still need to be explored, particularly there might be possibilities to bring about 

utilizing of two-plane coupler following arbitrary coupling ratios. 

Overall, the motivation of this doctoral dissertation can be summarized as below two 

items: 

1. To find out the coupling mechanism of two-plane coupler capable of achieving 

arbitrary coupling ratios in H-plane and E-plane directions. This motivation will be 

corresponding to subsequent Chapter.2 of this dissertation, to drastically elaborate 

working mechanism of two-plane couplers. 

2. To design 2-D hollow waveguide beam-switching matrices with a number of beams 

other than 2𝑛 and with different number of beams in two orthogonal directions. 

This motivation will be a counterpart to Chapter.3 and Chapter.4 of this 
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dissertation, which introduce designs of a 2-D 3×3-way Nolen matrix and a 2-D 

6×4-way dually symmetrical matrix. 

 

 

1.4  Outline of this dissertation  

This dissertation is split into 5 chapters in total. The flow chart of the dissertation is 

presented in Fig.1.10. 

Chapter 1 gives a brief introduction concerning the background, application and 

development of beam forming networks, including beam-switching matrices and lens-

based antennas. And the motivation of this dissertation comes up, which focuses on the 

exploration of two-plane coupler realizing arbitrary coupling ratios and 2-D beam-

switching matrices with beam numbers other than 2𝑛  and with different number of 

beams in two orthogonal directions. 

Chapter 2 will present a profound theoretical analysis of two-plane coupler following 

arbitrary coupling ratios in H-plane and E-plane directions. In addition to usual coupling 

mechanism with equivalence to cascading of H-plane coupler and E-plane couplers, other 

two coupling mechanisms will also be introduced. Subsequently with above-mentioned 

theory part, a designing instance of two-plane coupler following 1: √2  in H-plane 

direction and √2: 1  in E-plane direction will be exhibited to verify the theoretical 

analysis. 

Chapter 3 will propose a two-dimensional (2-D) one-body 3×3-way hollow-waveguide 

Nolen matrix employing two-plane couplers working from 27.65 GHz to 28.85 GHz, 

corresponding to a 4.1% fractional bandwidth. This chapter corresponds to the motivation 

to propose 2-D one-body beam-switching matrix having a number of beams other than 

2𝑛. 

Chapter 4 will present a design of a two-dimensional (2-D) 6×4-way hollow waveguide 

beam-switching matrix working at 28.25 GHz, with a fractional bandwidth of 7.1%. This 

chapter is counterpart to the motivation to propose a 2-D one-body hollow waveguide 

beam-switching matrix different numbers of beams in two orthogonal directions. 
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Chapter 5 will give summarize the complete dissertation and give some perspective 

views on future works. 
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Fig. 1.1. Novel Unmanned Aerial Vehicle-Based Line-of-Sight MIMO Configuration 

Independent of Transmitted Distance Using Millimeter Wave [1-5]. 

 

 

 
 

 

 

Fig. 1.2. Normal configuration of a Blass matrix. 
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Fig. 1.3. Configuration of a 4-way Butler matrix 

 

 

 

 

 

 

 

 

 

Fig. 1.4. Normal configuration of a Nolen matrix. 
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(a) 4-way matrix 

 

(b) 5-way matrix 
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(c) General configuration of 2N-way matrix 

Fig. 1.5. Configuration of proposed matrix in [1-11].  

 

TABLE 1.1 

Comparison among 1-D beam-switching matrices 

Project 

(N×N-way) 
Blass matrix Nolen matrix 

Butler matrix 

(N=2𝑛) 
[1-11] 

Number of 

couplers  
𝑁2 N(N-1)/2 Nn/2 N(N-1)/2 

Number of phase 

shifters 
𝑁2 N(N-1)/2 N(n-1)/2 N(N-1)/2 

Lossless No Yes Yes Yes 

Bandwidth Narrow Narrow Widest Wider 

Symmetry No No Yes Some solutions 
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(a1) Rotman lens working mechanism 

 

 

 

 

 

 

(a2) Layout of a Rotman lens by microstrip line 
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(b) Luneburg lens 

 

 

Fig. 1.6. Lens type antennas. 
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(a1) 2-D 4×4-way Butler matrix by direct cascading 

 

 

 

 

 

 

 

 

 
 

(a2) 2-D one-body hollow waveguide 4×4-way Butler matrix. 
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(b1) 2-D beam-switching Rotman lens by direct cascading. 

 

 

 

 

(b2) One-body 2-D beam-switching Rotman lens. 

 

 

 

 

 

Fig. 1.7. 2-D beam-switching networks. 
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(a) Microstrip line                             (b) SIW 

 

 

 

 

 

 

 

    

(c) Waveguide                           (d) Transmission line loss 

 

 

 

 

 

Fig. 1.8. Normal transmission line technologies.  
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TABLE 1.2 

Comparison among 2-D beam-switching matrices  

by different transmission line technologies 

 

Performance 

2-D 3×3 

Nolen matrix 

[1-31] 

2-D 3×3 

matrix 

[1-37] 

2-D 4×4 Butler 

matrix  

[1-26] 

2-D 4×4 Butler 

matrix  

[1-46] 

2-D 4×4 

Butler matrix  

[1-39] 

Frequency 6GHz 28GHz 2.4GHz 10GHz 22GHz 

Transmission 
Microstrip 

line 
SIW Microstrip line SIW Waveguide 

Insertion loss (IL) N.A. N.A. 1.8dB 4dB 1.5dB 

Output amplitude 

imbalance (IL included) 
N.A. N.A. 3dB >6dB 4.8dB 

Bandwidth N.A. 7.1% 16.7%   N.A. 2% 

Physical size (λ3) N.A. N.A. 1.6*1.6*0.004 22*16.7*0.03 3.45*3.45*14.0 

 

 

 

 
 

 

 

Fig. 1.9. Two-plane couplers assembled in a 2-D 4×4-way Butler matrix. 
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Fig. 1.10. Flow chart of dissertation structure. 
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Chapter 2 Two-plane Waveguide Coupler with 

Arbitrary Coupling Ratios in the H-plane and E-

plane Directions 

 

2.1  Introductory remarks 

  Two-plane coupler following arbitrary coupling ratios in H-plane and E-plane 

directions, which is reckoned as most principal and notable contribution of this doctor 

thesis, its working mechanism will be elaborated in this chapter.  

To begin, a comprehensive explanation of the theory behind conventional one-plane 

couplers will be presented, establishing a solid foundation for understanding the 

subsequent discussion. This thorough exploration will ensure a clear understanding of the 

principles governing these couplers and their established mechanisms. Following that, the 

theoretical analysis of two-plane couplers accommodating arbitrary coupling ratios will 

be utterly demonstrated. This in-depth exploration will delve into the intricacies of these 

couplers, showcasing their versatility in achieving various coupling ratios. Moreover, 

beyond the commonly employed coupling mechanism, two additional distinct coupling 

mechanisms will be discussed. The utilization of Mode Matching-FEM computation, a 

crucial computational method for analyzing two-plane couplers with irregular shapes, 

will be introduced and discussed. This computational technique plays a pivotal role in 

accurately evaluating and optimizing the performance and characteristics of two-plane 

couplers featuring non-standard geometries. A detailed demonstration of this computation 

method will be included in the Appendix section, providing a comprehensive 

understanding of its implementation and its significance in the analysis of two-plane 

couplers. 

Building upon the aforementioned theoretical framework, a practical design example 

of a two-plane coupler with specific coupling ratios will be presented. This particular 

coupler follows a ratio of 1: √2  in the H-plane direction and √2: 1  in the E-plane 
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direction. To demonstrate its feasibility, the coupler has been successfully fabricated and 

its performance has been verified through meticulous VNA (Vector Network Analyzer) 

measurements. The results obtained from both simulations and measurements will be 

extensively discussed to provide a comprehensive evaluation of its performance 

characteristics. Furthermore, in order to emphasize the advantages of utilizing two-plane 

couplers in terms of miniaturization when compared to the conventional cascading of 

one-plane couplers, a separate design sample consisting of an H-plane coupler and an E-

plane coupler will be presented. The cascading of these individual couplers is equivalent 

to the proposed two-plane coupler in terms of functionality. A detailed comparison 

between the performance of the cascaded one-plane couplers and the proposed two-plane 

coupler will be conducted through simulation analysis. By conducting this comparative 

study, it is anticipated that a clear understanding of the benefits and limitations of the two-

plane coupler design will be achieved. This comprehensive analysis, incorporating both 

simulation and measurement data, will shed light on the performance characteristics and 

potential advantages of the proposed two-plane coupler over the traditional approach of 

cascading one-plane couplers. 

2.2  One-plane couplers 

  One-plane couplers, incorporating H-plane couplers and E-plane couplers are very 

conventional microwave components those have been widely employed in various 

applications.  

As Fig.2.1 shows, H-plane coupler and E-plane coupler are symmetrical 4-port 

structure. They are comprised of input or output waveguides and coupled region. Input or 

output port are rigorously complying to single-mode condition, while coupled region 

should at least contain odd higher modes like TE20 mode to act desired coupling 

mechanism. Take H-plane coupler as an example, based on even-odd method analysis, 

the output S-parameter of H-plane coupler, could be synthesized by parameter of two-

port half structure accompanying with associated PEC/PMC boundary in correspondence 

of mode polarity. 

Hence, the output of a 4-port H-plane coupler turns out to be, 
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𝑆31 =
1

2
𝑆21

𝑀 +
1

2
𝑆21

𝐸 (2 − 1𝑎) 

 

𝑆41 =
1

2
𝑆21

𝑀 −
1

2
𝑆21

𝐸 (2 − 1𝑏) 

 

Here M and E stand for PMC and PEC, respectively. 𝑆21 represents transmission of 

half structure. Similarly, the reflection or isolation of a H-plane coupler can be expressed 

as, 

𝑆11 =
1

2
𝑆11

𝑀 +
1

2
𝑆11

𝐸 (2 − 2𝑎) 

 

𝑆21 =
1

2
𝑆11

𝑀 −
1

2
𝑆11

𝐸 (2 − 2𝑏) 

 

For equation (2-1), in favor of an ideally matching condition, literally |𝑆21
𝑀 | = |𝑆21

𝐸 | =

1, and |𝑆11
𝑀 | = |𝑆11

𝐸 | = 0, then 𝑒𝑗𝑃𝑀 and 𝑒𝑗𝑃𝐸 can alternatively incarnate transition of 

half structure with PMC and PEC symmetrical plane, where 𝑃𝑀  and 𝑃𝐸  signify 

transition phase. Then equation (2-1) can be converted into 

 

𝑆31 = 𝑒𝑗
𝑃𝑀+𝑃𝐸

2 cos (
𝑃𝐸 − 𝑃𝑀

2
) (2 − 3𝑎) 

 

𝑆41 = −𝑗𝑒𝑗
𝑃𝑀+𝑃𝐸

2 sin (
𝑃𝐸 − 𝑃𝑀

2
) (2 − 3𝑏) 

 

From equation (2-3), it could be perceived amplitude of 𝑆31 and 𝑆41 are manipulated 

by variable (𝑃𝐸 − 𝑃𝑀)/2, and phase of 𝑆41 is always lagged 90 degree by 𝑆31 when 

(𝑃𝐸 − 𝑃𝑀)/2 varies from 0 to 𝜋/2. That is also why symmetrical coupler is commonly 

referred to as quadrature coupler. PMC boundary is counterpart to all even mode along 

H-plane in coupled region, including TEmn and TMmn mode, when m is even. PEC 

boundary corresponds to all existing odd mode along H-plane, covering all TEmn and 
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TMmn mode in coupled region, when m is odd. The analysis of 2-port model is exerted by 

Mode matching-FEM joint calculation, which will be demonstrated in latter section. 

The output of E-plane coupler, is similarly to be given as, 

 

𝑆31 = 𝑒𝑗
𝑃𝑀+𝑃𝐸

2 cos (
𝑃𝑀 − 𝑃𝐸

2
) (2 − 4𝑎) 

 

𝑆41 = −𝑗𝑒𝑗
𝑃𝑀+𝑃𝐸

2 sin (
𝑃𝑀 − 𝑃𝐸

2
) (2 − 4𝑏) 

 

But just as opposed to H-plane coupler, for E-plane coupler, PMC boundary is 

counterpart to all odd mode along E-plane in coupled region, including TEmn and TMmn 

mode, when n is odd. PEC boundary corresponds to all even mode along E-plane, 

covering all TEmn and TMmn mode in coupled region, when n is even. 

Generally, E-plane coupler will manifest narrower bandwidth than H-plane coupler, 

since main mode for PMC boundary is TE01 mode which has an orthogonal direction of 

electrical field against TE10 mode at input or output region, which lead to difficult 

matching. 

 

2.3  General analysis of two-plane coupler  

  Two-plane hollow waveguide coupler is equivalent to concatenation unit including two 

vertically-stacked H-plane couplers cascading with two horizontally-stacked E-plane 

couplers, as Fig.2.2 shows. The prerequisite of composing a two-plane coupler would be 

for commutativity between uniform stacked components in the H-plane and E-plane 

directions, and the sequence order of each layer of component can be swapped, then 

interleaved H-plane and E-plane coupler units will occur, and provide the base to 

construct a two-plane coupler. 

The groundbreaking concept of designing 2-D hollow-waveguide hybrid coupler and 

crossover components was initially introduced in [2-1]. This innovative approach paved 

the way for its subsequent application in the development of impressive 2-D 4×4-way [2-
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2] and 2-D 8×8-way Butler matrices [2-3]. These remarkable advancements in waveguide 

technology have propelled the 2-D waveguide beam-switching matrices forward. 

Moreover, a notable breakthrough was achieved in [2-4], where an effective method was 

demonstrated to significantly enhance the bandwidth performance of two-plane couplers. 

This was accomplished by introducing an arbitrary shape for the coupled region, resulting 

in improved performance characteristics. This breakthrough has had a profound impact 

on the application of two-plane couplers. The utilization of two-plane couplers has 

generated immense excitement and has acted as a catalyst for the development of compact 

waveguide-based multibeam feeding matrices. In comparison to traditional one-plane 

couplers, the adoption of two-plane couplers presents distinct advantages, including the 

reduction of physical dimensions and the optimization of spatial deployment of 

constituent components within 2-D multibeam matrices. These merits have 

revolutionized the related field, opening up new avenues for exploration and advancement. 

The previous literature primarily focused on two-plane hybrid coupler and crossover 

as the predominant types of two-plane couplers for application on 2-D Butler matrices. 

However, it is important to note that Nolen matrices, and the recently published literature 

pursuing general 1-D beam-switching matrices [2-5] to accommodate arbitrary numbers 

of beams, differing from the Butler matrix, normally consist of couplers splitting power 

unevenly, this power imbalance tends to increase as the number of ports within the matrix 

grows. Consequently, when constructing 2-D hollow-waveguide matrices utilizing these 

1-D beam-switching matrices, it becomes inevitable to incorporate two-plane couplers 

that adopt arbitrary coupling ratios. Remarkably, this particular configuration, featuring 

two-plane couplers with arbitrary coupling ratios, has never been proposed or explored in 

prior research. 

A general two-plane coupler containing 4 input ports and 4 output ports, as well as a 

coupled region, as depicted in Fig.2.3. Usually, a two-plane coupler equivalent to 

cascading two vertically-stacked H-plane couplers and two horizontally-stacked E-plane 

couplers should be symmetric about the x-axis and y-axis. Moreover, here to impose 

symmetry about the z-axis can reduce the number of variables in the design process and 
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thereby diminish complexity. The quarter model of two-plane coupler with only two ports 

can be extracted exclusively and assigned perfect electric conductor (PEC) or perfect 

magnetic conductor (PMC) boundary conditions at the symmetry planes in accordance 

with the polarity of the coupling region modes to analyze the overall output characteristics 

of the complete two-plane coupler, based on two-dimensionally even-odd method. 

The output of an 8-port two-plane coupler corresponding to incidence from port 1, can 

be synthesized as  
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Here 𝑆21 means transition of a quarter model with regard to different boundary in 

symmetrical plane. In addition, the reflection and isolation can be expressed as, 
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𝐸𝐸 −
1

4
𝑆11

𝑀𝑀 −
1

4
𝑆11

𝐸𝑀 (2 − 6𝑐) 

 

𝑆41 =
1

4
𝑆11

𝑀𝐸 −
1

4
𝑆11

𝐸𝐸 −
1

4
𝑆11

𝑀𝑀 +
1

4
𝑆11

𝐸𝑀 (2 − 6𝑑) 

 

In order to achieve an ideally matching condition for a quarter 2-port model, where 

|𝑆21
𝑀𝐸| = |𝑆21

𝐸𝐸| = |𝑆21
𝑀𝑀| = |𝑆21

𝐸𝑀| = 1, the transmission coefficients can be incarnated as 
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𝑒𝑗𝑃𝑀𝐸 , 𝑒𝑗𝑃𝐸𝐸  , 𝑒𝑗𝑃𝑀𝑀  , and 𝑒𝑗𝑃𝐸𝑀 .Here, 𝑃𝑀𝐸  , 𝑃𝐸𝐸  , 𝑃𝑀𝑀 , and 𝑃𝐸𝑀  denote the 

transmission phase, which is defined as the phase part of the ratio of the TE10 mode at 

the output ports to the TE10 mode at the input ports. These phase values determine the 

relative phase shift experienced by the signals passing through the model. By expressing 

the transmission coefficients as complex exponentials with the transmission phases, we 

can effectively describe the phase characteristics of the quarter 2-port model under the 

ideally matching condition. Hence, Eq. (2-5a)-(2-5d) can be alternatively expressed as 

 

𝑆51 =
1

4
𝑒𝑗𝑃𝑀𝐸 +

1

4
𝑒𝑗𝑃𝐸𝐸 +

1

4
𝑒𝑗𝑃𝑀𝑀 +

1

4
𝑒𝑗𝑃𝐸𝑀 (2 − 7𝑎) 

 

𝑆61 =
1

4
𝑒𝑗𝑃𝑀𝐸 −

1

4
𝑒𝑗𝑃𝐸𝐸 +

1

4
𝑒𝑗𝑃𝑀𝑀 −

1

4
𝑒𝑗𝑃𝐸𝑀 (2 − 7𝑏) 

 

𝑆71 =
1

4
𝑒𝑗𝑃𝑀𝐸 +

1

4
𝑒𝑗𝑃𝐸𝐸 −

1

4
𝑒𝑗𝑃𝑀𝑀 −

1

4
𝑒𝑗𝑃𝐸𝑀 (2 − 7𝑐) 

 

𝑆81 =
1

4
𝑒𝑗𝑃𝑀𝐸 −

1

4
𝑒𝑗𝑃𝐸𝐸 −

1

4
𝑒𝑗𝑃𝑀𝑀 +

1

4
𝑒𝑗𝑃𝐸𝑀 (2 − 7𝑑) 

 

 

2.4  Coupling mechanisms of two-plane coupler 

  Upon initial inspection, equations (2-6a) to (2-6d) may not reveal straightforward 

information at first glance. However, by imposing specific conditions, these equations 

can provide valuable insights and become more informative. Through careful 

investigation, it becomes evident that there are three distinct coupling mechanism cases 

that can be applied to two-plane couplers. These cases will be individually and thoroughly 

discussed below, highlighting their unique characteristics and implications. 

