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ABSTRACT   

Mask 3D (M3D) effects distort diffraction amplitudes from EUV masks. Electromagnetic (EM) simulations are 

used to rigorously calculate the distorted diffraction amplitudes. However, EM simulations are highly time 

consuming for OPC applications. The distorted diffraction amplitude can be characterized by M3D parameters. We 

develop a convolutional neural network (CNN) model which predicts M3D parameters very fast from input mask 

patterns. In this work, we train CNN using test mask data with various characteristics of metal layers. The accuracy 

of the CNN is good for the test mask data. However, when we use new mask data that mimic device patterns, the 

accuracy of the CNN is worsened. Starting from the CNN pre-trained by the test mask data, we improve the 

accuracy of the CNN by additional training using larger dataset including both the test mask data and the new mask 

data. The accuracy of the CNN is slightly improved by the fine tuning. 
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1. INTRODUCTION  

High aspect absorbers used in extreme ultraviolet (EUV) masks induce several mask 3D (M3D) effects such as critical 

dimension (CD) error and edge placement error.1,2 It is necessary to include M3D effects in EUV lithography simulations. 

M3D effects are caused by the distorted diffraction amplitude from an EUV mask. The diffraction amplitude can be 

calculated rigorously by using electromagnetic (EM) simulators.3-5 However, these calculations are highly time consuming, 

especially for optical proximity correction (OPC) applications.  

To speed up the EM simulations, several models were proposed which approximate the rigorous domain decomposition 

method (DDM). Rigorous DDM6 decomposes a mask pattern into many small patterns and calculates the EM amplitude 

iteratively to include the full order cross-talks between neighboring small patterns. In this way the non-locality of the EM 

interaction can be handled rigorously, but the computation is slow. On the other hand, approximate models7-11 of DDM 

treat the EM interaction locally and include only low-order cross-talks between the neighboring patterns. The computation 

of these models is fast. However, high-order cross-talks become important for OPC masks due to the high pattern density. 

It could be difficult to apply these approximate models to OPC masks. 

Recently, many models have been proposed, which apply convolutional neural network (CNN) to the EM simulation. In 

these models the non-locality of the EM interaction is fully included because the CNN connects all parts of the input mask 

pattern. These models are classified into three types depending on the target of CNN:  near-field diffraction amplitude on 

the mask12-15 or image intensity on the wafer16,17 or far-field diffraction amplitude at the pupil.18-21 In our model18 six CNNs 

are used to predict the far-field diffraction amplitude from the input mask pattern. The image intensity on the wafer is 

calculated by applying Abbe’s theory to the far-field diffraction amplitude. 

In the previous paper20 we constructed several CNNs for specific mask patterns. Ideally, CNN can be applied to arbitrary 

mask patterns. However, the accuracy of CNN depends on the quality and quantity of the training data. In this report we 

construct CNN for metal layers using a large dataset. We first generate one million test mask patterns including random 

L/S patterns, 14 nm vertical (V) and horizontal (H) lines. We train CNN using these test mask patterns and validate the 

accuracy. We also validate the accuracy of the CNN using new mask data that mimic device patterns. Typically, the 

accuracy of a CNN on new data is lower compared to the accuracy on original data. Starting from the CNN pre-trained by 
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Fig. 1. Diffraction from an EUV mask.           Fig. 2 CNN which predicts M3D parameters from a mask pattern. 

the test mask data, we improve the accuracy of the CNN by additional training using larger dataset including both the test 

mask data and the new mask data.  

In Sec. 2, we explain our CNN model. In Sec. 3, we train CNN by using one million test mask data. In Sec. 4, we 

fine-tune the CNN by adding 100 thousand new mask data to the training. Sec. 5 is the summary. 

2. CNN FOR M3D PARAMETERS  

In conventional optical lithography simulations, the light shielding film of a mask is assumed to be very thin. The far-field 

diffraction amplitude is calculated by the Fourier transformation (FT) of the mask pattern. The amplitude does not depend 

on the incident angle (or source position). However, in EUV lithography simulations, since the aspect ratio of the absorber 

is high, the far-field diffraction amplitude 𝑨(𝑙,𝑚; 𝑙𝑠, 𝑚𝑠) is calculated by the EM simulation. The