● Mechanism case 1 

 

When following condition is exerted, 

 

𝑃𝑀𝐸 + 𝑃𝐸𝑀 = 𝑃𝑀𝑀 + 𝑃𝐸𝐸 (2 − 8) 
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From equation (2-8), two variables can be defined, 

 

𝑃𝐸𝐸 − 𝑃𝑀𝐸 = 𝑃𝐸𝑀 − 𝑃𝑀𝑀 = ∆𝑃𝑥 (2 − 9𝑎) 

 

𝑃𝑀𝑀 − 𝑃𝑀𝐸 = 𝑃𝐸𝑀 − 𝑃𝐸𝐸 = ∆𝑃𝑦 (2 − 9𝑏) 

 

𝑃𝐸𝑀 − 𝑃𝑀𝐸 = ∆𝑃𝑥 + ∆𝑃𝑦 (2 − 9𝑐) 

 

Then equation (2-7) can be converted to 

 

𝑆51 =
1

4
𝑒

1
4
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀+𝑃𝐸𝐸+𝑃𝑀𝑀)

{𝑒
1
2
𝑗(𝑃𝑀𝐸−𝑃𝐸𝑀)

+ 𝑒
1
2
𝑗(𝑃𝐸𝑀−𝑃𝑀𝐸)

+ 𝑒
1
2
𝑗(𝑃𝐸𝐸−𝑃𝑀𝑀)

+ 𝑒
1
2
𝑗(𝑃𝑀𝑀−𝑃𝐸𝐸)

} 

 

=
1

4
𝑒

1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

{𝑒−
1
2
𝑗(∆𝑃𝑥+∆𝑃𝑦) + 𝑒

1
2
𝑗(∆𝑃𝑥+∆𝑃𝑦) + 𝑒

1
2
𝑗(∆𝑃𝑥−∆𝑃𝑦) + 𝑒−

1
2
𝑗(∆𝑃𝑥−∆𝑃𝑦)} 

 

=
1

2
𝑒

1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

{cos (
∆𝑃𝑥 + ∆𝑃𝑦

2
) + cos (

∆𝑃𝑥 − ∆𝑃𝑦

2
)} 

 

= 𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

cos (
∆𝑃𝑥

2
) cos (

∆𝑃𝑦

2
) (2 − 10𝑎) 

 

𝑆61 =
1

4
𝑒

1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

{𝑒−
1
2
𝑗(∆𝑃𝑥+∆𝑃𝑦) − 𝑒

1
2
𝑗(∆𝑃𝑥+∆𝑃𝑦) − 𝑒

1
2
𝑗(∆𝑃𝑥−∆𝑃𝑦) + 𝑒−

1
2
𝑗(∆𝑃𝑥−∆𝑃𝑦)} 

 

= −
𝑗

2
𝑒

1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

{sin (
∆𝑃𝑥 + ∆𝑃𝑦

2
) + sin (

∆𝑃𝑥 − ∆𝑃𝑦

2
)} 

 

= −𝑗𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

sin (
∆𝑃𝑥

2
) cos (

∆𝑃𝑦

2
) (2 − 10𝑏) 

 

𝑆71 =
1

4
𝑒

1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

{𝑒−
1
2
𝑗(∆𝑃𝑥+∆𝑃𝑦) − 𝑒

1
2
𝑗(∆𝑃𝑥+∆𝑃𝑦) + 𝑒

1
2
𝑗(∆𝑃𝑥−∆𝑃𝑦) − 𝑒−

1
2
𝑗(∆𝑃𝑥−∆𝑃𝑦)} 

= −
𝑗

2
𝑒

1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

{sin (
∆𝑃𝑥 + ∆𝑃𝑦

2
) − sin (

∆𝑃𝑥 − ∆𝑃𝑦

2
)} 

 

= −𝑗𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

cos (
∆𝑃𝑥

2
) sin (

∆𝑃𝑦

2
) (2 − 10𝑐) 
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𝑆81 =
1

4
𝑒

1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

{𝑒−
1
2
𝑗(∆𝑃𝑥+∆𝑃𝑦) + 𝑒

1
2
𝑗(∆𝑃𝑥+∆𝑃𝑦) − 𝑒

1
2
𝑗(∆𝑃𝑥−∆𝑃𝑦) − 𝑒−

1
2
𝑗(∆𝑃𝑥−∆𝑃𝑦)} 

 

=
1

2
𝑒

1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

{cos (
∆𝑃𝑥 + ∆𝑃𝑦

2
) − cos (

∆𝑃𝑥 − ∆𝑃𝑦

2
)} 

 

= −𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝑀)

sin (
∆𝑃𝑥

2
) sin (

∆𝑃𝑦

2
) (2 − 10𝑑) 

 

  Equations (2-9a) to (2-9d) serve as a powerful representation of the coupling 

mechanism inherent in two-plane waveguide couplers with equivalence to the cascading 

of two vertically stacked H-plane couplers and two horizontally stacked E-plane couplers. 

The output phases of the two-plane coupler comparatively locate at 0° , −90° , −90° 

and 180°, and the coupling ratio of the varying output signals is manipulated by ∆𝑃𝑥 

and ∆𝑃𝑦, which presents the phase difference of the EE and MM boundaries-assigned 

quarter model compared with the ME boundaries-assigned quarter model. 

  The coupling ratio in the H-plane direction is 

 

|𝑆51|

|𝑆61|
=

|𝑆71|

|𝑆81|
= cot (

∆𝑃𝑥

2
) (2 − 11) 

 

While the coupling ratio in the E-plane direction is 

 

|𝑆51|

|𝑆71|
=

|𝑆61|

|𝑆81|
= cot (

∆𝑃𝑦

2
) (2 − 12) 

 

By adjusting values of ∆𝑃𝑥  and ∆𝑃𝑦 , the two-plane coupler can attain arbitrary 

proportion of signal splitting in principle. When two different two-plane couplers are 

defined by (∆𝑃𝑥1, ∆𝑃𝑦1)  and (∆𝑃𝑥2, ∆𝑃𝑦2)  to denote their coupling ratio in the 

transmission matrices separately as 

 

𝑇1 = 𝑇(∆𝑃𝑥1,  ∆𝑃𝑦1) =

(

 
 
 
 
 
 

cos (
∆Px1

2
)cos (

∆Py1

2
) −jsin(

∆Px1

2
)cos (

∆Py1

2
)

−jsin (
∆Px1

2
)cos (

∆Py1

2
) cos (

∆Px1

2
) cos (

∆Py1

2
)

−j cos (
∆Px1

2
)sin (

∆Py1

2
) −sin(

∆Px1

2
)sin (

∆Py1

2
)

−sin (
∆Px1

2
) sin(

∆Py1

2
) −j cos (

∆Px1

2
)sin(

∆Py1

2
)

−j cos (
∆Px1

2
)sin (

∆Py1

2
) −sin(

∆Px1

2
)sin (

∆Py1

2
)

−sin (
∆Px1

2
) sin(

∆Py1

2
) −j cos (

∆Px1

2
)sin(

∆Py1

2
)

cos (
∆Px1

2
)cos (

∆Py1

2
) −jsin (

∆Px1

2
)cos (

∆Py1

2
)

−jsin(
∆Px1

2
)cos (

∆Py1

2
) cos (

∆Px1

2
) cos (

∆Py1

2
)

)
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𝑇2 = 𝑇(∆𝑃𝑥2,  ∆𝑃𝑦2) =

(

 
 
 
 
 
 

cos (
∆Px2

2
)cos (

∆Py2

2
) −jsin (

∆Px2

2
) cos (

∆Py2

2
)

−jsin (
∆Px2

2
)cos (

∆Py2

2
) cos (

∆Px2

2
)cos (

∆Py2

2
)

−j cos (
∆Px2

2
)sin (

∆Py2

2
) −sin (

∆Px2

2
)sin(

∆Py2

2
)

−sin(
∆Px2

2
)sin (

∆Py2

2
) −j cos (

∆Px2

2
) sin(

∆Py2

2
)

−j cos (
∆Px2

2
)sin(

∆Py2

2
) −sin (

∆Px2

2
)sin(

∆Py2

2
)

−sin(
∆Px2

2
)sin (

∆Py2

2
) −j cos (

∆Px2

2
)sin (

∆Py2

2
)

cos (
∆Px2

2
)cos (

∆Py2

2
) −jsin (

∆Px2

2
) cos (

∆Py2

2
)

−jsin (
∆Px2

2
) cos (

∆Py2

2
) cos (

∆Px2

2
)cos (

∆Py2

2
)

)

 
 
 
 
 
 

 

 (2 − 13) 

 

Then their cascaded transmission matrix can be expressed as 

 

𝑇1−2 = 𝑇(∆𝑃𝑥1,  ∆𝑃𝑦1)𝑇(∆𝑃𝑥2,  ∆𝑃𝑦2) = 𝑇(∆𝑃𝑥1 + ∆𝑃𝑥2,  ∆𝑃𝑦1 +  ∆𝑃𝑦2) = 

(

 
 
 
 
 
 

cos (
∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) cos (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
) −jsin (

∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) cos (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
)

−jsin (
∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) cos (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
) cos (

∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) cos (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
)

−j cos (
∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) sin(

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
) − sin (

∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) sin (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
)

− sin(
∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) sin (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
) −j cos (

∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) sin (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
)

−j cos (
∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) sin (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
) − sin (

∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) sin(

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
)

−sin (
∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) sin (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
) −j cos (

∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) sin (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
)

cos (
∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) cos (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
) −jsin (

∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) cos (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
)

−jsin (
∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) cos (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
) cos (

∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) cos (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
) )

 
 
 
 
 
 

 

 (2 − 14) 

 

Equation (2-14) reveals an important observation regarding the regulation for 

cascading two-plane couplers. It indicates that the coupling ratios of the cascaded 

couplers can be represented by a linear superposition of angles denoting their coupling 

ratio, which aligns with how H-plane or E-plane couplers are cascaded. This finding holds 

significant practical implications, particularly in cases where broadening the bandwidth 

of the two-plane coupler is desired or when eliminating undesired resonances or 

fluctuations within the operational bandwidth is necessary. When a two-plane coupler 

possesses a long coupled region area, typically associated with large (∆𝑃𝑥 , ∆𝑃𝑦) values, 

it becomes more prone to excite higher modes within the operational bandwidth abruptly. 

This can lead to unwanted fluctuations in the performance of the complete two-plane 

coupler's S-parameters. However, utilizing equation (2-14), it becomes possible to 

dismantle a two-plane coupler and replaced by cascading multiple shorter two-plane 

couplers. This approach results in a significant enhancement of the bandwidth 

performance. 

By leveraging this insight, the bandwidth of the two-plane coupler can be effectively 
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broadened, and issues related to undesired resonances or fluctuations can be mitigated. 

This finding offers a practical solution to optimize the performance of two-plane couplers, 

enhancing their suitability for a wide range of applications. 

In practical scenarios, a two-plane crossover can be effectively substituted by 

cascading two two-plane couplers with equal coupling ratios. This cascaded configuration 

offers the advantage of a significantly wider bandwidth compared to a single two-plane 

crossover. The use of multiple couplers in this arrangement allows for enhanced 

frequency response and improved performance across a broader range of frequencies. 

However, it is important to note that the connection of multiple two-plane couplers can 

introduce additional reflections in the system. This is a trade-off that needs to be carefully 

considered, taking into account the specific requirements of the application at hand. 

 

● Mechanism case 2 

 

  The second mechanism case is based on below condition, 

 

𝑃𝑀𝐸 + 𝑃𝑀𝑀 = 𝑃𝐸𝑀 + 𝑃𝐸𝐸 (2 − 15) 

 

  Then following variables could be defined, 

 

𝑃𝐸𝐸 − 𝑃𝑀𝐸 = 𝑃𝑀𝑀 − 𝑃𝐸𝑀 = ∆𝑃𝑥 (2 − 16𝑎) 

 

𝑃𝐸𝑀 − 𝑃𝑀𝐸 = 𝑃𝑀𝑀 − 𝑃𝐸𝐸 = ∆𝑃𝑦 (2 − 16𝑏) 

 

𝑃𝑀𝑀 − 𝑃𝑀𝐸 = ∆𝑃𝑥 + ∆𝑃𝑦 (2 − 16𝑐) 

 

  With same operation and computation with equation (2-10), the equation (2-7) can be 

induced to below 

 

𝑆51 = 𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝑀𝑀)

cos (
∆𝑃𝑥

2
) cos (

∆𝑃𝑦

2
) (2 − 17𝑎) 

 

𝑆61 = −𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝑀𝑀)

sin (
∆𝑃𝑥

2
) sin (

∆𝑃𝑦

2
) (2 − 17𝑏) 
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𝑆71 = −𝑗𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝑀𝑀)

cos (
∆𝑃𝑥

2
) sin (

∆𝑃𝑦

2
) (2 − 17𝑐) 

 

𝑆81 = −𝑗𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝑀𝑀)

sin (
∆𝑃𝑥

2
) cos (

∆𝑃𝑦

2
) (2 − 17𝑑) 

 

From equation (2-16a) to (2-16d), the output distribution is different from equation (2-

9). The output phases of the two-plane coupler comparatively locate at 0°, 180°, −90° 

and −90°. And the relationship among four output ports is  

 

|𝑆51|

|𝑆81|
=

|𝑆71|

|𝑆61|
= cot (

∆𝑃𝑥

2
) (2 − 18) 

 

And 

 

|𝑆51|

|𝑆71|
=

|𝑆81|

|𝑆61|
= cot (

∆𝑃𝑦

2
) (2 − 19) 

 

  Meanwhile, same with two-plane coupler following mechanism case 1, the cascading 

of two-plane coupler following mechanism case 2 also abides by superposition of angle 

to denote their coupling ratio, 

 

𝑇1−2 = 𝑇(∆𝑃𝑥1,  ∆𝑃𝑦1)𝑇(∆𝑃𝑥2,  ∆𝑃𝑦2) = 𝑇(∆𝑃𝑥1 + ∆𝑃𝑥2,  ∆𝑃𝑦1 +  ∆𝑃𝑦2) = 

(

 
 
 
 
 
 

cos (
∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) cos (

∆𝑃𝑦1 +  ∆𝑃𝑦2

2
) −sin (

∆𝑃𝑥1 +  ∆𝑃𝑥2

2
) sin(
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 (2 − 20) 

 

 

● Mechanism case 3 

 

  The third mechanism case is based on below condition, 

 

𝑃𝑀𝐸 + 𝑃𝐸𝐸 = 𝑃𝐸𝑀 + 𝑃𝑀𝑀 (2 − 21) 
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  Then following variables can be defined, 

 

𝑃𝑀𝑀 − 𝑃𝑀𝐸 = 𝑃𝐸𝐸 − 𝑃𝐸𝑀 = ∆𝑃𝑥 (2 − 22𝑎) 

 

𝑃𝐸𝑀 − 𝑃𝑀𝐸 = 𝑃𝐸𝐸 − 𝑃𝑀𝑀 = ∆𝑃𝑦 (2 − 22𝑏) 

 

𝑃𝐸𝐸 − 𝑃𝑀𝐸 = ∆𝑃𝑥 + ∆𝑃𝑦 (2 − 22𝑐) 

 

  As a consequence, the equation (2-7) turns to be, 

 

𝑆51 = 𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝐸)

cos (
∆𝑃𝑥

2
) cos (

∆𝑃𝑦

2
) (2 − 23𝑎) 

 

𝑆61 = −𝑗𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝐸)

cos (
∆𝑃𝑥

2
) sin (

∆𝑃𝑦

2
) (2 − 23𝑏) 

 

𝑆71 = −𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝐸)

sin (
∆𝑃𝑥

2
) sin (

∆𝑃𝑦

2
) (2 − 23𝑐) 

 

𝑆81 = −𝑗𝑒
1
2
𝑗(𝑃𝑀𝐸+𝑃𝐸𝐸)

sin (
∆𝑃𝑥

2
) cos (

∆𝑃𝑦

2
) (2 − 23𝑑) 

 

From equation (2-22a) to (2-22d), the output distribution is also different from equation 

(2-9). The output phases of the two-plane coupler comparatively locate at 0° , −90° , 

180° and −90°.And the relationship among four output ports is  

 

|𝑆51|

|𝑆81|
=

|𝑆61|

|𝑆71|
= cot (

∆𝑃𝑥

2
) (2 − 24) 

 

And 

 

|𝑆51|

|𝑆61|
=

|𝑆81|

|𝑆71|
= cot (

∆𝑃𝑦

2
) (2 − 25) 

 

Same with two-plane coupler following mechanism case 1 and 2, the cascading of two-

plane coupler following mechanism case 3 also abides by superposition of angle to denote 

their coupling ratio, 
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𝑇1−2 = 𝑇(∆𝑃𝑥1,  ∆𝑃𝑦1)𝑇(∆𝑃𝑥2,  ∆𝑃𝑦2) = 𝑇(∆𝑃𝑥1 + ∆𝑃𝑥2,  ∆𝑃𝑦1 +  ∆𝑃𝑦2) = 

(
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 (2 − 26) 

 

  Among above-mentioned three coupling mechanism cases, only case 1 is 

corresponding to cascading of vertically-stacked H-plane coupler and horizontally-

stacked E-plane coupler. The physical meaning of case 2 and case 3 are in all likelihood 

to be explained as cross-stacked couplers cascading with horizontally-stacked or 

vertically-stacked couplers. Even though it is not of practical significance, but it is 

expected to be meaningful and applicable in future applications. 

 

 

2.5 Mode matching-FEM analysis 

  In preceding sections, an 8-port two-plane coupler is always analyzed by exclusively 

extracting its quarter 2-port model. And in most case, for a better performance, shape of 

coupled region is irregular shape, either a rectangular with several notches or just an 

irregular shape. As Fig.2.4(a) shows, normal electromagnetic simulator like HFSS 

adopting 3D-FEM as analyzer, are not proper to optimize two-plane coupler model as 

there are a great deal of variables. Considering uniformity along the longitudinal direction 

of waveguide and just several discrete discontinuous planes as depicted in Fig.2.4(b), 

Mode matching-FEM is undoubtedly more superior by converting a 3-D model analysis 

into 2-D perspective, with less time consumed and better capabilities of targeted 

optimizations [2-6]. The theoretical fundamentals of FEM/MM hybrid calculation can be 

refer to the Appendix section of this dissertation. 

  In practical designing, to further diminish the complexity, in most cases, two-plane 

coupler will be additionally conceived symmetry about longitudinal direction, as such, 

totally three symmetry axes are authenticated to a two-plane model shown in Fig.2.5, also 

indicating exactly identical parameter and positions of input and output waveguides. As 
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a matter of this, only 1/8 of the complete two-plane model needs to be extracted to be 

analyzed with accompanied PEC or PMC boundaries at symmetrical plane “B” and “C”, 

and electrical performance of 1/4 model can be induced by directly cascading two back-

to-back 1/8 model. 

  Overall, the analysis as well as optimization of two-plane coupler with additionally 

imposed symmetry about longitudinal direction are expounded in Fig.2.6, as four steps: 

 

1. With given initial generation of parameters, including shape of coupled regions, 

position as well as dimension of input(output) waveguides, then performances of 1/8 

model with in total 4 sorts of boundaries assigned at symmetrical planes can be 

analyzed in a way that 2-D FEM is capitalized to calculate eigen mode inside coupled 

region, and mode matching is utilized to compute connection between input(output) 

waveguide with coupled region.  

2. With derived parameters of 1/8 model assigned with four sorts of boundaries, the S-

parameter of 1/4 model can be deduced by directly connecting two back-to-back 1/8 

models, through phase continuity condition at interface. This is a very fast calculation, 

which will decrease almost half of time compared with those two-plane couplers 

without symmetry in longitudinal directions. 

3. With S-parameter of 1/4 model with 4 sorts of boundaries, the full S-parameters of 

complete two-plane coupler can be synthesized as Eq.(2-5). 

4. Then the parameters together with performance of two-plane coupler will be 

undergoing evolutionary selection and elimination by Genetic algorithm to realize 

global optimization, until desired design is obtained. 

 

   

 

2.6 Designing of a two-plane coupler with different coupling 

ratio in H-plane and E-plane directions 

  This section will give a designing example of two-plane coupler following different 

coupling ratios in H-plane and E-plane directions. As emphasized in section 2.3, 
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compelled symmetry along longitudinal direction will significantly mitigate designing 

complexity, here without exception, this rule is also adopted in proposed two-plane 

coupler.  

The proposed prototype of the two-plane coupler is depicted in Fig.2.7. This prototype 

exemplifies the design configuration that implements a coupling ratio of 1: √2 in the H-

plane direction and √2: 1 in the E-plane direction, with the overall output coupling ratio 

being 

 

|𝑆51|: |𝑆61|: |𝑆71|: |𝑆81| = √2: 2: 1: √2 (2 − 20) 

 

The center frequency of the designed two-plane coupler has been established at 

28.25GHz. However, it is important to note that the design can be theoretically converted 

to operate at any desired frequency by proportionally adjusting its dimensions. This 

flexibility allows for versatility and adaptability in different frequency applications. As 

highlighted in section 2.4, enforcing symmetry along the longitudinal direction of the 

coupler plays a pivotal role in simplifying the design complexity. In alignment with this 

principle, the two-plane coupler under consideration has been intentionally conceived 

with symmetry relative to the z-axis. This deliberate symmetry choice simplifies the 

optimization process by reducing the number of variables involved. Consequently, the 

output ports of the coupler exhibit identical physical dimensions, mirroring each other, as 

do the input ports. This deliberate symmetry ensures a balanced configuration and 

facilitates the optimization and analysis of the coupler's performance. By adopting this 

approach, the design process is streamlined and the overall complexity is mitigated, 

enabling more efficient and effective optimization. 

  To ensure optimal performance across the bandwidth, the input and output ports of the 

two-plane coupler are meticulously aligned with the single mode (TE10) condition. The 

coupled region of the two-plane coupler comprises five distinct points, including the 

coordinate origin. These points, along with their specific details, are illustrated in Fig. 

2.7(c). The irregular-shaped design of the coupled region offers advantages over 
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conventional rectangular waveguides or ridged waveguides with regular notches or 

dislodgements. By incorporating this irregular shape, the coupler is better positioned to 

achieve the desired performance characteristics, particularly in enhancement of 

bandwidth. 

Throughout the designing and optimization processes, it is imperative to consider 

certain restrictions imposed by fabrication technologies. One such restriction pertains to 

the position of the input or output waveguide, denoted as 𝑥0 and 𝑦0 in Fig.2.7 (c). It is 

crucial for these positions to surpass a threshold value in order to prevent the metal 

thickness from becoming excessively thin. This limitation is inherent to the fabrication 

technology and must be acknowledged. Furthermore, it is advisable to avoid 

incorporating sharp wedge shapes in the coupled region, as this would increase the 

complexity of the manufacturing process. Additionally, when employing a drill to shape 

the coupler, rounded fillets are naturally formed at each corner. These fillets should be 

taken into consideration when investigating their impact on the performance of the full 

two-plane coupler. 

  In the presence of the coupling ratio as equation (2-20), following phase restriction can 

be deduced 

 

𝑃𝐸𝐸 − 𝑃𝑀𝐸 = ∆𝑃𝑥 = 2 cot−1
1

√2
(2 − 21𝑎) 

 

𝑃𝑀𝑀 − 𝑃𝑀𝐸 = ∆𝑃𝑦 = 2 cot−1 √2 (2 − 21𝑏) 

 

𝑃𝐸𝑀 − 𝑃𝑀𝐸 = ∆𝑃𝑥 + ∆𝑃𝑦 = 𝜋 (2 − 21𝑐) 

 

  In accordance with equation (2-21), a significant observation can be made regarding 

the transition phase between the EM boundary-assigned and ME boundary-assigned 

quarter sections, as that the transition phase of the EM boundary-assigned section is in an 

out-of-phase relationship with the ME boundary-assigned section. This phase relationship 

holds true when the coupling ratios in both the H-plane and E-plane directions are 

reciprocal. 
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  Fig.2.8 demonstrates the transition characteristics of the proposed quarter model 

(shown in Fig.2.7(b)) when assigned with four different types of boundaries. The analysis 

focuses on the amplitude, reflection, and relative phase behavior compared to the ME 

boundary-assigned section within the frequency range of 27GHz to 29.5GHz. From 

Fig.2.8(a), it can be observed that |𝑆21
𝐸𝐸|, |𝑆21

𝑀𝑀|, and |𝑆21
𝐸𝑀| tend to approach the 0dB 

level, indicating an excellent lossless condition. This corresponds to their reflections, 

|𝑆11
𝐸𝐸| , |𝑆11

𝑀𝑀| , and |𝑆11
𝐸𝑀| , being suppressed below -15dB. On the other hand, |𝑆21

𝑀𝐸| 

exhibits an adverse trend starting from 29.0GHz and experiences a sharp decline around 

29.5GHz, resulting in a loss of more than 0.5dB. This behavior aligns with |𝑆11
𝑀𝐸| 

exceeding -15dB at the same frequency. Furthermore, the relative phase of the EE, MM, 

and EM quarter models closely approaches their respective ideal values of 109.5°, 70.5°, 

and 180°, as defined by equation (2-21). This close alignment validates the matching 

characteristics of the quarter models against the desired phase values. 

Fig.2.9 showcases a photograph of the fabricated two-plane coupler, manufactured 

using high-precision CNC (Computer Numerical Control) technology. The coupler body 

is constructed using three separate blocks, comprising the coupled region and two 

straightforward waveguide blocks. The blocks are meticulously assembled using screws, 

ensuring a secure and stable structure. Two coaxial-waveguide transformers are 

assembled in order to impel VNA measurements. 

  Fig.2.10 illustrates the S-parameters of the fabricated two-plane coupler across a 

bandwidth ranging from 27.0GHz to 29.5GHz, which corresponds to an 8.85% fractional 

bandwidth, in terms of the output amplitudes, reflections, and phase differences over Port 

5, counterpart to incidence from Port 1. To ensure accurate measurements, post-operation 

calibration has been conducted to eliminate the insertion loss of the transformers used in 

the measurement setup. Detailed information on the calibration process can be referred to 

the Appendix section of this dissertation.  

The measured results, as shown in Fig.2.10, generally align well with the simulation 

results, with a few discrepancies observed. Notably, there is a sharp dip around 28.8GHz 
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in the measured 𝑆41  parameter. Additionally, the measured 𝑆81  parameter deviates 

from the simulated 𝑆81 by approximately 2dB at 27.5GHz. These discrepancies can be 

attributed to fabrication and assembly errors, as well as uncertainties in the measurement 

process. The degradation observed in 𝑆51 and 𝑆81 close to 29.5GHz can be attributed 

to the corresponding deterioration of |𝑆21
𝑀𝐸| at that frequency, as depicted in Fig.2.8(a). 

Overall, both the simulation and measurement results demonstrate reflections below -

15dB, power imbalance within 2dB, and phase deviations of at most 20 degrees. While 

these results may not be considered perfect, they are sufficient to validate and demonstrate 

the concept of a two-plane coupler following arbitrary coupling ratios in the H-plane and 

E-plane directions. Moreover, it is worth noting that the performance of the two-plane 

coupler can potentially be further enhanced by introducing multiple segments of the 

coupled regions, as discussed in [2-4]. This offers a potential avenue for improving the 

performance and expanding the capabilities of the coupler design. 

  To accentuate the advantages of the two-plane coupler in terms of size reduction 

compared to the conventional approach of concatenating vertically-stacked H-plane 

couplers with horizontally-stacked E-plane couplers, Fig.2.11 presents design examples 

of one-plane couplers. In order to ensure a fair and meaningful comparison, these one-

plane couplers are designed with the same dimensions for the input and output 

waveguides as the two-plane coupler depicted in Fig.2.7. In Fig.2.11(a), the H-plane 

coupler is configured with a 1: √2  coupling ratio, while in Fig.2.11(b), the E-plane 

coupler follows a √2: 1  coupling ratio, both operating within the 28.25GHz band. 

Consequently, cascading two vertically-stacked H-plane couplers as depicted in Figure 

Fig.2.11(a) with two horizontally-stacked E-plane couplers as shown in Figure Fig.2.11(b) 

will result in the same functionality as the proposed two-plane coupler. 

If we focus solely on the coupled region and exclude the input and output waveguides, 

the miniaturization rate of the two-plane coupler compared to the cascading of a 

conventional H-plane coupler with an E-plane coupler in terms of longitudinal length can 

be calculated as follows: 
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𝑚 = 1 −
𝐿𝑇

𝐿𝐻 + 𝐿𝐸
= 58.4% (2 − 22) 

 

Where 𝐿𝑇, 𝐿𝐻 and 𝐿𝐸 represent the length of the coupled region of the two-plane 

coupler, H-plane coupler and E-plane coupler, respectively. Meanwhile, the ratio of 

volumetric downsizing can be calculated as, 

 

𝑛 = 1 −
𝑣𝑇

2(𝑣𝐻 + 𝑣𝐸)
= 50.1% (2 − 23) 

 

Where 𝑣𝑇, 𝑣𝐻 and 𝑣𝐸  correspond to the volume of the coupled region of the two-

plane coupler, H-plane coupler and E-plane coupler. Both   and n will demonstrate the 

significant downsizing effect achieved by the two-plane coupler design. It is noteworthy 

that normal connection should be introduced among the cascaded H-plane coupler and E-

plane coupler to suppress higher modes and maintain the dominance of the TE10 mode. 

As a matter of this, the miniaturization ratio represented by   and n can be further 

increased. The S-parameters of above two models are provided in Fig.2.12. Overall, it 

could be perceived that cascading of one-plane couplers will manifest flatter imbalance 

over the considered bandwidth, by setting aside the resonance close to 29.5GHz. However, 

two-plane coupler possesses lower reflection and isolations, which can be reflected on 

insertion loss all under 0.1dB, while cascading of one-plane couplers showcase more than 

0.2dB loss. Even though the effect to suppress insertion loss by a single two-plane coupler 

is not obvious, but considering for a vast beam-switching matrix network, the reflection 

can be superimposed, as such, the lower insertion loss by two-plane coupler over 

cascading of one-plane couplers is still meaningful. 

2.7 Conclusion Remarks 

This chapter has successfully accomplished the theoretical analysis of the two-plane 

coupler, which complies with arbitrary coupling ratios in the H-plane and E-plane 

directions. Equation (2-7) is unveiled as the core equation governing the coupling 

mechanism of the two-plane coupler. In addition to the coupling mechanism enabling 

equivalence with cascaded H-plane and E-plane couplers, two other coupling 



 

47 

 

mechanisms are introduced, laying the foundation for future explorations and 

developments. To validate the proposed theoretical analysis, a specific two-plane coupler 

operating at 28.25GHz is designed and measured. This coupler follows a √2: 2: 1: √2 

coupling ratio, which can be dismantled into 1: √2 in the H-plane direction and √2: 1 

in the E-plane direction. The performance of this two-plane coupler is evaluated through 

simulation and measurement, covering a frequency range from 27GHz to 29.5GHz with 

an 8.85% fractional bandwidth. Throughout the entire bandwidth, reflections are 

effectively suppressed below -15dB, the deviation in output amplitude is kept within 2dB, 

and phase digressions remain below 20 degrees. This study marks the first proposal of a 

two-plane coupler operating with different coupling ratios in the H-plane and E-plane 

directions. Furthermore, future works can explore the potential enhancement of 

performance by incorporating multiple coupled regions, as discussed in [2-4]. 

Additionally, design samples of an H-plane coupler and an E-plane coupler are 

provided, which, when cascaded, achieve equivalence to the proposed two-plane coupler. 

A comparison is made between cascaded one-plane couplers and the two-plane coupler 

in terms of performance, size, and volume. The two-plane coupler exhibits an impressive 

downsizing rate, with a reduction of 58.4% in length and 50.1% in volume compared to 

the cascaded one-plane couplers. While the cascaded one-plane couplers show flatter 

imbalance, they also exhibit higher reflections and subsequent insertion loss compared to 

the two-plane coupler. 

The theoretical analysis presented in this chapter establishes the foundation for the 

utilization of two-plane couplers with arbitrary coupling ratios in the H-plane and E-plane 

directions. It is anticipated that two-plane couplers will play an increasingly crucial role 

in the miniaturization of 2-D hollow waveguide beam-switching matrices, and thus 

expanding application of 2-D hollow-waveguide-based beam-switching matrices. 

Overall, this chapter contributes valuable insights into the theoretical analysis, design, 

and potential applications of two-plane couplers. The findings pave the way for further 

research and advancements in the field of waveguide technology.  
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Fig. 2.1. One-plane coupler. (a) H-plane coupler. (b) E-plane couler 
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Fig. 2.2. Cascading of H-plane and E-plane couplers 

 

 

 

 

Fig. 2.3. Normal configuration of a two-plane coupler. 
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Fig. 2.4. (a) 3-D mesh for 3-D FEM analysis in HFSS. (b) Two-dimensionalized 

perspective of two-plane coupler model. 
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Fig. 2.5. (a) Symmetrical plane of two-plane coupler with additionally imposed symmetry 

in longitudinal direction. (b) 1/8 model of two-plane coupler. 
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Fig. 2.6. Step-by-step analysis and optimization of two-plane coupler with imposed 

symmetry in longitudinal direction. 

 

 
(a) Side view of the full model. 
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(b) Perspective view of the quarter model in the first quadrature. 

 

 

 

 

(c) Cross section of the quarter model. 

 

 

 

Fig. 2.7. Two-plane coupler model. Unit: mm. 
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(a) Amplitude 

 
(b) Reflection 

 
 

(c) Relative phase against the ME boundary-assigned quarter section. 

 

 

Fig. 2.8. Transition of the quarter model assigned with different boundaries. 
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(a) 

 

(b) 

 

(c) 

Fig. 2.9. Photographs of the manufactured two-plane coupler. (a) Overall structure 

including two transformers. (b) Three segments of coupler body. (c) Cross section of the 

coupled region. 
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(a) Reflection. 

 

 

 

 

 

 

 

 

 

 

(b) Output amplitudes. 
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(c) Phase differences compared with Port 5. 

 

 

Fig. 2.10. S-parameters of the proposed two-plane coupler corresponding to incidence 

from Port 1. Solid lines: Measurement results. Dotted lines: Simulation results. 

 

 

 

 

 

(a) H-plane coupler with a 1:√2 coupling ratio. 
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(b) E-plane coupler with a √2:1 coupling ratio. 

 

Fig. 2.11. Designing samples of conventional one-plane couplers working at 28.25GHz 

possessing identical dimension of input or output waveguide with proposed two-plane 

coupler. Unit: mm. 
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(b) Output amplitude 

 
(c) Output phase 

 
(c) Insertion loss 

 

Fig. 2.12. Comparison between two-plane coupler and cascaded one-plane couplers.  
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Chapter 3 Two-dimensional One-body 3×3-way 

Hollow-waveguide Nolen Matrix using Two-plane 

Couplers 

 

3.1  Introductory remarks 

This chapter presents the proposal of a two-dimensional (2-D) one-body 3× 3-way 

hollow-waveguide Nolen matrix operating from 27.65 GHz to 28.85 GHz, corresponding 

to a 4.1% fractional bandwidth. The novelty of this project lies in being the first to propose 

a 2-D one-body beam-switching matrix with a number of beams other than 2𝑛, differing 

from Butler matrix. Additionally, it introduces the utilization of a two-plane unequal 

division coupler in the matrix configuration, which adds to its uniqueness. The chapter 

provides a comprehensive overview of the diagram and working principle of the entire 2-

D 3×3-way Nolen matrix, which comprises two-plane couplers, an H-plane coupler, E-

plane couplers, and phase shifters. The reflection and port-to-port isolation coefficients 

of this 2-D 3× 3-way Nolen matrix, as well as the realized gain, are verified through 

measurements with the output ports directly radiating into free space. 

The simulation results reveal that the maximum insertion loss of the 2-D 3×3-way 

Nolen matrix is 0.86 dB, while the maximum power imbalance is 2.5 dB, both within the 

operating bandwidth. The maximum realized gain, measured at the boresight beam, is 

15.5 dBi, closely aligned with the simulated value of 15.7 dBi. The minimum realized 

gain, observed for Beam 6, which represents a 2-D tilted beam at an angle of 42 degrees 

with respect to the boresight, is 12.0 dBi with a scan loss of 3.5 dB in the measurements. 

The simulated minimum realized gain is 12.7 dBi, obtained for Beam 9 at an angle of 36 

degrees with respect to the boresight, with a 3 dB scan loss. 

  The matrix demonstrates significant superiority in terms of low insertion loss when 

compared to state-of-the-art designs. The chapter concludes by discussing future 

perspectives and potential improvements for the 2-D 3×3-way Nolen matrix, exploring 

possibilities for enhancing its performance and capabilities. 
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3.2  1-D 3-way Nolen matrix 

The Nolen matrix, as described in references [3-1] and [3-2], stands out for its ability 

to accommodate any integer number of beams. This is in stark contrast to the Butler 

matrix [3-3], which is limited to a port number that is 2𝑛. In a Nolen matrix, there are 

n(n+1)/2 nodes, each consisting of a quadrature coupler and a phase shifter. Unlike the 

independent signal paths of the Butler matrix, multiple signals in a Nolen matrix converge 

at a node, undergo vector superposition, and then exit the node as a combined signal. Due 

to this nature, the Nolen matrix is often considered to be mechanically narrowband. 

However, the fact that the Nolen matrix supports a diverse range of beam numbers gives 

it significant practical applications, even in situations where the Butler matrix would not 

suffice. This versatility makes the Nolen matrix an attractive choice for various 

applications that require a non-power-of-2 number of beams. 

  In reference [3-4], a new generalized 1-D beam-switching matrix was introduced, 

expanding the realm of possibilities for 1-D beam-switching matrices. This innovative 

concept allows for greater flexibility and versatility in designing 1-D beam-switching 

matrices. Specifically, when the beam number is set to 3, the configuration of the matrix 

aligns with that of a standard parallel 3-way Nolen matrix, as depicted in Fig.3.1. 

Supposing the phase differences between adjacent output ports, when considering 

incidence from Ports 1, 2, and 3, as 𝜑1 , 𝜑2 , and 𝜑3 , respectively, and taking into 

account the properties of a lossless 6-port network as discussed in reference [3-5], the 

following restrictions can be derived, 

 

1 + 𝑒𝑗(𝜑2−𝜑1) + 𝑒𝑗2(𝜑2−𝜑1) = 0                   (3-1a) 
 

1 + 𝑒𝑗(𝜑3−𝜑1) + 𝑒𝑗2(𝜑3−𝜑1) = 0                   (3-1b) 
 

When 𝜑2 ≠ 𝜑3, equation (3-1) will give, 

 

𝜑2 − 𝜑1 = ±2𝜋/3                        (3-2a) 

 

𝜑3 − 𝜑1 = ∓2𝜋/3                        (3-2b) 
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In observation of incidence from Port 1 and progressive phase difference prescription: 

∠𝑆51 −∠𝑆41 =∠𝑆61 −∠𝑆51, the following constraint needs to be satisfied: 

 

𝜃2 = 𝜃3                            (3-3) 

 

Table 3.1 presents all six permutations of port assignments for the phase shifters 𝜃1 

and 𝜃2 or 𝜃3. These assignments result in one of the phase differences, denoted as 𝜑1, 

𝜑2, and 𝜑3 in radians, being 0, while the other two phase differences are -2π/3 and 2π/3, 

respectively. It is important to note that one particular set of parameters corresponds to a 

phase shifter that introduces no relative phase difference. This simplifies the 

corresponding layer in the matrix configuration, offering a more streamlined and efficient 

design. 

 

 

3.3  Configuration of 2-D 3×3-way Nolen matrix 

Based on the introduction of the 1-D 3-way Nolen matrix in Section 3.2, the 

construction of the 2-D 3×3-way Nolen matrix follows a three-step procedure, as 

described in reference [3-6]. 

Step 1: The first step involves connecting vertically-stacked H-plane 1-D 3-way 

matrices with horizontally-stacked E-plane 1-D 3-way matrices. This establishes the 

initial framework of the 2-D matrix. 

Step 2: The second step capitalizes on the commutativity between the H-plane and E-

plane components, allowing for the interchange of their sequences and cascading. This 

results in the consecutive concatenation of the H-plane couplers with the E-plane couplers. 

Additionally, the phase shifters in two dimensions are merged. 

Step 3: In the final step, the two vertically-stacked H-plane couplers and two 

horizontally-stacked E-plane couplers are combined into a two-plane coupler. This 

integration completes the construction of the 2-D 3×3-way Nolen matrix. 

These three steps can be applied to construct 2-D beam-switching matrices that are 
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originally composed of 1-D beam-switching matrices. The schematic diagram of the 

retrofitted 2-D 3×3-way Nolen matrix is presented in Fig.3.2. It is worth noting that, due 

to the theoretical distribution of phase shifters at 0°, one layer of phase shifters can be 

omitted in the selected port assignment, resulting in a reduction of the entire matrix to 

only five layers, with the 1st and 4th layers being identical. 

The 1st, 2nd, and 4th layers of the 2-D 3×3-way Nolen matrix consist of H-plane couplers, 

E-plane couplers, and two-plane couplers. The 1st and 4th layers consist of two-plane 

couplers that divide the output power equally. In contrast, the two-plane coupler in the 

2nd layer provides an output division ratio of 1: √2: √2: 2 The phase shifters in the 3rd 

and 5th layers are assigned angles of 0°, 90°, and 180° relative to a designated reference 

port at each layer and these phase shifters should additionally compensate for the 

transition phase of the couplers they are connecting to, as the premise that no transition 

phases are introduced to each coupler model. 

The overall matrix configuration comprises 9 input ports and 9 output ports, as 

indicated in Fig.3.2. Incidence from Port 1 generates a boresight beam, while Ports 2, 3, 

4, and 7 correspond to 1-D tilted beams, Ports 5, 6, 8, and 9 provide 2-D tilted beams with 

respect to the main axes of the array. To further illustrate the behavior of the matrix, 

Fig.3.3 presents the ideal signals obtained at the output of each layer, including both 

amplitude and phase information. In this illustration, a unitary input signal is applied to 

Ports 1 and 5 as examples. The signal propagates through the couplers and phase shifters 

of each layer, resulting in its division into 9 signals of identical amplitude at the output 

ports of the 5th layer. Incidence from Port 1 results in all outputs being in phase, 

corresponding to a boresight beam. Conversely, incidence from Port 5 yields output 

signals with a phase difference of -2π/3 between adjacent ports in the two orthogonal 

directions, creating a 2-D tilted beam scenario. 

 

 

3.4  Design of constituent two-plane coupler 

Different from the two-plane coupler proposed in Chapter.2, the two-plane couplers 
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deployed in this 2-D 3×3-way Nolen matrix adopts normal rectangular shape with several 

notches, which is deemed simpler than the two-plane coupler with arbitrary shape of 

coupled region, also less hardware-cost considering fabrication. 

The diagram of the proposed two-plane coupler working from 27.65 GHz to 28.85 GHz, 

covering the working bandwidth of 2-D 3×3-way Nolen matrix, is depicted in Fig. 3.4. 

The coupler is symmetric along the three main axes. It comprises four input and four 

output rectangular waveguide ports and a ridge-shaped coupling region. The input and 

output ports are required to satisfy single-mode condition throughout the operating 

frequency band. The ridge-shape coupling region including three notches, and dimensions 

as well as the position of input and output waveguides, are purposely designed to achieve 

desired output amplitude and phase distributions. 

Fig.3.4 illustrates the diagram of the proposed two-plane coupler, designed to operate 

within the frequency range of 27.65 GHz to 28.85 GHz, matching the working bandwidth 

of the 2-D 3×3-way Nolen matrix. Exactly same with the design of two-plane coupler in 

Chapter.2, imposing symmetry about the z-axis can reduce the number of variables in the 

design process and thereby decrease complexity. It consists of four input and four output 

rectangular waveguide ports, along with a ridge-shaped coupling region. To ensure 

optimal functionality, the input and output ports are carefully designed to satisfy the 

single-mode condition across the entire operating frequency band. The ridge-shaped 

coupling region, featuring three notches as well as dimensions and positioning of the input 

and output waveguides, is specifically designed in line with target performance. 

It won’t be difficult to perceive that coupling ratio of two-plane coupler along two 

orthogonal directions employed in this 2-D 3×3-way Nolen matrix are identical, as it is 

originally composed by H-plane and E-plane couplers with same coupling ratios in two 

orthogonal directions as well. Based on (2-10)-(2-12), the coupling mechanism of the 

two-plane coupler following identical coupling ratio in H-plane and E-plane directions 

can be obtained as, 

 

𝑃𝑀𝑀 = 𝑃𝐸𝐸 =
𝑃𝑀𝐸+𝑃𝐸𝑀

2
                       (3-4) 
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As a consequence, equations (2-7) can be converted as, 

 

𝑆51 =
1

2
𝑒𝑗(

𝑃𝑀𝐸+𝑃𝐸𝑀
2

) {1 + cos (
𝑃𝐸𝑀−𝑃𝑀𝐸

2
)}                (3-5a) 

 

𝑆61 = 𝑆71 =
−𝑗

2
𝑒𝑗(

𝑃𝑀𝐸+𝑃𝐸𝑀
2

) sin (
𝑃𝐸𝑀−𝑃𝑀𝐸

2
)               (3-5b) 

 

𝑆81 =
−1

2
𝑒𝑗(

𝑃𝑀𝐸+𝑃𝐸𝑀
2

) {1 − cos (
𝑃𝐸𝑀−𝑃𝑀𝐸

2
)}               (3-5c) 

 

The amplitude ratios of the outputs, namely 𝑆51, 𝑆61, 𝑆71, and 𝑆81, are determined 

by three distinct function curves that are dependent on the angular variable 

(𝑃𝐸𝑀 − 𝑃𝑀𝐸)/2 . Remarkably, regardless of the specific combinations of these output 

signals, they consistently fulfill the following criteria: 

  

   |𝑆61|
2 = |𝑆71|

2 = |𝑆51||𝑆81|                     (3-6) 

 

Fig. 3.5 illustrates the variation of the three dependent curves as a function of 

(𝑃𝐸𝑀 − 𝑃𝑀𝐸)/2 over the full period from 0 to 2π. When (𝑃𝐸𝑀 − 𝑃𝑀𝐸)/2 is equal to π/2 

and π, the resulting transmission coefficients correspond to an equal division hybrid 

coupler and a crossover, respectively. To realize the 1: √2: √2: 2 output division, which 

corresponds to Point B, the following constraint needs to be satisfied: 

 

cos (
𝑃𝐸𝑀−𝑃𝑀𝐸

2
) = −

1

3
                        (3-7) 

 

Taking the two-plane coupler in 2nd layer of entire configuration of 2-D 3×3-way Nolen 

matrix in Fig. 3.2 as an example, its physical parameters are presented in Table.3.2, 

corresponding to the quarter model in Fig.3.4(b)(c). 

In Fig.3.6(a), the amplitude transmission coefficients of the proposed quarter coupler 

under different boundary conditions (ME, EE, MM, and EM) at the symmetry planes are 

presented. These coefficients demonstrate low insertion losses, all below 0.3 dB, 

indicating efficient power transfer. The reflection coefficients, shown in Figure 3.6(b), 
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are almost entirely suppressed, with values below -15 dB, indicating excellent impedance 

matching. Fig.3.6(c) showcases the relative phases of the quarter coupler model assigned 

with EE, MM, and EM boundary conditions, with reference to the model assigned with 

ME boundary conditions. According to (3-4), relative phases should follow the 

expression, 

 

𝑃𝐸𝐸 − 𝑃𝑀𝐸 = 𝑃𝑀𝑀 − 𝑃𝑀𝐸 =
𝑃𝐸𝑀−𝑃𝑀𝐸

2
                (3-8) 

 

Fig. 3.6(c) reveals that 𝑃𝐸𝐸   and 𝑃𝑀𝑀  exhibit nearly identical values across the 

considered frequency range. Additionally, the phase differences 𝑃𝐸𝐸 − 𝑃𝑀𝐸  and 𝑃𝑀𝑀 −

𝑃𝑀𝐸   closely approximate 109.5° , which corresponds to the arccos(−1 3⁄ )  angle 

measurement in degrees, all of which are well aligned with (3-8). The optimization 

process of this two-plane unequal division coupler is performed using Finite Element 

Method (FEM) - Mode Matching computations, as described in Chapter 2 and referenced 

in [3-7]. The FEM approach is employed to calculate the eigenmodes within the non-

rectangular coupled region, enabling a comprehensive understanding of the 

electromagnetic behavior in this specific geometry. On the other hand, mode matching 

techniques are utilized to establish the connection between the input or output waveguides 

and the coupled region. This combination of FEM and mode matching computations 

ensures accurate analysis and optimization of the two-plane coupler's performance 

characteristics. 

The performance of the proposed two-plane unequal division coupler is evaluated 

through the S-parameters corresponding to incidence from Port 1, as shown in Fig. 3.7. 

Across the frequency bandwidth of 27.65 GHz to 28.85 GHz, which corresponds to a 

fractional bandwidth of 4.1%, the coupler exhibits satisfactory performance based on the 

desired criteria outlined in [3-8]. The deviation of amplitudes from the theoretical values 

remains within ±0.5  dB, indicating accurate power transfer. The reflections and 

isolations between input ports are all effectively suppressed below -15 dB, ensuring 

excellent impedance matching. Moreover, the phase differences of each output port 
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relative to Port 5 do not exceed ±10°, signifying consistent phase behavior. 

While the bandwidth of the proposed two-plane coupler in this design is limited, it still 

serves as a significant step towards realizing a 2-D one-body hollow-waveguide Nolen 

matrix. This configuration represents an advancement over previously reported designs 

that rely on the more conventional approach of two orthogonal stacks of 1-D matrices [3-

9], [3-10]. Ongoing related developments has indicate potential future bandwidth 

enhancements for the two-plane coupler. Notably, Ref. [3-8] demonstrates the realization 

of a two-plane coupler with a single bandwidth of 7.3%, as well as two-plane couplers 

with dual bandwidths of 6.3% and 2.2% by incorporating multiple segments of the 

coupled region with arbitrary shapes in the couplers. These advancements open up 

exciting possibilities for further improving the performance and bandwidth capabilities 

of the two-plane coupler in this 2-D 3×3-way Nolen matrix. 

Utilizing the same design approach as the unequal division two-plane coupler, the 

physical dimensional parameters of the quarter model for the two-plane coupler with 

equal output division, which is employed in the 1st and 4th layers of Fig. 3.2, are presented 

in Table II(B). 

 

3.5  Design of constituent one-plane coupler 

The complete 2-D 3×3-way Nolen matrix depicted in Fig. 3.2 consists of three H-plane 

couplers and three E-plane couplers, each with a coupling ratio of 1:1 or 1:√2. Since all 

quadrature couplers possess symmetrical structures, they can be represented by half 

models, as illustrated in Fig. 3.8. However, it should be noted that the symmetrical axis 

differs between the H-plane coupler, which is symmetrical about the vertical axis, and the 

E-plane coupler, which is symmetrical about the horizontal axis.   

The physical parameters of all quadrature couplers are listed in Table 3.3. The electrical 

performance of the 1st, 2nd, and 4th layers is illustrated in Fig. 3.9. Since the 1st, 2nd, and 

4th layers in Fig. 3.2 consist solely of multiple couplers, the electrical performance of 

these layers precisely reflects the characteristics of the designed couplers in their 

respective layers. 
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3.6  Design of waveguide phase shifters 

Phase shifter is two-ports component to acting as a phase overrun or retard, counterpart 

to inductive phase shifters and capacitive phase shifters, respectively. In beam-switching 

matrices, often the absolute phase output does not make any sense, but the relative one 

will work out.  

The schematic diagrams of both capacitive and inductive phase shifters employed in 

the 2-D 3×3-way Nolen matrix are presented in Fig. 3.10. It is important to note that the 

phase shifters not only provide the desired phase shifting values but also compensate for 

the transmission phase of the couplers they are connected to. Therefore, the phase shifting 

values indicated as 0° , 90° , and 180°  in Fig. 3.2 can function as both progressive 

(inductive) phase shifters and laggy (capacitive) phase shifters. 

The capacitive phase shifter design incorporates an expanded broad side area (𝑤𝑃𝑆 >

𝑎𝑖 ) and utilizes several irises placed across the broad wall. On the other hand, the 

inductive phase shifter design features a shortened broad side area (𝑤𝑃𝑆 < 𝑎𝑖 ) and 

employs irises positioned along the side walls. Various parameters, including the length 

(𝑙𝑃𝑆) of the phase shifter, the number (n) of irises, the length (𝑡𝑃𝑆) and depth (𝑟𝑃𝑆) of the 

irises, and the distance (𝑑𝑃𝑆) between the irises, can be adjusted to achieve the desired 

phase shifting value. 

To simplify the design process and reduce the number of variables, the phase shifters 

are intentionally designed with longitudinal symmetry. This approach ensures that the 

performance optimization of the phase shifters can be achieved effectively. Mode-

matching techniques are utilized to fine-tune the performance of the phase shifters, which 

consist of only a few segments with a normal rectangular cross-section. 

 

3.7  Experimental results of 2-D 3×3-way Nolen matrix 

Fig. 3.11 provides a comprehensive view of the 3-D inner waveguide cavities within 

the proposed 2-D 3 × 3-way Nolen matrix, offering additional insights into the 

interconnection between various components depicted in Fig. 3.2. To ensure smooth 

connectivity, oblique waveguides are employed to connect adjacent layers. Furthermore, 
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measures have been taken to suppress higher modes in the input/output ports of each 

component, ensuring the dominance of the TE10 mode with a suppression level below -

40 dB. The introduction of oblique waveguides to connect input ports with the 1st layer 

does not have any significant impact on the overall matrix performance in terms of phase 

difference. However, it is essential to compensate for the phase imbalance introduced by 

other oblique waveguides using the phase shifters in the 3rd and 5th layers. Notably, the 

oblique waveguides connecting the 1st and 2nd layers are intentionally designed to avoid 

introducing additional phase imbalance. In order to accommodate the constraints imposed 

by the milling drill during the fabrication process, certain rounded edges have been 

incorporated into the components. These rounded edges have been carefully examined 

and verified to have no discernible impact on the matrix's performance. It is worth 

mentioning that the radius of the drill used in this particular manufacturing process is 0.3 

mm, which is significantly smaller than the size of each component. 

Fig. 3.12 showcases the manufactured 2-D 3×3-way Nolen matrix, complete with a 

transformer, which facilitates the transition from a coaxial line to a waveguide for testing 

purposes. The fabrication process involved milling several individual aluminum plates to 

match the shape of the inner waveguide cavities, followed by assembling these plates 

together using screws. The transformer, specifically designed with 8×8 ports, allows for 

compatibility with matrices requiring a greater number of ports. In the case of the 2-D 

3×3-way Nolen matrix, only 9 ports are utilized out of the transformer's full capacity. For 

the coaxial line to waveguide transition at 28.25 GHz, a schematic representation and 

dimensional parameters are provided in Fig. 3.13 and Table 3.4, respectively. Notably, a 

three-stage ridged waveguide transition is employed to effectively suppress any 

reflections that may arise during the transition process. 

The fabricated 2-D 3×3-way Nolen matrix boasts an impressive complete matrix body, 

measuring 60.0 mm × 60.0 mm × 241.3 mm, which includes the additional transition 

connecting the output waveguides of the transformer to the input waveguides of the 

matrix. With a weight of 2.55 kg, the matrix showcases its robust construction. Delving 

into its design, the 2-D 3×3-way Nolen matrix incorporates a meticulous 6.9 mm element 
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spacing between adjacent output ports (a ×  b   5.78 mm ×  2.47 mm) across two 

transverse dimensions. This spacing translates to approximately 0.65λ at the center 

frequency of 28.25 GHz, accompanied by a total aperture size of 2.1λ × 1.28λ. These 

precise dimensions demonstrate the meticulous attention to detail in the construction of 

the matrix. Compared to the conventional symmetrical 2-D Butler matrix, the proposed 

2-D 3× 3-way Nolen matrix diverges from symmetry along the transverse axes. As a 

consequence, the integration of numerous oblique waveguides becomes essential to 

connect the constituent components. This departure from symmetry contributes to the 

slightly larger physical dimensions of the matrix body when juxtaposed with a previously 

reported 2-D one-body Butler matrix of a similar size [3-11]. Nevertheless, it is crucial to 

acknowledge that the larger dimensions are not a limitation of the concept itself but rather 

a consequence of the chosen mechanical design approach, employing multiple plates. 

Future advancements in manufacturing techniques, such as the utilization of 3D printing 

[3-12], hold promise for offering enhanced design flexibility and the potential for even 

further refinements in the construction of such matrices. 

The simulation results of the complete 18-port matrix are beautifully displayed in Fig. 

3.14, offering insights into the performance when incidence is applied from Port 1, Port 

4, and Port 9. These examples correspond to the boresight beam, a 1-D tilted beam, and 

a 2-D tilted beam, respectively. The results showcase the output amplitude, reflection, and 

phase difference with reference to Port 10, unveiling the matrix's remarkable capabilities. 

Upon closer examination of Fig. 3.14, it becomes evident that the deviation of the output 

signal amplitude from the theoretical value of -9.54 dB remains within a range of 1.9 dB 

for all ports. Only a small portion of the frequency band, near 27.65 GHz, sees 𝑆17,4 

slightly extend the range to 2.5 dB, approaching a value near -12 dB. However, such 

deviations are minimal and do not significantly impact the overall performance. 

Remarkably, the reflections and isolations from the input ports are impressively 

suppressed below -15 dB across the bandwidth, ensuring excellent signal integrity. The 

only exception is 𝑆59 , which slightly exceeds this criterion in the higher half of the 

operating bandwidth, reaching -13 dB at 28.85 GHz. Nonetheless, this value remains well 
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within acceptable limits for the intended applications. When considering insertion loss, 

the largest value is observed from Port 9, spanning the entire bandwidth at 0.86 dB. It is 

noteworthy that this includes the contribution from conductor loss, which accounts for 

0.50 dB of the total. This insight allows for a comprehensive assessment of the matrix's 

performance in terms of signal attenuation. Turning our attention to the relative 

transmission phases with reference to Port 10, the outputs from Port 11 to Port 18 

demonstrate remarkable adherence to the theoretical standard values. These values hover 

around 0° , −120° , and −240° , with digressions of no more than ±30°  over the 

analyzed bandwidth. This exceptional phase consistency further highlights the matrix's 

reliability and precision in achieving the desired beam-switching capabilities. In summary, 

the exemplary simulation results portrayed in Fig. 3.14 unveil the impressive performance 

of the 18-port matrix, showcasing its ability to deliver accurate output amplitudes, 

excellent reflections and isolations, minimal insertion loss, and consistent transmission 

phases. 

When the device is directly radiating from the output ports, it transforms into a 9-port 

network, which undergoes simulation and measurement to validate its performance. To 

ensure a fair comparison with the simulated data, post-processing techniques are 

employed to eliminate the impact of the coaxial line to waveguide transformer. Fig. 3.15 

presents exemplary results, showcasing both the simulated and measured data, for 

incidence from Port 1 to Port 9. 

The overall agreement between the measurement results and simulation results is 

commendable. In most cases, the reflection and isolation levels remain below the -10 dB 

threshold, providing confidence in the device's performance, except for 𝑆74 , 𝑆84  and 

𝑆59 which marginally go above -10 dB over the considered frequency bandwidth. 

However, discrepancies are observed in Fig. 3.15 compared to the reflection and isolation 

results shown in Fig. 3.14. This can be attributed to two primary factors. Firstly, the direct 

radiating output ports are not perfectly matched to free space, which is a known limitation 

associated with open-ended waveguides. This imperfection can contribute to some 

degradation in the reflection and isolation levels. Secondly, the dominant factor affecting 
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performance degradation is the strong coupling between adjacent output ports with a 

spacing of 0.65λ. Particularly, there is significant coupling among the ports aligned along 

the direction of the electrical field of the TE10 mode. This strong port-to-port coupling 

leads to an ascending in reflection and isolation at the input ports. Despite these 

degradation factors, the observed levels are still considered acceptable for the intended 

applications. The advantages of having closely-spaced elements outweigh the minor 

impairment in the grating lobes level. It is important to note that these factors do not 

significantly hinder the overall performance of the device and its suitability for the target 

applications. 

To thoroughly examine the radiation capabilities of the proposed 2-D 3×3-way Nolen 

matrix, a series of far field measurements is conducted using a spherical scanner, as 

illustrated in Fig. 3.16. In this setup, the output aperture of the matrix directly radiates 

into free space without any additional antennas being used as loads. To evaluate the 

realized gain, the measured data is meticulously processed with respect to a standard gain 

horn antenna. During the measurement setup, the distance between the output aperture of 

the matrix and the waveguide probe is set at a suitable 22 cm. This distance ensures the 

requirement of the far field region condition, meeting the necessary condition for accurate 

characterization. By adhering to such guidelines, the radiation performance of the 2-D 

3×3-way Nolen matrix can be thoroughly assessed and analyzed. 

Despite a constraint imposed by the mechanical arm, the scanning range for the 

radiation pattern evaluation is set from -30° to 90°. Although this range is limited, it still 

able to adequately cover the primary radiation directions of each beam. Furthermore, to 

align with the slightly downward beam direction of Ports 2, 5, and 8, the matrix body is 

flipped accordingly, optimizing the alignment of these beams. Fig. 3.17 showcases 

contour plots of the realized gain at a level 3.9 dB below the peak for each radiation beam 

at a frequency of 28.25 GHz. The variables 𝑘𝑥  and 𝑘𝑦  represent sin 𝜃 cos𝜑  and 

sin 𝜃 sin𝜑 , respectively, where 𝜃  and 𝜑  correspond to the elevation and azimuth 

angles in standard spherical coordinates. As observed in Fig. 3.17, beams 4, 5, 6, 7, 8, and 

9 generate grating lobes in the 𝑘𝑦 direction, which is parallel to the electrical field at the 
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output apertures. The grating lobe contours are visible at a level of -3.9 dB in the 𝑘𝑦 

direction, as the beamwidth of the radiating open-ended rectangular waveguides is wider 

in the 𝑘𝑦 (E-plane) direction than in the 𝑘𝑥 (H-plane) direction. It is important to note 

that future improvements can be made by adjusting the design of the radiating elements 

at the output ports to enhance the symmetry of the radiation pattern, addressing any 

limitations that may arise in practical applications. 

Fig. 3.18 displays the radiation patterns at the center frequency of 28.25 GHz, focusing 

on a fixed value of 𝑘𝑥 and varying 𝑘𝑦, which corresponds to quasi E-plane of the peak 

of each beam. The purpose is to showcase the main lobe along with its 𝑘𝑦-aligned grating 

lobes. Overall, the measurement results align closely with the simulation results, 

demonstrating good agreement between them. It is worth noting that in the measured 

radiation pattern for Beam 8, as shown in Fig. 18(b), the level of the grating lobe is slightly 

lower than that observed in the simulation. As a result, the measured grating lobe for 

Beam 8 does not appear in Fig. 17. Nonetheless, these minor discrepancies do not 

significantly impact the overall performance of the 2-D 3×3-way Nolen matrix, and the 

radiation patterns remain consistent with the expected behavior. 

Table 3.5 provides detailed information on the peak realized gain for each beam at 

frequencies 27.65 GHz, 28.25 GHz, and 28.85 GHz. At the center frequency of 28.25 

GHz, the measurement and simulation results demonstrate good overall agreement, with 

the largest deviation of approximately 1 dB observed for Beam 4. This is nevertheless 

acceptable considering for a low gain antenna condition. The boresight beam exhibits the 

maximum realized gain, with 15.5 dBi in the measurement and 15.7 dBi in the simulation. 

Conversely, the minimum realized gain corresponds to Beam 6, with 12.0 dBi in the 

measurement, with 3.5dB scan loss, and to Beam 9, with 12.7 dBi in the simulation, with 

3dB scan loss. The scan loss of each beam is ascribed with non-isotropic radiation from 

an open-ended waveguide, and it is expected to be mitigated by future employment of 

external antenna with a conical beam to cover all main lobes. With the exception of Port 

1, which has a pointing direction get proximity to the zenith resulting in naturally larger 

errors in the angle 𝜑  values, the beam peak directions in both simulation and 
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measurement align closely. However, there is a discrepancy of 14° in the 𝜃 angle for 

Port 9 at 27.65 GHz. Despite this deviation, the agreement between the simulated and 

measured values for the peak realized gain and beam peak directions remains satisfactory. 

The frequency dependence of the realized gain for each beam is detailly showcased in 

Fig. 3.19. Across the entire frequency bandwidth, most of the measurement results align 

closely with the simulations for the majority of the beams, with deviations of no more 

than 1 dB. With the exception that Beam 4 exhibits a difference of 1.6 dB at 27.95 GHz, 

while Beam 6 shows a 1.4 dB deviation at 28.85 GHz. These slight disparities can be 

attributed to a combination of factors, including manufacturing and assembly errors, as 

well as measurement uncertainties. However, such deviations do not undermine the 

overall agreement between the measured and simulated results. 

Table 3.6 presents an elaborate comparison between various 2-D beam-switching 

matrices and the innovative 2-D 3× 3-way Nolen matrix proposed in this research. 

Previous works such as [3-13] and [3-14] have explored planarized cascading of couplers 

in substrate integrated transmission lines, achieving similar functionality to that of a two-

plane coupler. The main novelty of the matrix design in this study lies in its pioneering 

use of a two-plane waveguide coupler with unequal output division and the 

implementation of a 2-D Nolen matrix based on a one-body waveguide structure. In terms 

of performance, this work holds a significant advantage over other matrices in terms of 

low power imbalance and insertion loss. Compared to the 2-D hollow waveguide 4×4-

way Butler matrix [3-11], the physical size of the proposed matrix is relatively larger. 

This excessive size can be attributed to two factors.  

Firstly, in the transverse plane, a 60.0 mm × 60.0 mm exterior profile is selected to 

accommodate the 19.6 mm × 16.3 mm aperture area and to ensure good connection with 

the transformer (with a size of 120 mm × 120 mm). However, it's important to note that 

this limitation stems from the test setup rather than the matrix configuration, and future 

works can potentially reduce the exterior profile further. 

Secondly, in the longitudinal direction, as depicted in Fig. 3.11, four segments of 

oblique waveguides totaling 107.47 mm in length are introduced. Two segments are used 
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to connect the constituent components from the 1st to 5th layers, while the other two 

segments are employed to connect the input or output ports with the matrix. The presence 

of these lengthy oblique waveguides is necessary to address the broad side wall (5.78 mm) 

of the input or output port for each component in the matrix. This broad side wall 

corresponds to a cut-off frequency very close to 27.65 GHz, requiring the inclusion of 

long oblique waveguides with a moderate slope to effectively suppress reflections. These 

design constraints can be overcome in future iterations by exploring alternative 

manufacturing techniques that offer higher integration flexibility, especially those 

additive manufacturing techniques. 

 

 

    

3.8  Conclusion remarks 

This chapter has presented an innovative 2-D one-body 3×3-way hollow-waveguide 

Nolen matrix, introducing a novel two-plane unequal division coupler operating in the 

 a-band from 27.65 GHz to 28.85 GHz, corresponding to a fractional bandwidth of 4.1%. 

The proposed two-plane unequal division coupler demonstrates excellent performance, 

with transmission coefficients exhibiting variations within ± 0.5 dB in amplitude and 

±10° in phase over the considered frequency range. 

The designed 2-D 3 × 3-way Nolen matrix showcases promising electrical 

characteristics, with simulation results revealing a maximum output port power 

imbalance of 2.5 dB and a maximum insertion loss of 0.86 dB across the analyzed 

bandwidth. To verify the radiation performance, far field measurements were conducted, 

and the realized gain was evaluated with reference to a standard horn antenna. At the 

center frequency, the maximum realized gain of the 2-D 3× 3-way Nolen matrix is 

achieved at the boresight (Beam 1), measuring 15.5 dBi in the measurement and 15.7 dBi 

in the simulation. The minimum realized gain in the measurement is observed for the 2-

D tilted Beam 6, measuring 12.0 dBi, while in the simulation, it is observed for another 

2-D tilted Beam 9, measuring 12.7 dBi. The scan loss in the tilted beams is expected to 

be compensated by employing more isotropic radiation elements in future applications. 
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Significantly, this research marks the first reported instance of a 2-D one-body hollow-

waveguide Nolen matrix with a port number other than 2𝑛 . It also introduces the 

utilization of a two-plane coupler with unequal output division within a beam-switching 

matrix network. Although the frequency bandwidth of the designed two-plane coupler 

and 2-D 3× 3-way Nolen matrix is limited, it suffices to demonstrate the concept 

effectively. Future endeavors will explore a recently proposed method to enhance the 

bandwidth of two-plane couplers [3-8] and apply it to broaden the bandwidth of the 2-D 

3× 3-way Nolen matrix discussed in this research. The present work serves as a 

foundation for future studies on 2-D one-body hollow-waveguide matrices with different 

beam numbers in either dimension, including 5, 6, 7, 9, and beyond. 
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Fig. 3.1. 1-D 3-way Nolen matrix 

 

 

 

TABLE 3.1 

Port assignments of 1-D 3-way Nolen matrix 
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Fig. 3.2. 2-D one-body 3×3-way Nolen matrix. 

 

 

(a) 

 

(b) 

 

Fig. 3.3. Details of the beamforming steps in the 2-D 3×3-way Nolen matrix with ideal 

complex signals at the output of each layer corresponding to unitary input signal (a) at 

Port 1 and (b) at Port 5. 
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(a) Side view of the full model. 

 

(b) Perspective view of the quarter model in the first quadrant. 

 

(c) Cross section of the quarter model. 

 

 

Fig. 3.4. Two-plane unequal division coupler model.  
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TABLE 3.2 

Dimensional parameters of the quarter model of two-plane coupler (Unit:mm) 

 

(A) 

L W H a b x0 y0 

11.44 7.99 5.03 5.78 2.47 0.58 0.72 

h1 h2 h3 w1 w2 w3 

1.53 1.63 2.01 1.17 1.43 0.48 

 

(B) 

L W H a b x0 y0 

11.04 8.20 5.28 5.78 2.47 0.55 0.71 

h1 h2 h3 w1 w2 w3 

1.26 0.98 0.71 2.21 2.33 0.40 

 

 

 

 

 

 

 

 

Fig. 3.5. Variation of output amplitudes. A  π/2, B arccos (−1/3), C π 
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(a) Amplitude of the quarter coupler model assigned with ME, EE, MM, EM boundary 

conditions at the symmetrical planes. 

 
(b) Reflection of the quarter coupler model assigned with ME, EE, MM, EM boundary 

conditions at the symmetrical planes. 

 
(c) Relative phases of the quarter coupler model assigned with EE, MM, EM boundary 

conditions with reference to model with ME boundary conditions. 

 

Fig. 3.6. Transmission coefficients of the quarter model of the proposed unequally 

divided two-plane coupler. 
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(a) Input ports reflection and isolation. 

 

 

 

 

 

 

 

(b) Transmission amplitude. 
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(c) Transmission phase compared with 𝑆51. 

 

 

 

Fig. 3.7. S-parameters of the two-plane unequal division coupler in the 2nd layer of the 

entire matrix.  
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(a) Side view. 

 

 

 

 

 

 

(b) Cross-section. 

 

 

 

Fig. 3.8. Schematic of the half model of the H-plane or E-plane coupler.  
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TABLE 3.3 

Dimensional parameters of half model of one-plane couplers (Unit:mm) 

 

(A) H-plane equal 

L w h x0 y0 

10.90 7.01 4.33 0.95 1.83 

 

 

 

(B) H-plane unequal 

L w h x0 y0 

15.44 7.48 4.16 1.16 1.49 

 

 

 

(C) E-plane equal 

L w h x0 y0 

12.46 10.22 4.87 0.63 1.73 

 

 

 

(D) E-plane unequal 

L w h x0 y0 

11.98 10.87 4.18 1.05 0.67 
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(a) Capacitive phase shifter. 

 

 

 

 

 

 

(b) Inductive phase shifter. 

 

 

 

 

Fig. 3.9. Schematic of proposed waveguide phase shifters for use in the 2-D 3×3-way 

Nolen matrix.  
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Fig. 3.10. Perspective view of the 3-D inner waveguide cavities of the proposed 2-D 3×3-

way Nolen matrix. 

 

 

(a1) Amplitude output on the 1st or 4th layer. 

 

 

(a2) Phase output on the 1st or 4th layer. 
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(b1) Amplitude output on the 2nd layer. 

 

 

(b2) Phase output on the 2nd layer. 

 

 

 

Fig. 3.11. Transition of the coupler layers in the 2-D 3×3-way Nolen matrix.  
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(a) Overview. 

 

 

 

 

 

(b) Output aperture. 

 

 

 

 

Fig. 3.12. Manufactured 2-D 3×3-way Nolen matrix.  
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Fig. 3.13. Schematic of a coaxial line to waveguide transition working around 28.25GHz. 

Orange: metal, Green: PTFE. 

 

 

 

 

 

TABLE 3.4 

Dimensional parameters of the coaxial line-waveguide transition (Unit:mm) 

 

 

D1 D2 H0 H1 H2 H3 

2.16 0.66 2.20 2.83 1.30 0.96 

L1 L2 L3 aT bT W 

2.93 3.18 4.55 6.00 3.40 1.00 
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(a1) Reflection and isolations corresponding to incidence from Port 1. 

 

 
(b1) Amplitude output corresponding to incidence from Port 1. 

 

 
(c1) Phase output corresponding to incidence from Port 1. 
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(a2) Reflection and isolations corresponding to incidence from Port 4. 

 

 

 
(b2) Amplitude output corresponding to incidence from Port 4. 

 

 
(c2) Phase output corresponding to incidence from Port 4. 
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(a3) Reflection and isolations corresponding to incidence from Port 9. 

 

 
(b3) Amplitude output corresponding to incidence from Port 9. 

 

 
(c3) Phase output corresponding to incidence from Port 4. 

 

Fig. 3.14. S-parameters for the simulated 18-port 2-D 3×3-way Nolen matrix in terms of 

input ports reflection and isolation coefficients, and output ports transmission amplitude 

and relative phase to signal at Port 10. 
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(a) Incidence from Port1. 

 

 
(b) Incidence from Port 4. 

 

 
(c) Incidence from Port 9. 

 

 

Fig. 3.15. Reflection and isolation coefficients at the input ports when the output ports 

are radiating in free space. Solid line: measurements. Dotted line: simulations.  
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Fig. 3.16. Spherical scanning measurement system. 

 

 

Fig. 3.17. Contour plots of radiation beams at 3.9 dB below peak values, with red dotted 

lines for simulation and blue dotted lines for measurements. Simulated and measured 

beam peak angular directions are marked with o and x, respectively. “ ” and “S” markers 

stand for main beams and grating lobes, respectively. 
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TABLE 3.5 

Realized gain of each beam 

 

 

 

 

 

 

 

 

 

(a) Port 1, 4 and 7. 
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(b) Port 2, 5 and 8. 

 

 

 

 

 

(c) Port 3, 6 and 9. 

 

 

 

 

Fig. 3.18. Radiation pattern at center frequency 28.25 GHz. Solid line: measurements. 

Dotted line: simulations. 
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Fig. 3.19. Realized gain of each beam versus frequency, with measurement results in solid 

lines and simulation results in dotted lines. 

 

TABLE 3.6 

Comparison with other related works 
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Chapter 4 Two-dimensional hollow waveguide 

6×4-way beam-switching matrix 

 

4.1  Introduction remarks 

Butler matrices have gained widespread popularity among researchers due to their 

relatively simple design, by leveraging the key advantages that only half of the 1-D 

matrices need to be designed, attributing to their inherent symmetry. The seminal work 

by Butler and Turner [4-1] suggested that 2-D beam switching can be achieved by 

cascading 1-D beam switching matrices along two directions. The symmetries in 2-D 

matrices allow for reducing the design complexity to a quarter portion of the complete 

structure, with the remaining portions being mirror-like duplicates. 

However, standard Butler matrices are limited to beam numbers as 2𝑛. In contrast, the 

Nolen matrix [4-2][4-3] offers the flexibility to accommodate any number of beams. 

Designing an asymmetrical n-way Nolen matrix involves the composition of n(n-1)⁄2 

units with couplers having various values, leading to a complex design process. 

Additionally, the original Nolen matrix design is typically not wideband due to its series-

fed configuration. 

To address these challenges, a generalized 1-D matrix with an arbitrary number of 

beams was introduced in [4-4], representing an improvement over the parallel Nolen 

matrix design presented in [4-5]. This enhanced design yields a more compact 

configuration, combining the strengths of both the Butler matrix and the Nolen matrix. 

Following the methodology proposed in [4-4], a 1-D 2n-way matrix can be constructed, 

encompassing all (2n)! permutations of beam assignments and associated adjacent output 

phase differences by adjusting the values of the phase shifters. Through careful selection 

of the phase shifter values, some of the solutions exhibit a symmetrical structure, offering 

the advantage of reducing design complexity. 

This chapter presents the design of a novel two-dimensional (2-D) 6×4-way hollow 

waveguide beam-switching matrix operating at 28.25 GHz, with a fractional bandwidth 
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of 7.1%. It marks the first time that a 2-D one-body hollow waveguide beam-switching 

matrix is proposed, featuring different numbers of beams in two orthogonal directions. 

To reduce overall dimensions, this matrix partially incorporates two-plane couplers. 

A prototype of the complete matrix is fabricated and subjected to measurement using 

a planar scanning near-field setup, validating the accuracy of the simulation results. At 

the center frequency of 28.25 GHz, the beam with the smallest tilting angle exhibits the 

highest directivity, achieving a simulated value of 21.1 dBi and a measured value of 21.3 

dBi. Conversely, the beam with the largest tilting angle experiences the lowest directivity, 

with a simulated value of 16.0 dBi and a tilting angle of 52° from the boresight, resulting 

in a worst-case scan loss of 5.1 dB. It is important to note that the measured value in this 

specific case is slightly overestimated due to the limitations of the planar near-field test 

setup, which has a greater impact on the most tilted beams. Despite this, the radiation 

patterns demonstrate good agreement, confirming that the proposed matrix is a promising 

candidate for applications that demand symmetric beam coverage. 

 

4.2 1-D 6-way and 4-way matrices 

A remarkable characteristic of a 2n-way generalized parallel symmetrical matrix is its 

symmetrical port assignment, 

 

𝑝(𝑘) = −𝑝(2𝑛 + 1 − 𝑘)                     (4-1) 

 

Here 𝑝 and 𝑘 mean the phase difference among adjacent output ports and the input 

port number with incident signal, respectively.  

Drawing upon the original model presented in [4-4], the employed symmetrical 1-D 6-

way and 4-way matrix configurations are derived by strategically adjusting the positions 

of phase shifters. Each quadrature coupler is uniquely characterized by an angle 𝜃𝑖 , 

which plays a crucial role in defining its transmission matrix, 

 

𝑇𝑖 = (
cos 𝜃𝑖 −𝑗 sin 𝜃𝑖

−𝑗 sin 𝜃𝑖 cos 𝜃𝑖
)                     (4-2) 
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For different port assignments of the 6-way and 4-way matrices, the coupling ratio of 

each quadrature coupler is fixed. By reviewing the 6-way matrix in Fig. 4.1(a), the 

structure can be a mirror-like self-duplication of 3-way Nolen matrices, by referring to 

[4-4], and the following condition is verified, 

 

𝜑3
6 = 𝜑4

6                            (4-3) 

 

The proposed 6-way matrix and 4-way matrix configurations are associated with 

specific values of phase shift, denoted as 𝜑𝑖
6 and 𝜑𝑖

4, respectively. These values, along 

with their corresponding port assignments, are provided in Table I. It is worth noting that 

while there are numerous possible permutations of symmetrical port assignments for the 

2𝑛(𝑛!) matrix configurations [4-4], the enforced symmetrical configuration in the 6-way 

and 4-way matrices yield only four distinct solutions, as outlined in Table I. Because all 

the quadrature couplers employed in the 6-way and 4-way matrix configurations are 

deemed to not introduce transmission phase, phase shifters should additionally make up 

for the transition phase of couplers they are connecting with. With regard to the 4-way 

matrix in Fig. 4.1(b), the first port assignment in Table I(b) is equivalent to that of the 

conventional 4-way Butler matrix, based on account of the topology in this paper where 

we assume that all couplers, including crossovers (𝜃2 π/2), as reflected on Eq. (4-2), have 

a 90° phase delay in the crossing path, while all the crossovers in a Butler matrix have 

no phase differences between the two output ports. 

 

 

 

4.3 Configuration of 2-D 6×4-way matrix 

The design of the 2-D 6×4-way matrix involves a hierarchical arrangement, as depicted 

in Fig. 4.2(a). The initial step entails placing the 6-way matrices horizontally (in the H-

plane) and stacking them vertically (in the E-plane). These horizontally-placed matrices 

are connected to vertically-placed 4-way matrices, which are stacked horizontally. Each 

layer of the 6-way matrices is designated as 𝐻𝑛, representing the transmission matrix 
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specific to that layer. Similarly, the layers of the 4-way matrices are denoted as 𝑉𝑛 , 

signifying the transmission matrix associated with each layer. 

The transmission of the entire cascaded 2-D 6×4-way matrix can be expressed as, 

 

𝑇 = 𝐻1𝐻2𝐻3𝐻4𝐻5𝐻6𝐻7𝐻8𝐻9𝑉1𝑉2𝑉3𝑉4𝑉5𝑉6              (4-4) 

 

Considering the commutativity between the vertically-stacked and horizontally-

stacked layers, 

 

𝐻𝑖𝑉𝑘 = 𝑉𝑘𝐻𝑖                         (4-5) 

 

Consequently, 5005 permutations can be derived adjusting the order of each layer. To 

properly merge phase shifter layers in the 6-way matrix and 4-way matrix, the following 

transmission is adopted into the design, 

 

𝑇 = (𝐻1𝑉1)𝐻2𝑉2(𝐻3𝑉3)𝐻4𝐻5𝐻6𝐻7𝑉4𝐻8𝑉5(𝐻9𝑉6)         (4-6) 

 

The parentheses denote 2-D structure like two-plane coupler and merged phase shifters 

in two dimensions. In case with no pre-condition of fabrication limitation, 𝐻2𝑉2, 𝐻7𝑉4 

and 𝐻8𝑉5  layers can also adopt two-plane couplers to further miniaturize the overall 

matrix body. Fig.4.2(b) provides a detailed perspective view of the three-dimensional (3-

D) inner waveguide cavities of all the components comprising the 2-D 6×4-way matrix. 

This matrix operates at a center frequency of 28.25 GHz. In the (𝐻1𝑉1) layer, two-plane 

Hybrid couplers are employed. These couplers are with specific physical parameters, as 

outlined in [4-6]. The remaining couplers in the matrix are conventional H-plane or E-

plane couplers. To ensure optimal performance, the input/output ports of each component 

are carefully designed to suppress higher modes, achieving attenuation levels below -40 

dB. It should be noted that although the structure could be further simplified and 

miniaturized by incorporating more two-plane couplers, certain constraints associated 

with the CNC milling process have influenced the design choices. The frequency 

bandwidth of the targeted application is from 27.25 GHz to 29.25 GHz, corresponding to 

a 7.1% fractional bandwidth, which is difficult to achieve with the two-plane coupler 
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having rectangular notches. Hence the two-plane coupler with arbitrary shape of coupled 

region in [4-6] should be introduced to achieve the range of coupling needed while 

maintaining the targeted bandwidth. Unfortunately, this design approach is not 

compatible with the current CNC milling process combined with the mechanical design 

of the overall assembly, particularly when it involves cutting waveguides through their E-

planes. As a matter of this, only at the first layer (𝐻1𝑉1), two-plane coupler structure is 

introduced. To overcome this fabrication limitation, advanced manufacturing 

technologies such as 3-D printing [4-7] may be adopted in future iterations. Before the 

layer (𝐻1𝑉1), a segment of oblique waveguides is introduced to realize a transition from 

the input ports to the matrix body, the size and spacing of which correspond to those of 

an existing 64-port coaxial-to-waveguide transformer, used for test purposes. The 

designed 2-D 6× 4-way matrix only utilizes 24 ports of the transformer, while the 

remaining ones are left unconnected. 

In this design, the 1st port assignment in the 6-way matrix and 1st port assignment in 

the 4-way matrix, as specified in Table 4.1, are utilized alongside their corresponding 

phase shift values. However, it is important to note that the phase shifters in layers (𝐻3𝑉3), 

𝐻6, and (𝐻9𝑉6) serve a dual purpose. They not only introduce the desired phase shift value 

as per the design requirements but also compensate for the transmission phase introduced 

by the couplers and oblique waveguides they are connected to. 

4.4 Experimental results of 2-D 6×4-way matrix 

The performance evaluation of the 2-D 6×4-way matrix is conducted in two stages. 

The first stage involves analyzing the S-parameters of the complete 48-port network 

through simulation. The second stage focuses on assessing the radiation characteristics of 

the open-ended 24-port network. In this configuration, the output ports radiate directly 

into free space without the use of external antennas. Both simulation and measurement 

techniques are employed to verify the radiation performance. It is important to note that 

the extensive nature of a comprehensive experimental verification for the entire matrix is 

time-consuming. Therefore, measurements were primarily conducted in the most relevant 

configuration, which corresponds to the radiating scenario.   
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The input and output ports of the 2-D 6×4-way matrix, as depicted in Fig. 4.3, are 

numbered from 1 to 24 and 25 to 48, respectively. In order to validate the performance of 

the entire matrix, the analysis focuses on investigating cases where incidence is from a 

quarter of the input ports. Specifically, the performance is thoroughly examined for Port 

1, 2, 3, 7, 8, and 9, as defined in Fig. 4.3(a). This approach takes into account the 2-D 

symmetry of the matrix with respect to the transverse directions, allowing for 

comprehensive validation of its functionality. 

Fig. 4.4 presents the S-parameters of the 48-port network over a frequency range of 

27.25 GHz to 29.25 GHz, considering incidence from Port 1 and Port 9 as examples. The 

parameters examined include reflection and isolations at the input ports, output 

amplitudes, and phase differences with reference to Port 25 of Ports 26, 27, 28, 29 and 30 

in the horizontal and Ports 31, 37 and 43 in the vertical directions. 

In Fig. 4.4(a1), the reflections and isolations at the input ports are mostly suppressed 

below -15 dB, with a few exceptions that reach a higher level but still remain below -10 

dB. Moving to Fig. 4.4(a2), the output amplitudes are centered around -13.8 dB, which 

corresponds to the expected value in decibels for equal power division across 24 ports. 

Although some outputs exhibit larger deviations, even dipping below -20 dB, it is 

important to note that these deviations are expected to have minimal impact on the overall 

field distribution and radiation performance, considering the collective behavior of all 24 

ports. 

In Fig. 4.4(a3) and (a4), the phase differences with reference to Port 25 remain stable 

and closely aligned with the ideal distribution, except for values in the vertical direction 

for incidence from Port 1 in the upper frequency range analyzed. It is interesting to 

observe that although the simulated values deviate from the theoretical ones, the trend is 

consistent across all reported ports (Ports 31, 37, and 43). This suggests that the deviation 

originates solely from the reference Port 25. Similarly to the amplitude dispersion, these 

larger deviations affecting only a few ports are anticipated to have limited impact on the 

overall phase distribution at the output ports, and consequently on the radiation 

performance. 
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Utilizing the S-parameters obtained from the comprehensive model, the performance 

of the 2-D 6×4-way matrix by examining additional crucial indicators such as insertion 

loss and conductor loss can be assessed. The insertion loss ( L) corresponding to 

incidence from Port 𝑛 is defined as, 

 

𝐼𝐿𝑛 = 1/∑ |𝑆𝑖𝑛|248
𝑖=25                        (4-7) 

 

While the conductor loss ( L) corresponding to incidence from Port 𝑛 is, 

 

𝐶𝐿𝑛 = 1/∑ |𝑆𝑖𝑛|248
𝑖=1                         (4-8) 

 

Fig. 4.5 provides the insertion loss and conductor loss of the proposed 2-D 6×4-way 

matrix over the entire operational bandwidth. The matrix is constructed using aluminum 

as the material, with a known electrical conductivity of 38,000,000 S/m. The total length 

of the matrix, including the transition from the input ports to the layer (𝐻1𝑉1) as depicted 

in Fig. 4.2, measures approximately 650 mm. The numerical results demonstrate that the 

conductor loss remains consistently stable, averaging around 0.6 dB throughout the 

frequency range. This value is comparable to previous studies [4-8][4-9], also 

demonstrating the reliabilities of the results. Furthermore, the insertion loss of the matrix 

is generally below 2 dB, highlighting its excellent signal transmission capabilities. While 

Port 4 exhibits slightly higher values to break through this threshold, reaching around 2.2 

dB at the upper frequency 29.25 GHz, it remains within a reasonable deviation. This 

minor variation is not anticipated to significantly impact the radiation performance of the 

matrix. 

Fig. 4.6 shows a comprehensive overview of the reflections and isolations at the input 

ports when the output ports of the matrix are directly radiating into free space. The 

presented data has been carefully post-processed to eliminate the influence of the 

insertion loss introduced by the coaxial-to-waveguide transformer. It is important to note 

that the open-ended waveguides at the output ports have dimensions of 6.8 mm×3.21 mm, 

with a spacing of 7.8 mm (equivalent to 0.73λ) in the H-plane and 6.9 mm (equivalent to 

0.65λ) in the E-plane directions. Considering the closely-spaced nature of the output ports, 
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strong port-to-port coupling is anticipated. This coupling can potentially result in 

differences in the reflections and isolations compared to the ideal matched conditions 

depicted in Fig. 4.5(a1) and (b1). As a consequence, the data presented in Fig. 4.6 provides 

a more realistic representation of the actual operating performance of the matrix. Notably, 

the reflections and isolations at the input ports, as depicted in Fig. 4.6, remain consistently 

below -10 dB. This demonstrates the matrix's effectiveness in suppressing unwanted 

signal reflections and maintaining a high level of isolation among the input ports. By 

taking into account the actual operating conditions, these results offer valuable insights 

into the matrix's performance in real-world scenarios. 

Fig. 4.7 presents the setup used for planar scanning near-field measurements to verify 

the radiation performance of the proposed 2-D 6×4-way matrix. The measurements are 

conducted in a controlled environment, with the matrix loaded inside a chamber 

surrounded by absorbers to minimize unwanted reflections. To ensure stability and 

precise positioning of the matrix during the measurements, specialized fixtures are 

employed to securely support the matrix body. These fixtures not only provide mechanical 

support but also maintain the desired alignment and orientation of the matrix. 

Fig. 4.8 showcases the contour plots at -3.9 dB below the peak directivity of each beam 

at the central frequency of 28.25 GHz, offering a comprehensive visual representation of 

the radiation characteristics of the 2-D 6×4-way matrix. The contours exhibit the spatial 

distribution of the main lobes as well as the grating lobes for each beam. The values 

associated with the peak directivity, as well as the corresponding elevation and azimuth 

angles, are summarized in Table 4.2. The definitions of 𝑘𝑥 and 𝑘𝑦 are sin 𝜃 cos𝜑 and 

sin 𝜃 sin𝜑, respectively. The largest directivity corresponds to Beam 2 with 21.3 dBi in 

measurement and 21.1 dBi in simulation. The minimum directivity is 17.7 dBi reached 

by Beam 1 in measurement, with a tilted angle of 34° deviating from zenith, with 3.4dB 

scan loss, while in simulation, it is 16.0 dBi obtained at Beam 7, inclining 52°from zenith 

corresponding to 5.1 dB scan loss. Scan loss for all beams is expected to be compensated 

by future employment of more isotropic external antenna in lieu of open-ended 

waveguide. 
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Upon close examination of Fig. 4.8, it becomes evident that the contour shapes of the 

main lobes for each beam demonstrate remarkable consistency between the measurement 

and simulation results. This high level of agreement is further confirmed by the values 

provided in Table 4.2, where the angular deviations in elevation and azimuth angles 

between the measured and simulated data remain within a narrow range of 5° or less. 

Regarding the presence of grating lobes, Beams 1 and 7 exhibit grating lobes primarily 

in the 𝑘𝑥 direction, while Beams 8 and 9 generate grating lobes in the 𝑘𝑦 direction. 

Notably, the grating lobes associated with Beams 1 and 7 are barely discernible at the -

3.9 dB level in the measurement. Analyzing the directivity values, Beams 1, 2, 3, and 8 

exhibit excellent agreement between the simulation and measurement data, with 

deviations of no more than 0.9 dB. Beam 9 demonstrates a slightly larger discrepancy of 

1.7 dB, while Beam 7 displays the largest deviation of up to 3.8 dB. The deviation for 

Beam 7 can be attributed to the challenges associated with accurately measuring large-

angle tilted beams using planar scanning near-field techniques. These challenges arise 

from truncation effects, especially as Beam 7 corresponds to significant phase differences 

in two orthogonal directions of the matrix, as in the H-plane of 5π/6 and in the E-plane of 

-3π/4, both of which stand for the largest phase differences in either direction of the matrix. 

In order to provide a comprehensive view of the radiation pattern,  

Fig. 4.9 presents the full contour map of all 24 beams, achieved by mirror-duplicating 

quarter 6 beams. This visualization offers a holistic understanding of the radiation 

characteristics, highlighting the symmetry and spatial position for all beams. Crossover 

of each adjacent beam, especially lined in 𝑘𝑦 direction can be observed. This is mainly 

attributed to array factor, as number of elements in 𝑘𝑥 direction as 6 is larger than that 

in 𝑘𝑦 direction as 4, leading to wider beamwidth in 𝑘𝑦 direction and subsequent higher 

crossover level. And radiation element adopted as open-ended waveguide in this design 

may have a minor influence as well, since it is not ideally isotropic radiation source, and 

it could lead to strong port-to-port coupling at output port, which will potentially affect 

array factor. Further decreasing of distance of each radiation element in 𝑘𝑦 direction 

would be expected to improve crossover level among adjacent beams. Meanwhile, 
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antenna array with triangular lattice of beams will showcase much lower crossover level 

than rectangular lattice of beams. This methodology could be introduced in future 

improvement of this 2-D 6× 4-way matrix by externally introducing some network to 

convert rectangular lattice of beams to triangular lattice of beams. 

The radiation patterns at the center frequency 28.25GHz, are given in Fig. 4.10 for 

selected quarter 6 beams, by fixing 𝑘𝑥 of peak for each beam and scanning along the 𝑘𝑦 

direction(quasi E-plane), or alternatively fixing 𝑘𝑦 of peak for each beam and scanning 

along the 𝑘𝑥 direction(quasi H-plane). The beam shapes and trends in measurement are 

concurring well with those in simulation. The sidelobe levels of Beams 1 and 7, as 

observed in Fig. 4.10(a) and (c), exhibit lower values in the measurement data compared 

to the simulation. This reduction in sidelobe levels ultimately leads to the sidelobes in Fig. 

4.8 disappearing. This is mainly due to low accuracy by planar-scanning near field 

measurement for large angle tilted beam, as known as truncation effect. 

Table 4.3 provides a detailed comparison of this work with other related works, 

particularly putting emphasis on the comparison of waveguide-type matrices to show the 

difference on performance as a function of the numbers of beams. Compared with the 2-

D 4× 4-way Butler matrix in [4-8] and the 2-D 8× 8-way Butler matrix in [4-9], the 

proposed 2-D 6×4-way matrix has intermediate insertion loss, which is justifiable as a 

result of corresponding number of ports and as well as the network complexity. 

Table 4.3 presents a comprehensive comparison between this study and other relevant 

works, with a particular focus on waveguide-type matrices. The comparison highlights 

the performance differences observed across various beam numbers, as compared with 

the 2-D 4×4-way Butler matrix in [4-8] and the 2-D 8×8-way Butler matrix in [4-9], the 

proposed 2-D 6×4-way matrix has intermediate insertion loss, which is justifiable as a 

result of corresponding number of ports and as well as the network complexity. 

 

4.5 Conclusion remarks 

This chapter has introduced a 2-D hollow waveguide 6×4-way beam switching matrix 

working from 27.25 GHz to 29.25 GHz, counterpart to a 7.1% fractional bandwidth. This 
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is the first time that a 2-D waveguide beam-switching matrix is proposed with different 

number of beams in two orthogonal directions. Attributing to the 2-D symmetry in the 

transverse directions, the design complexity of the 2-D 6×4-way matrix is significantly 

reduced to quarter solely.  

The 2-D 6× 4-way matrix demonstrates excellent performance, with insertion loss 

ranging up to a maximum of 2.2 dB across the entire operational bandwidth. The radiation 

performance of the matrix is verified through planar scanning near-field measurements, 

providing valuable insights into its directivity characteristics.  

The highest directivity is achieved by Beam 2, with an impressive value of 21.3 dBi in 

measurement and 21.1 dBi in simulation. On the other hand, Beam 1 exhibits the 

minimum directivity in measurement, reaching 17.7 dBi, accompanied by a tilted angle 

of 34°  with reference to the boresight, corresponding to a scan loss of 3.4 dB. In 

simulation, the minimum directivity of 16.0 dBi is obtained for Beam 7, which is inclined 

at an angle of 52° relative to the boresight, resulting in a scan loss of 5.1 dB. It is worth 

noting that Beam 7 showcases the largest discrepancy 3.8dB between measurement and 

simulation, with the measured results showing 19.8 dBi in directivity, 1.5 dB in scan loss, 

and a tilted angle of 48° with reference to the boresight. The scan loss observed in the 

tilted beam configuration can be potentially compensated in future applications through 

the utilization of isotropic radiation elements. 

This 2-D 6×4-way matrix may be improved in future works by embracing alternative 

manufacturing techniques and capitalizing on the specific fabrication on two-plane 

couplers, such as 3-D printing [4-7], to enable further physical miniaturization and 

complexity reduction by employing more two-plane couplers to replace the conventional 

H-plane and E-plane couplers. 
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Fig. 4.1. (a) 6-way matrix. (b) 4-way matrix. 𝜃1 = π/4 , 𝜃1 = π/2  and 𝜃3 =

arccos(−1/3) in Eq. (4-2) 
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TABLE 4.1 

Port assignments with corresponding phase shifters 

 

 

(A) 6-way matrix 

 

 

    [𝑝1, 𝑝2 , 𝑝3, 𝑝4, 𝑝5 , 𝑝6]    𝜑1
6    𝜑2

6 𝜑3
6(𝜑4

6) 

[
5𝜋

6
,
−𝜋

6
,
−3𝜋

6
,
3𝜋

6
,
𝜋

6
,
−5𝜋

6
] 0   

−5𝜋

6
    

−𝜋

3
 

[
𝜋

6
,
−5𝜋

6
,
−3𝜋

6
,
3𝜋

6
,
5𝜋

6
,
−𝜋

6
] 0    

5𝜋

6
    

𝜋

3
 

[
−𝜋

6
,
5𝜋

6
,
−3𝜋

6
,
3𝜋

6
,
−5𝜋

6
,
𝜋

6
]    𝜋   

−5𝜋

6
    

−𝜋

3
 

[
−5𝜋

6
,
𝜋

6
,
−3𝜋

6
,
3𝜋

6
,
−𝜋

6
,
5𝜋

6
]    𝜋    

5𝜋

6
    

𝜋

3
 

 

 

 

(B) 4-way matrix 

 

 

   [𝑝1, 𝑝2 , 𝑝3, 𝑝4]    𝜑1
4    𝜑2

4 

[ 
𝜋

4
,
−3𝜋

4
,
3𝜋

4
,
−𝜋

4
]    

−𝜋

4
    

𝜋

2
 

[
3𝜋

4
,
−𝜋

4
,
𝜋

4
,
−3𝜋

4
]    

𝜋

4
  −

𝜋

2
 

[
−𝜋

4
,
3𝜋

4
,
−3𝜋

4
,
𝜋

4
]   

−3𝜋

4
   

−𝜋

2
 

[
−3𝜋

4
,
𝜋

4
,
−𝜋

4
,
3𝜋

4
]    

3𝜋

4
    

𝜋

2
 

 

 



 

115 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

 

Fig. 4.2. (a) Direct cascading of vertically-stacked 6-way matrices and horizontally-

stacked 4-way matrices. (b) Perspective view of 3-D inner waveguide cavities of the 

proposed 2-D 6×4-way matrix.  
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Fig. 4.3. Port numbering of (a) input ports and (b) output ports. Red dotted line: 

symmetrical axes. 
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(a1) Reflection and isolations corresponding to incidence from Port 1. 

 

 

 

 

 

 

(a2) Output amplitude corresponding to incidence from Port 1. 
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(a3) Phase difference with reference to Port 25 in the horizontal direction corresponding 

to incidence from Port 1. 

 

 

 

 

 

 

(a4) Phase difference with reference to Port 25 in the vertical direction corresponding to 

incidence from Port 1. 
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(b1) Reflection and isolations corresponding to incidence from Port 2. 

 

 

 

 

 

 

 

(b2) Output amplitude corresponding to incidence from Port 2. 
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(b3) Phase difference with reference to Port 25 in the horizontal direction corresponding 

to incidence from Port 2. 

 

 

 

 

 

 

(b4) Phase difference with reference to Port 25 in the vertical direction corresponding to 

incidence from Port 2. 
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(c1) Reflection and isolations corresponding to incidence from Port 3. 

 

 

 

 

 

 

(c2) Output amplitude corresponding to incidence from Port 3. 
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(c3) Phase difference with reference to Port 25 in the horizontal direction corresponding 

to incidence from Port 3. 

 

 

 

 

 

 

 

(c4) Phase difference with reference to Port 25 in the vertical direction corresponding to 

incidence from Port 3. 
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(d1) Reflection and isolations corresponding to incidence from Port 7. 

 

 

 

 

 

 

(d2) Output amplitude corresponding to incidence from Port 7. 
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(d3) Phase difference with reference to Port 25 in the horizontal direction corresponding 

to incidence from Port 7. 

 

 

 

 

 

 

(d4) Phase difference with reference to Port 25 in the vertical direction corresponding to 

incidence from Port 7. 
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(e1) Reflection and isolations corresponding to incidence from Port 8. 

 

 

 

 

 

 

(e2) Output amplitude corresponding to incidence from Port 8. 
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(e3) Phase difference with reference to Port 25 in the horizontal direction corresponding 

to incidence from Port 8. 

 

 

 

 

 

 

 

(e4) Phase difference with reference to Port 25 in the vertical direction corresponding to 

incidence from Port 8. 
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(f1) Reflection and isolations corresponding to incidence from Port 9. 

 

 

 

 

 

 

(f2) Output amplitude corresponding to incidence from Port 9. 
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(f3) Phase difference with reference to Port 25 in the horizontal direction corresponding 

to incidence from Port 9. 

 

 

 

 

 

 

(f4) Phase difference with reference to Port 25 in the vertical direction corresponding to 

incidence from Port 9. 

 

Fig. 4.4. S-parameters of the 48-port network for incidence from Port 1, 2, 3, 7, 8 and 9. 
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Fig. 4.5. Insertion loss and conductor loss of the 2-D 6×4-way matrix. 

 

 

 

 

 

 

 

 

 

(a) Port 1 
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(b) Port 2 

 

 

 

 

 

 

 

 

 

(c) Port 3 
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(d) Port 7 

 

 

 

 

 

 

 

 

 

(e) Port 8 
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(f) Port 9 

 

Fig. 4.6. Reflection and isolation performances of the 2-D 6×4-way matrix when the 

output ports are directly radiating into free space for incidence from each port. Solid line: 

measurement. Dotted line: simulation. 
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(a) 

 

 

(b) 

Fig. 4.7. Planar scanning near field measurement setup. (a) Matrix body. (b) Near field 

measurement cabin. 
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Fig. 4.8. Contour plots at 3.9 dB below the peak directivity for the six tested beams of the 

complete 2-D 6×4-way matrix at 28.25 GHz. O: peaks in measurement.  : peaks in 

simulation. Blue: measurement. Red: simulation. 

 

TABLE 4.2 

Directivity of each tested beam at 28.25 GHz 

Port 

No. 

 Dir. (dBi) [𝜽, 𝝋] (deg.) 

  

Meas. 
  Sim. Meas. Sim.   

1 17.7 18.0 [34, 19] [35, 19] 

2 21.3 21.1 [12, 121] [13, 119] 

3 19.9 20.8 [21, 158] [21, 153] 

7 19.8 16.0 [-48, 137] [-52, 136] 

8 18.8 18.0 [-35, 77] [-35, 79] 

9 19.6 17.9 [-40, 58] [-38, 58] 
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Fig. 4.9. Contour plots at 3.9 dB below the peak directivity of all the beams of the 

complete 2-D 6×4-way matrix at 28.25 GHz. O: peaks in measurement by mirror-like 

duplicating of six tested beams.  : peaks in simulation. Blue: measurement. Red: 

simulation. 
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(a) Beams 1, 2 and 3 in 𝑘𝑥-plane. 

 

 

 

 

 

(b) Beams 1, 2 and 3 in 𝑘𝑦-plane. 
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(c) Beams 7, 8 and 9 in 𝑘𝑥-plane. 

 

 

 

 

 

(d) Beams 7, 8 and 9 in 𝑘𝑦-plane. 

 

Fig. 4.10. Radiation patterns at 28.25 GHz.  
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TABLE 4.3 

Comparison with related works on 2-D beam-switching matrices 

 

 

Matrix size 
2-D 4×4  

[4-10] 

2-D 4×4  

[4-11] 

2-D 4×4  

[4-8] 

2-D 8×8 

[4-9] 

2-D 6×4 

This work 

Frequency 2.4 GHz 10 GHz 22 GHz 19.5 GHz 28 GHz 

Technology 
Microstrip 

line 
SIW Waveguide Waveguide Waveguide 

Number of ports 16 16 16 64 24 

One-body 

structure 
No No Yes Yes Yes 

Use of two-plane 

couplers 
No No Yes Yes Partially 

Worst-case 

insertion loss 

(IL) 

1.8 dB 4.0 dB 1.5 dB 5.0 dB 2.2 dB 

Bandwidth 16.7 % N.A. 2.0 % 5.1% 7.1% 
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Chapter 5 Conclusion  
 

5.1 Summary of preceding chapters 

This Ph.D. dissertation is dedicated to the development of hollow waveguide-based 

beam-switching matrices and the refinement for the working mechanism of two-plane 

couplers those are instrumental in multibeam matrices networks.  

Chapter 1 gave a brief introduction concerning background, application and 

development of beam forming networks, including beam-switching matrices and lens-

based antennas. And the motivation of this dissertation is mentioned up, which focuses 

on the exploration of two-plane coupler realizing arbitrary coupling ratios and 2-D beam-

switching matrices with beam numbers other than 2𝑛  and with different number of 

beams in two orthogonal directions. 

Chapter 2 conducted a comprehensive theoretical analysis to investigate the working 

principles of a two-plane coupler capable of achieving arbitrary coupling ratios in both 

the H-plane and E-plane directions. The fundamental equation (2-7) was identified as the 

core mechanism governing the behavior of the two-plane coupler, establishing a solid 

theoretical foundation for its design and implementation. To validate the theoretical 

analysis, a specific two-plane coupler centered at the 28.25 GHz band was designed with 

a coupling ratio of √2: 2: 1√2 , which can be deconstructed as 1: √2  in the H-plane 

direction and √2: 1  in the E-plane direction. The performance of this coupler was 

evaluated through comprehensive simulation and measurement campaigns over a 

frequency range of 27 GHz to 29.5 GHz, corresponding to an impressive 8.85% fractional 

bandwidth. Substantially, the results of the simulation and measurement demonstrated 

good agreement for the proposed two-plane coupler across the entire bandwidth. The 

reflections at the input and output ports were effectively suppressed, achieving levels 

below -15 dB. The output amplitudes exhibited minimal deviations, with variations of no 

more than 2 dB. Additionally, the phase differences remained within 20 degrees 

throughout the frequency range. Importantly, this work represents the first instance of a 

two-plane coupler designed with different coupling ratios in the H-plane and E-plane 
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directions, showcasing the novelty and uniqueness of the theoretical analysis.  

Chapter 3 has presented an innovative 2-D one-body 3× 3-way hollow-waveguide 

Nolen matrix, introducing a novel two-plane unequal division coupler operating in the 

 a-band from 27.65 GHz to 28.85 GHz, corresponding to a fractional bandwidth of 4.1%. 

The proposed two-plane unequal division coupler demonstrates excellent performance, 

with transmission coefficients exhibiting variations within ± 0.5 dB in amplitude and 

±10° in phase over the considered frequency range. The designed 2-D 3×3-way Nolen 

matrix showcases promising electrical characteristics, with simulation results revealing a 

maximum output port power imbalance of 2.5 dB and a maximum insertion loss of 0.86 

dB across the analyzed bandwidth. To verify the radiation performance, far field 

measurements were conducted, and the realized gain was evaluated with reference to a 

standard horn antenna. At the center frequency, the maximum realized gain of the 2-D 

3×3-way Nolen matrix is achieved at the boresight (Beam 1), measuring 15.5 dBi in the 

measurement and 15.7 dBi in the simulation. The minimum realized gain in the 

measurement is observed for the 2-D tilted Beam 6, measuring 12.0 dBi, while in the 

simulation, it is observed for another 2-D tilted Beam 9, measuring 12.7 dBi. The scan 

loss in the tilted beams is expected to be compensated by employing more isotropic 

radiation elements in future applications. Significantly, this research marks the first 

reported instance of a 2-D one-body hollow-waveguide Nolen matrix with a port number 

other than 2𝑛 . It also introduces the utilization of a two-plane coupler with unequal 

output division within a beam-switching matrix network. Although the frequency 

bandwidth of the designed two-plane coupler and 2-D 3×3-way Nolen matrix is limited, 

it suffices to demonstrate the concept effectively. The present work serves as a foundation 

for future studies on 2-D one-body hollow-waveguide matrices with different beam 

numbers in either dimension, including 5, 6, 7, 9, and beyond. 

Chapter 4 has introduced a 2-D hollow waveguide 6×4-way beam switching matrix 

working from 27.25 GHz to 29.25 GHz, counterpart to a 7.1% fractional bandwidth. This 

is the first time that a 2-D waveguide beam-switching matrix is proposed with different 

number of beams in two orthogonal directions. Attributing to the 2-D symmetry in the 
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transverse directions, the design complexity of the 2-D 6×4-way matrix is significantly 

reduced to quarter solely. The 2-D 6×4-way matrix demonstrates excellent performance, 

with insertion loss ranging up to a maximum of 2.2 dB across the entire operational 

bandwidth. The radiation performance of the matrix is verified through planar scanning 

near-field measurements, providing valuable insights into its directivity characteristics. 

The highest directivity is achieved by Beam 2, with an impressive value of 21.3 dBi in 

measurement and 21.1 dBi in simulation. On the other hand, Beam 1 exhibits the 

minimum directivity in measurement, reaching 17.7 dBi, accompanied by a tilted angle 

of 34°  with reference to the boresight, corresponding to a scan loss of 3.4 dB. In 

simulation, the minimum directivity of 16.0 dBi is obtained for Beam 7, which is inclined 

at an angle of 52° relative to the boresight, resulting in a scan loss of 5.1 dB. It is worth 

noting that Beam 7 demonstrates the largest discrepancy 3.8dB between measurement 

and simulation, with the measured results showing 19.8 dBi in directivity, 1.5 dB in scan 

loss, and a tilted angle of 48° with reference to the boresight. The scan loss observed in 

the tilted beam configuration can be potentially compensated in future applications 

through the utilization of isotropic radiation elements. 

 

5.2 Remarks for future study 

Based on the study and research of this doctoral dissertation, here comes up some 

perspective on potential future works: 

1. Apply for two-plane coupler having different coupling ratios in H-plane and E-

plane directions into two-dimensional beam switching matrices. As Chapter 2 of 

this dissertation has completely accomplished theoretical analysis together with 

experimental verification of two-plane coupler following arbitrary coupling ratio, 

its practical application can be expected. 

2. To further broaden the bandwidth of two-plane couplers. As two-plane coupler can 

significantly reduce the physical size compared to conventional H-plane and E-

plane couplers, however, its bandwidth performance is still to be broadened to fit 

in future applications. There might be two efficient methods to enhance the 
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bandwidth of two-plane couplers: 

a) By introducing asymmetrical structure about the longitudinal directions. In 

preceding journals and this dissertation, symmetry about longitudinal 

direction of two-plane coupler is always assigned to diminish design 

complexity. However, this might restrict possible enhancement of two-plane 

coupler on bandwidth and other performances. Though there will be 

accompanying longer analysis time for the optimization, introducing 

asymmetrical structure about longitudinal direction could be a good way to 

improve its bandwidth. 

b) By proposing input or output (I/O) waveguides with irregular shape. As 

depicted in all reported research up to days, I/O waveguide of two-plane 

couplers are always defaulted as normal rectangular shape, which is deemed 

not necessary. Breakthroughs of this limitation may yield unanticipated 

benefits on bandwidth enhancements. 

3. To accomplish theoretical work of 2N way 1-D beam-switching matrices with 

symmetrical configuration. As depicted in Chapter 4, the 6-way and 4-way 

symmetrical matrices are utilized to construct 2-D 6× 4-way matrix with two-

dimensional symmetry, which significantly decreases the designing complexity. 

However, a rigorous theoretical analysis of the configuration of 1-D 2N-way matrix 

with symmetry is still needing explorations, including the prediction of components 

parameter like couplers and phase shifters.  
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Appendix A  

Wave equations 

  According to Maxwell equations in non-source region 

 

∇ ∙ 𝑬 = 0                           (A-1) 

 

∇ ∙ 𝑯 = 0                           (A-2) 

 

∇ × 𝑬 = −𝑗𝜔𝜇𝑯                        (A-3) 

 

  ∇ × 𝑯 = 𝑗𝜔𝜀𝑬                         (A-4) 

 

 The wave equations can be established separately for TE-mode and TM-mode scenarios. 

 

⚫ TE-mode 

For TE(H)-mode, based on ∇ ∙ (∇ × 𝑨) = 0, and ∇ × (∇ ∙ 𝑓) = 0 

 

𝑬 = −𝑗𝜔𝜇∇ × 𝛙𝒉                       (A-5) 

 

𝑯 = 𝑘𝟐𝛙𝒉 + ∇𝜑ℎ                       (A-6) 

 

𝑘2 = 𝜔2𝜇𝜀 = (
2𝜋𝑓

𝑐
)
2

                      (A-7) 

 

Based on Lorentz condition ∇ ∙ 𝝍𝒉 = 𝜑ℎ, 

 

𝑯 = 𝑘𝟐𝛙𝒉 + ∇∇ ∙ 𝛙𝒉                     (A-8) 

 

As well as the equation for 𝝍𝒉 

 

∇2𝛙𝒉 + 𝑘𝟐𝛙𝒉 = 0                      (A-9) 

 

For TE-mode, there are no longitudinal electric field component, 

 

𝛙𝒉𝒊 = 𝒛⃗ 𝜓ℎ𝑢𝑒𝑥𝑝(∓𝛾ℎ𝑢𝑧)                   (A-10) 

 

∇𝑡
2𝜓ℎ𝑢 + 𝑘𝑐

2𝜓ℎ𝑢 = 0                     (A-11) 

 

𝛾ℎ𝑢
2 + 𝑘2 = 𝑘𝑐𝑢

2                       (A-12) 
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Here   signifies the order of mode, and   means transverse. Then the expressions for TE-

mode in terms of electric and magnetic fields are, 

 

𝑬𝒉𝒊
± = ±𝒆𝒕𝒉𝒖𝑒𝑥𝑝(∓𝛾ℎ𝑢𝑧)                    (A-13) 

 

𝑯𝒉𝒊
± = {±𝒉𝒕𝒉𝒖 + 𝒉𝒛𝒉𝒖}𝑒𝑥𝑝(∓𝛾ℎ𝑢𝑧)               (A-14) 

 

Here z means longitudinal direction. Lower-case letters mean basic function(vector) of 

each mode. And below restrictions should be complied with, 

 

𝒆𝒕𝒉𝒊 = −𝑍ℎ𝑢𝒛⃗ × 𝒉𝒕𝒉𝒖                     (A-15) 

 

𝒉𝒕𝒉𝒊 = −
√𝑌ℎ𝑢

𝑘𝑐𝑢
∇𝑡𝜓ℎ𝑢                     (A-16) 

 

𝒉𝒛𝒉𝒊 = 𝒛⃗ 
√𝑌ℎ𝑢𝑘𝑐𝑢

𝛾𝑢
𝜓ℎ𝑢                    (A-17) 

 

𝑍ℎ𝑖 =
1

𝑌ℎ𝑢
=

𝑗𝑧0𝜇𝑘0

𝛾ℎ𝑢
                      (A-18) 

 

Here 𝑧0 stand for wave impedance in free space, while 𝑘0 means wave number in free 

space. 

 

⚫ TM-mode 

For TM(E)-mode, similarly, it could be derived as  

 

𝑯 = −𝑗𝜔𝜇∇ × 𝛙𝒆                      (A-19) 

 

𝑬 = 𝑘𝟐𝛙𝒆 + ∇𝜑𝑒                      (A-20) 

 

𝑘2 = 𝜔2𝜇𝜀                         (A-21) 

 

Still, based on Lorentz condition ∇ ∙ 𝝍𝒆 = 𝜑𝑒, 

 

𝑬 = 𝑘𝟐𝛙𝒆 + ∇∇ ∙ 𝛙𝒆                     (A-22) 

 

As well as the equation for 𝝍𝒆 
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∇2𝛙𝒆 + 𝑘𝟐𝛙𝒆 = 0                      (A-23) 

 

To satisfy TM-mode condition, 

 

𝛙𝒆𝒊 = 𝒛⃗ 𝜓ℎ𝑒𝑥𝑝(∓𝛾𝑒𝑢𝑧)                   (A-24) 

 

∇𝑡
2𝜓𝑒𝑢 + 𝑘𝑐

2𝜓𝑒𝑢 = 0                     (A-25) 

 

𝛾𝑒𝑢
2 + 𝑘2 = 𝑘𝑒𝑢

2                       (A-26) 

 

Then the expressions for electric and magnetic field are, 

 

𝑯𝒆𝒖
± = ±𝒉𝒕𝒆𝒖𝑒𝑥𝑝(∓𝛾𝑒𝑢𝑧)                   (A-27) 

 

𝑬𝒆𝒖
± = {±𝒆𝒕𝒆𝒖 + 𝒆𝒛𝒆𝒖}𝑒𝑥𝑝(∓𝛾𝑒𝑢𝑧)               (A-28) 

 

𝒉𝒕𝒉𝒖 = 𝑌𝑒𝑢𝒛⃗ × 𝒆𝒕𝒉𝒖                      (A-29) 

 

𝒆𝒕𝒉𝒖 = −
√𝑍ℎ𝑢

𝑘𝑐𝑢
∇𝑡𝜓𝑒𝑢                    (A-30) 

 

𝒉𝒛𝒉𝒊 = 𝒛⃗ 
√𝑍ℎ𝑢𝑘𝑐𝑢

𝛾𝑒𝑢
𝜓𝑒𝑢                    (A-31) 

 

𝑍𝑒𝑢 =
1

𝑌𝑒𝑢
= −

𝑗𝑧0𝛾𝑒𝑢

𝜀𝑘0
                    (A-32) 

 

The definition of 𝑧0  and 𝑘0  are same to TE-mode condition. More details can be 

referred to [A-1][A-2]. 
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Appendix B  

Mode-matching  

 

Taking the normal condition model as Fig.B.1 as reference, the electrical field and 

magnetic field in both regions can be expressed as: 

 

𝑬𝟏 = ∑ 𝐴1𝑖𝑬𝟏𝒊
+

𝑖 + ∑ 𝐵1𝑖𝑬𝟏𝒊
−

𝑖                   (B-1) 

 

𝑯𝟏 = ∑ 𝐴1𝑖𝑯𝟏𝒊
+

𝑖 + ∑ 𝐵1𝑖𝑯𝟏𝒊
−

𝑖                   (B-2) 

 

 𝑬𝟐 = ∑ 𝐴2𝑖𝑬𝟐𝒊
−

𝑖 + ∑ 𝐵2𝑖𝑬𝟐𝒊
+

𝑖                    (B-3) 

 

𝑯𝟐 = ∑ 𝐴2𝑖𝑯𝟐𝒊
−

𝑖 + ∑ 𝐵2𝑖𝑯𝟐𝒊
+

𝑖                    (B-4) 

 

Here the mode number   is to represent all TE-mode and TM-mode number described 

by  . Define the boundary 𝑆 = 𝑆1 ∩ 𝑆2 = 𝑆1 , 𝑆∗ = 𝑆2 − 𝑆1 ∩ 𝑆2  and based on 

continuity at the boundary, 

 

𝒛⃗ × 𝑬𝟐 = 𝒛⃗ × 𝑬𝟏      (𝑆) 

𝒛⃗ × 𝑬𝟐 = 0      (𝑆∗)                       (B-5) 

 

𝒛⃗ × 𝑯𝟐 = 𝒛⃗ × 𝑯𝟏      (𝑆)                    (B-6) 

 

By substituting equations (A-13)(A-14)(A-27)(A-28) into (B-5)(B-6), 

 

∑(𝐴2𝑖 + 𝐵2𝑖)𝒛⃗ × 𝒆𝟐𝒕𝒊 =

𝑁2

𝑖

∑(𝐴1𝑖 + 𝐵1𝑖)𝒛⃗ × 𝒆𝟏𝒕𝒊

𝑁1

𝑖

   (𝑆) 

∑ (𝐴2𝑖 + 𝐵2𝑖)𝒛⃗ × 𝒆𝟐𝒕𝒊 =
𝑁2
𝑖 0      (𝑆∗)               (B-7) 

 

∑ (−𝐴2𝑖 + 𝐵2𝑖)𝒛⃗ × 𝒉𝟐𝒕𝒊 =
𝑁2
𝑖 ∑ (𝐴1𝑖 − 𝐵1𝑖)𝒛⃗ × 𝒉𝟏𝒕𝒊

𝑁1
𝑖    (𝑆)      (B-8) 

 

For equation (B-7), taking consideration of orthogonality among modes, by 

multiplying 𝒉𝟐𝒕𝒋 and taking integration at area 𝑆2, the left side of (B-7) turns to be, 
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∑ (𝐴2𝑖 + 𝐵2𝑖)∬ 𝒆𝟐𝒕𝒊
𝑆2

𝑆2
× 𝒉𝟐𝒕𝒋 ∙ 𝒛⃗ 𝑑𝑆 = 𝐴2𝑗 + 𝐵2𝑗

𝑁2
𝑖         (B-9) 

 

The right side of (B-7) turns to be, 

 

∑ (𝐴1𝑖 + 𝐵1𝑖)∬ 𝒆𝟏𝒕𝒊
𝑆2

𝑆1
× 𝒉𝟐𝒕𝒋 ∙ 𝒛⃗ 𝑑𝑆

𝑁2
𝑖              (B-10) 

 

Combining (B-9) and (B-10), 

 

∑ (𝐴1𝑖 + 𝐵1𝑖)∬ 𝒆𝟏𝒕𝒊
𝑆2

𝑆1
× 𝒉𝟐𝒕𝒋 ∙ 𝒛⃗ 𝑑𝑆

𝑁2
𝑖 = 𝐴2𝑗 + 𝐵2𝑗      (B-11) 

 

Here j is varying from 1 to 𝑁2. Similarly, by multiplying 𝒆𝟏𝒕𝒌 to (B-8), 

 

∑ (−𝐴2𝑖 + 𝐵2𝑖)∬ 𝒆𝟏𝒕𝒌
𝑆2

𝑆1
× 𝒉𝟐𝒕𝒊 ∙ 𝒛⃗ 𝑑𝑆

𝑁2
𝑖 = 𝐴1𝑘 − 𝐵1𝑘     (B-12) 

 

Here k is varying from 1 to 𝑁1 . (B-11) and (B-12) can be demonstrated in matrix 

format as, 

𝑋𝑇(𝐴1 + 𝐵1) = 𝐴2 + 𝐵2 

𝐴1 − 𝐵1 = 𝑋(−𝐴2 + 𝐵2)                   (B-13) 

 

Here,  

𝑋𝑖𝑗 = ∬ 𝒆𝟏𝒕𝒊
𝑆2

𝑆1
× 𝒉𝟐𝒕𝒋 ∙ 𝒛⃗ 𝑑𝑆    [𝑁1 × 𝑁2]            (B-14) 

 

𝐴1 and 𝐵1 are [𝑁1 × 1] vectors and 𝐴2 and 𝐵2 are [𝑁2 × 1] vectors. Table. B.1 

gives a coupling condition for reference, some coupling condition would make no 

contribution as 0 [A-3]. As Fig.B.2 shows, to establish a counterpart from  -matrix to S-

matrix, following conversion is needed: 

 

[
𝑏1

𝑏2
] = [

𝐹 − 𝐼𝑁1
𝐹𝑋

𝑋𝑇𝐹 𝑋𝑇𝐹𝑋 − 𝐼𝑁2

] [
𝑎1

𝑎2
] 

𝐹 = 2(𝐼𝑁1
+ 𝑋𝑋𝑇)

2
                      (B-15) 

 

Here   means unitary diagonal matrix. 

When the reference plane is deviating from the discontinuous plane, as Fig.B.3 shows, 

transmission phase should be compensated to S-matrix as: 
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𝑆 = [
𝑝1

+𝑆11𝑝1
− 𝑝1

+𝑆12𝑝2
+

𝑝2
−𝑆21𝑝1

− 𝑝2
−𝑆22𝑝2

+] 

𝑝1
± = 𝑑𝑖𝑎𝑔𝑁1

{±𝛾𝑢𝑧1}   𝑢 = 1…𝑁1 

𝑝2
± = 𝑑𝑖𝑎𝑔𝑁2

{±𝛾𝑢𝑧2}   𝑢 = 1…𝑁2                (B-16) 

 

For a complex condition as Fig.B.4 depicts, when cross-section of Port 1 is not involved 

in Port 2, then it should be processed under the manner to calculate mode matching 

between 𝑆1 and 𝑆2, then between 𝑆2 and 𝑆3, by cascading these two results with the 

consideration that length of 𝑆2 region is 0. 

More details for Mode matching can be referred to [A-4]. 
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Fig. B.1. Schematic of mode matching model. 

 

Table B.1 Coupling condition for mode matching when 𝑺𝟏 ∈ 𝑺𝟐 

 

 

 

 

Fig. B.2. Conversion from  -matrix to S-matrix. 
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Region 2
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Fig. B.3. Schematic of mode matching model when reference plane deviates from 

discontinuous  

 

 

 

 

 

 

 

 

Fig. B.4. Schematic when 𝑆1 is not covered by 𝑆2. 
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Port 1 Port 2

Region 1 Region 2
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Appendix C  

2-D Finite element method (FEM) 

The transverse Helmholtz equation for TE-mode and TM-mode wave are 

 

∇𝑡
2𝑬𝒉𝒕 + 𝑘𝑐

2𝑬𝒉𝒕 = 0                        (C-1) 

 

∇𝑡
2𝑯𝒆𝒕 + 𝑘𝑐

2𝑯𝒆𝒕 = 0                        (C-2) 

 

By multiplying weighting function 𝑾𝒕 and exerting integration at target area,  

 

∫ 𝑾𝒕(∇𝑡
2𝑬𝒉𝒕 + 𝑘𝑐

2𝑬𝒉𝒕)𝑑𝑆 = 0
𝑆

𝑆
                   (C-3) 

 

∫ 𝑾𝒕(∇𝑡
2𝑯𝒆𝒕 + 𝑘𝑐

2𝑯𝒆𝒕)𝑑𝑆 = 0
𝑆

𝑆
                   (C-4) 

 

(C-3) and (C-4) could be converted to below weak form equations, 

 

∫ (∇𝑡 × 𝑾𝒕)(∇𝑡 × 𝑬𝒕) − 𝑘𝑐
2𝑾𝒕𝑬𝒕𝑑𝑆 = 0

𝑆

𝑆
              (C-5) 

∫ (∇𝑡 × 𝑾𝒕)(∇𝑡 × 𝑯𝒕) − 𝑘𝑐
2𝑾𝒕𝑯𝒕𝑑𝑆 = 0

𝑆

𝑆
              (C-6) 

 

(C-5) and (C-6) indicate that electric field and magnetic field are given in same 

manipulation. Consequently, it is sufficient to investigate electric field only. Triangular 

mesh is deemed to be more fitting into complex area shape than rectangular mesh. The 

basis vector function for a single triangular mesh as shown in Fig.C.1, is given below, 

𝒘𝒊 =
𝑙𝑖
∆2

[𝒙⃗⃗ (𝐴𝑖 − 𝐵𝑖𝑦) − 𝒚⃗⃗ (𝐶𝑖 − 𝐵𝑖𝑥)]    𝑖 = 1,2,3 

𝑙𝑖: 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑒𝑑𝑔𝑒 

𝑎1 = 𝑥2𝑦3 − 𝑥3𝑦2  𝑎2 = 𝑥3𝑦1 − 𝑥1𝑦3 𝑎3 = 𝑥1𝑦2 − 𝑥2𝑦1 

𝑏1 = 𝑦2 − 𝑦3 𝑏2 = 𝑦3 − 𝑦1 𝑏3 = 𝑦1 − 𝑦2 

𝑐1 = 𝑥3 − 𝑥2   𝑐2 = 𝑥1 − 𝑥3   𝑐3 = 𝑥2 − 𝑥1 

𝐴1 = 𝑎1𝑏2 − 𝑎2𝑏1 𝐴2 = 𝑎2𝑏3 − 𝑎3𝑏2 𝐴3 = 𝑎3𝑏1 − 𝑎1𝑏3 

𝐵1 = 𝑏1𝑐2 − 𝑏2𝑐1 𝐵2 = 𝑏2𝑐3 − 𝑏3𝑐2 𝐵3 = 𝑏3𝑐1 − 𝑏1𝑐3 

𝐶1 = 𝑐1𝑎2 − 𝑐2𝑎1 𝐶2 = 𝑐2𝑎3 − 𝑐3𝑎2 𝐶3 = 𝑐3𝑎1 − 𝑐1𝑎3 

∆= 𝑥1𝑏1 + 𝑥2𝑏2 + 𝑥3𝑏3                   (C-7) 

 

Galerkin’s method restrict weighting function to be same as basis function, 
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𝑾𝒕 = ∑ ∑ 𝒘𝒊
𝒆𝒍𝒆3

𝑖=1
𝑁𝑒𝑙𝑒
𝑒𝑙𝑒=1                       (C-8) 

 

𝑬𝒕 = ∑ ∑ 𝐸𝑖
𝑒𝑙𝑒𝒘𝒊

𝒆𝒍𝒆3
𝑖=1

𝑁𝑒𝑙𝑒
𝑒𝑙𝑒=1                     (C-9) 

By substituting (C-8)(C-9) into (C-5), 

 

[

𝐾∇,11
𝑒𝑙𝑒 𝐾∇,12

𝑒𝑙𝑒 𝐾∇,13
𝑒𝑙𝑒

𝐾∇,21
𝑒𝑙𝑒 𝐾∇,22

𝑒𝑙𝑒 𝐾∇,23
𝑒𝑙𝑒

𝐾∇,31
𝑒𝑙𝑒 𝐾∇,32

𝑒𝑙𝑒 𝐾∇,33
𝑒𝑙𝑒

] [

𝐸1
𝑒𝑙𝑒

𝐸2
𝑒𝑙𝑒

𝐸3
𝑒𝑙𝑒

] = 𝑘𝑐
2 [

𝐾•,11
𝑒𝑙𝑒 𝐾•,12

𝑒𝑙𝑒 𝐾•,13
𝑒𝑙𝑒

𝐾•,21
𝑒𝑙𝑒 𝐾•,22

𝑒𝑙𝑒 𝐾•,23
𝑒𝑙𝑒

𝐾•,31
𝑒𝑙𝑒 𝐾•,32

𝑒𝑙𝑒 𝐾•,33
𝑒𝑙𝑒

] [

𝐸1
𝑒𝑙𝑒

𝐸2
𝑒𝑙𝑒

𝐸3
𝑒𝑙𝑒

]      (C-10) 

𝐾∇,𝑖𝑗
𝑒𝑙𝑒 = ∫ (∇ × 𝒘𝒊) ∙

𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

(∇ × 𝒘𝒋)𝑑𝑆 

𝐾•,𝑖𝑗
𝑒𝑙𝑒 = ∫ 𝒘𝒊 ∙ 𝒘𝒋

𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

𝑑𝑆 

In rectangular coordinate, each of the calculation can be expanded as 

∫ (∇ × 𝒘𝒊) ∙
𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒
(∇ × 𝒘𝒋)𝑑𝑥𝑑𝑦 =

4𝑙𝑖𝑙𝑗𝐵𝑖𝐵𝑗

∆4 ∫ 𝑑𝑥𝑑𝑦
𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒
        (C-11) 

∫ 𝒘𝒊 ∙ 𝒘𝒋

𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

𝑑𝑥𝑑𝑦

=
4𝑙𝑖𝑙𝑗

∆4
[
∆(𝐴𝑖𝐴𝑗 + 𝐶𝑖𝐶𝑗)

2
− (𝐶𝑖𝐵𝑗 + 𝐶𝑗𝐵𝑖)∫ 𝑥𝑑𝑥𝑑𝑦

𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

− (𝐴𝑖𝐵𝑗 + 𝐴𝑗𝐵𝑖)∫ 𝑦𝑑𝑥𝑑𝑦
𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

] + 𝐵𝑖𝐵𝑗 (∫ 𝑥2𝑑𝑥𝑑𝑦
𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

+ ∫ 𝑦2𝑑𝑥𝑑𝑦
𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

) 

(C-12) 

 

The integration incorporated in (C-11) and (C-12) can be computed as  

∫ 𝑑𝑥𝑑𝑦
𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

=
∆

2
 

∫ 𝑥𝑑𝑥𝑑𝑦
𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

=
∆(𝑥1 + 𝑥2 + 𝑥3)

6
 

∫ 𝑦𝑑𝑥𝑑𝑦
𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

=
∆(𝑦1 + 𝑦2 + 𝑦3)

6
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∫ 𝑥2𝑑𝑥𝑑𝑦
𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

=
∆(𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3)

12
 

∫ 𝑦2𝑑𝑥𝑑𝑦
𝑆𝑒𝑙𝑒

𝑆𝑒𝑙𝑒

=
∆(𝑦1

2 + 𝑦2
2 + 𝑦3

2 + 𝑦1𝑦2 + 𝑦1𝑦3 + 𝑦2𝑦3)

12
 

(C-13) 

 

Based on (C-11) and (C-12), the local mesh matrix for (C-10) can be derived. The next 

step is to connect each local mesh to construct overall global matrix, taking the Fig.C.2 

as an example to connect two adjacent triangle meshes, the combined matrix can be 

described by considering continuity at shared common edge as, 

 

[
 
 
 
 
 
𝐾∇,11

1 𝐾∇,12
1 𝐾∇,13

1             0              0

𝐾∇,21
1 𝐾∇,22

1 𝐾∇,23
1             0              0

𝐾∇,13
1

0
0

𝐾∇,23
1

0
0

𝐾∇,33
1 +𝐾∇,11

2

−𝐾∇,21
2

−𝐾∇,31
2

 −𝐾∇,12
2      −𝐾∇,13

2

   𝐾∇,22
2

   𝐾∇,32
2

      𝐾∇,23
2

      𝐾∇,33
2 ]

 
 
 
 
 

[
 
 
 
 
𝐸1

𝐸2

𝐸3

𝐸4

𝐸5]
 
 
 
 

= 𝑘𝑐
2

[
 
 
 
 
 
𝐾•,11

1 𝐾•,12
1 𝐾•,13

1             0              0

𝐾•,21
1 𝐾•,22

1 𝐾•,23
1             0              0

𝐾•,13
1

0
0

𝐾•,23
1

0
0

𝐾•,33
1 +𝐾•,11

2

−𝐾•,21
2

−𝐾•,31
2

 −𝐾•,12
2      −𝐾•,13

2

   𝐾•,22
2

   𝐾•,32
2

      𝐾•,23
2

      𝐾•,33
2 ]

 
 
 
 
 

[
 
 
 
 
𝐸1

𝐸2

𝐸3

𝐸4

𝐸5]
 
 
 
 

 

(C-14) 

Additional boundary condition could be imposed to global matrix, such as PEC or PMC, 

to specific some of 𝐸𝑒𝑙𝑒 . For a global matrix with 𝑁𝑒𝑙𝑒  of edge, 𝑁𝑒𝑙𝑒  solutions for 

eigenvalue 𝑘𝑐  with corresponding 𝑁𝑒𝑙𝑒  sorts of feature vectors can be derived to 

express the overall electrical field distribution within target 2-D area for TE-mode, and 

magnetic field can be deduced by (A-14)-(A-18). Similarly, starting from (C-6), for TM-

mode, magnetic field distribution can be derived by FEM analysis, and electric field can 

be deduced by (A-28)-(A-32). 

More details regarding 2-D FEM can be referred to [A-5]. 
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Fig. C.1. Schematic of a single triangular mesh. 

 

 

 

 

 

 

 

 

 

Fig. C.2. Connection of two adjacent triangle meshes. 
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Appendix D  

FEM-Mode matching joint calculation 

  By taking the results by FEM into mode matching calculation, for TE-TE coupling 

condition, 

𝑋𝑚𝑛 = ∬ 𝒆𝟏𝒕𝒉𝒎

𝑆2

𝑆

× 𝒉𝟐𝒕𝒉𝒏 ∙ 𝒛⃗ 𝑑𝑆 =
1

𝑍2ℎ𝑛
∬ 𝒆𝟏𝒕𝒉𝒎

𝑆2

𝑆

∙ 𝒆𝟐𝒕𝒉𝒏𝑑𝑆

= 𝐷𝑚𝑛 ∑ ∬ (∑𝐸1,𝑖𝑚
𝑒𝑙𝑒 𝒘𝒊

𝒆𝒍𝒆

3

𝑖=1

)
𝑆2

𝑆𝑒𝑙𝑒

𝑁𝑒𝑙𝑒

𝑒𝑙𝑒=1

(∑𝐸2,𝑖𝑛
𝑒𝑙𝑒 𝒘𝒊

𝒆𝒍𝒆

3

𝑖=1

)𝑑𝑆

= 𝐷𝑚𝑛 ∑ 𝐸1,𝑚
𝑒𝑙𝑒

𝑁𝑒𝑙𝑒

𝑒𝑙𝑒=1

𝑊•
𝑒𝑙𝑒𝐸2,𝑛

𝑒𝑙𝑒 

 

𝐷𝑚𝑛 = √
𝑍1,ℎ𝑚

𝑍2,ℎ𝑛
∙

1

√(∬ 𝑬𝟏𝒕𝒉𝒎 ∙ 𝑬𝟏𝒕𝒉𝒎𝑑𝑆
𝑆2

𝑆𝑒𝑙𝑒
) (∬ 𝑬𝟐𝒕𝒉𝒏 ∙ 𝑬𝟐𝒕𝒉𝒏𝑑𝑆

𝑆2

𝑆𝑒𝑙𝑒
)

 

 

𝐸𝑒𝑙𝑒 = 𝑑𝑖𝑎𝑔{𝐸1
𝑒𝑙𝑒, 𝐸2

𝑒𝑙𝑒 , 𝐸3
𝑒𝑙𝑒} 

 

𝑊•
𝑒𝑙𝑒 = [

𝐾•,11
𝑒𝑙𝑒 𝐾•,12

𝑒𝑙𝑒 𝐾•,13
𝑒𝑙𝑒

𝐾•,21
𝑒𝑙𝑒 𝐾•,22

𝑒𝑙𝑒 𝐾•,23
𝑒𝑙𝑒

𝐾•,31
𝑒𝑙𝑒 𝐾•,32

𝑒𝑙𝑒 𝐾•,33
𝑒𝑙𝑒

] 

(D-1) 

For TM-TM coupling condition, 

𝑋𝑚𝑛 = ∬ 𝒆𝟏𝒕𝒆𝒎

𝑆2

𝑆

× 𝒉𝟐𝒕𝒆𝒏 ∙ 𝒛⃗ 𝑑𝑆 =
1

𝑌1𝑒𝑛
∬ 𝒉𝟏𝒕𝒆𝒎

𝑆2

𝑆

∙ 𝒉𝟐𝒕𝒆𝒏𝑑𝑆

= 𝐷𝑚𝑛 ∑ ∬ (∑𝐻1,𝑖𝑚
𝑒𝑙𝑒 𝒘𝒊

𝒆𝒍𝒆

3

𝑖=1

)
𝑆2

𝑆𝑒𝑙𝑒

𝑁𝑒𝑙𝑒

𝑒𝑙𝑒=1

(∑𝐻2,𝑖𝑛
𝑒𝑙𝑒 𝒘𝒊

𝒆𝒍𝒆

3

𝑖=1

)𝑑𝑆

= 𝐷𝑚𝑛 ∑ 𝐻1,𝑚
𝑒𝑙𝑒

𝑁𝑒𝑙𝑒

𝑒𝑙𝑒=1

𝑊•
𝑒𝑙𝑒𝐻2,𝑛

𝑒𝑙𝑒 

𝐷𝑚𝑛 = √
𝑌2,ℎ𝑚

𝑌1,ℎ𝑛
∙

1

√(∬ 𝑯𝟏𝒕𝒆𝒎 ∙ 𝑯𝟏𝒕𝒆𝒎𝑑𝑆
𝑆2

𝑆𝑒𝑙𝑒
) (∬ 𝑯𝟐𝒕𝒆𝒏 ∙ 𝑯𝟐𝒕𝒆𝒏𝑑𝑆

𝑆2

𝑆𝑒𝑙𝑒
)
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𝐻𝑒𝑙𝑒 = 𝑑𝑖𝑎𝑔{𝐻1
𝑒𝑙𝑒, 𝐻2

𝑒𝑙𝑒, 𝐻3
𝑒𝑙𝑒} 

 

𝑊•
𝑒𝑙𝑒 = [

𝐾•,11
𝑒𝑙𝑒 𝐾•,12

𝑒𝑙𝑒 𝐾•,13
𝑒𝑙𝑒

𝐾•,21
𝑒𝑙𝑒 𝐾•,22

𝑒𝑙𝑒 𝐾•,23
𝑒𝑙𝑒

𝐾•,31
𝑒𝑙𝑒 𝐾•,32

𝑒𝑙𝑒 𝐾•,33
𝑒𝑙𝑒

] 

(D-2) 

 

For the TE-TM coupling condotion is, 

  

𝑋𝑚𝑛 = ∬ 𝒆𝟏𝒕𝒉𝒎

𝑆2

𝑆

× 𝒉𝟐𝒕𝒆𝒏 ∙ 𝒛⃗ 𝑑𝑆

= 𝐷𝑚𝑛 ∑ ∬ (∑𝐸1,𝑖𝑚
𝑒𝑙𝑒 𝒘𝒊

𝒆𝒍𝒆

3

𝑖=1

)
𝑆2

𝑆𝑒𝑙𝑒

𝑁𝑒𝑙𝑒

𝑒𝑙𝑒=1

× (∑𝐻2,𝑖𝑛
𝑒𝑙𝑒 𝒘𝒊

𝒆𝒍𝒆

3

𝑖=1

) ∙ 𝒛⃗ 𝑑𝑆

= 𝐷𝑚𝑛 ∑ 𝐸1,𝑚
𝑒𝑙𝑒

𝑁𝑒𝑙𝑒

𝑒𝑙𝑒=1

𝑊×
𝑒𝑙𝑒𝐻2,𝑛

𝑒𝑙𝑒 

𝐷𝑚𝑛 =
√𝑍1,ℎ𝑚𝑌2,𝑒𝑛

√(∬ 𝑬𝟏𝒕𝒉𝒎 ∙ 𝑬𝟏𝒕𝒉𝒎𝑑𝑆
𝑆2

𝑆𝑒𝑙𝑒
) (∬ 𝑯𝟐𝒕𝒆𝒏 ∙ 𝑯𝟐𝒕𝒆𝒏𝑑𝑆

𝑆2

𝑆𝑒𝑙𝑒
)

 

𝐸𝑒𝑙𝑒 = 𝑑𝑖𝑎𝑔{𝐸1
𝑒𝑙𝑒, 𝐸2

𝑒𝑙𝑒 , 𝐸3
𝑒𝑙𝑒} 

𝐻𝑒𝑙𝑒 = 𝑑𝑖𝑎𝑔{𝐻1
𝑒𝑙𝑒, 𝐻2

𝑒𝑙𝑒, 𝐻3
𝑒𝑙𝑒} 

𝑊×
𝑒𝑙𝑒 = [

𝐾∇,11
𝑒𝑙𝑒 𝐾∇,12

𝑒𝑙𝑒 𝐾∇,13
𝑒𝑙𝑒

𝐾∇,21
𝑒𝑙𝑒 𝐾∇,22

𝑒𝑙𝑒 𝐾∇,23
𝑒𝑙𝑒

𝐾∇,31
𝑒𝑙𝑒 𝐾∇,32

𝑒𝑙𝑒 𝐾∇,33
𝑒𝑙𝑒

] 

(D-3) 

 

For TM-TE condition, there is no coupling, 

 

𝑋𝑚𝑛 = 0                          (D-4) 

 

More details for FEM/MM hybrid calculation can be referred to [A-6][A-7]. 
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Appendix E  

Calibration mechanism 

In this dissertation, ordinary conditions of beam-switching matrices connecting with 

transformers occurs, as depicted in Fig. E.1. 

The measurement results 𝑆𝑚𝑒𝑎 can be expressed as  

 

𝑆𝑚𝑒𝑎 = 𝑇𝑡𝑜𝑆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑇𝑚𝑒𝑎) = 𝑇𝑡𝑜𝑆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑇𝑡𝑟𝑎𝑛𝑠𝑇𝐷𝑈𝑇𝑇𝑡𝑟𝑎𝑛𝑠)           (E-1) 

 

Where S means S-matrix, T means T-matrix and 𝑇𝑡𝑜𝑆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represent transition form T-

matrix to S-matrix, which can be demonstrated as, 

 

𝑆 =
1

𝑇11
(
𝑇21 𝑇11𝑇22 − 𝑇12𝑇21

1 −𝑇12
)                (E-2) 

 

Similarly, the reverse operation 𝑆𝑡𝑜𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ to convert S-matrix to T-matrix is 

 

𝑇 =
1

𝑆21
(

1 −𝑆22

𝑆11 𝑆12𝑆21 − 𝑆11𝑆22
)                (E-3) 

 

The measurement results will always include coaxial line-waveguide transition, which 

incorporate additional insertion loss, to properly exclude this influence and derive pure 

𝑆𝐷𝑈𝑇, 

𝑆𝐷𝑈𝑇 = 𝑇𝑡𝑜𝑆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑇𝑡𝑟𝑎𝑛𝑠
−1𝑆𝑡𝑜𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑆𝑚𝑒𝑎)𝑇𝑡𝑟𝑎𝑛𝑠

−1)          (E-4) 

 

To get S-parameters of transformer, TRL calibration method is usually utilized as 

shown in Fig.E.2, reflection at input port of network containing cascading of transformer 

and a termination load can be measured and expressed as  

 

𝑆11,𝐶𝐴𝐿 =
𝑏1𝑚𝑒𝑎

𝑎1𝑚𝑒𝑎
= 𝑆11 +

𝛤𝑆12
2

1−𝛤𝑆22
               (E-5) 

 

As a two-ports passive network, three unknown parameters 𝑆11, 𝑆12 and 𝑆22 are in 
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demand to solve, hence, three equations corresponding to three different termination loads 

need to be uploaded, 

 

𝑆11,𝐶𝐴𝐿1 = 𝑆11 +
𝛤1𝑆12

2

1−𝛤1𝑆22
                    (E-6a) 

 

𝑆11,𝐶𝐴𝐿2 = 𝑆11 +
𝛤2𝑆12

2

1−𝛤2𝑆22
                    (E-6b) 

 

𝑆11,𝐶𝐴𝐿3 = 𝑆11 +
𝛤3𝑆12

2

1−𝛤3𝑆22
                    (E-6c) 

 

From (A-6), the S-parameters of transformer can be deduced, 

 

𝑆11 =

𝛤1𝑆11,𝐶𝐴𝐿3 − 𝛤3𝑆11,𝐶𝐴𝐿1 −
𝛤3(𝑆11,𝐶𝐴𝐿3 − 𝑆11,𝐶𝐴𝐿1)

𝛤2(𝑆11,𝐶𝐴𝐿2 − 𝑆11,𝐶𝐴𝐿1)
(𝛤1𝑆11,𝐶𝐴𝐿2 − 𝛤2𝑆11,𝐶𝐴𝐿1)

𝛤1 − 𝛤3 −
𝛤3(𝑆11,𝐶𝐴𝐿3 − 𝑆11,𝐶𝐴𝐿1)

𝛤2(𝑆11,𝐶𝐴𝐿2 − 𝑆11,𝐶𝐴𝐿1)
(𝛤1 − 𝛤2)

 

 (E-7a) 

 

𝑆22 =
𝛤2(𝑆11 − 𝑆11,𝐶𝐴𝐿1) − 𝛤1(𝑆11 − 𝑆11,𝐶𝐴𝐿2)

𝛤1𝛤2(𝑆11,𝐶𝐴𝐿2 − 𝑆11,𝐶𝐴𝐿1)
 

(E-7b) 

 

𝑆12 = 𝑆21 = √(𝑆22 −
1

𝛤1
) (𝑆11 − 𝑆11,𝐶𝐴𝐿1) 

(E-7C) 

 

Normal waveguide loads contain a PEC-short plate, and two plates with different 

length 𝑙1 and 𝑙2, with their reflection coefficients as, 

 

𝛤1 = −1                          (E-8a) 

 

  𝛤2 = −𝑒𝑗𝛽𝑙1                        (E-8b) 

 

𝛤3 = −𝑒𝑗𝛽𝑙2                        (E-8c) 

 

Where 𝛽 means waveguide wave number, 
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𝛽 = √(
2𝜋

𝜆
)
2

− (
𝜋

𝑎
)
2

                        (E-9) 

 

Where 𝑎 and 𝜆 signify broad wall of waveguide and free space wavelength. 
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Fig. E.1. Measurement networks including DUT and transformers. 

 

 

 

 

 

 

 

 

 

 

 

Fig. E.2. Calibration models for transformer. 
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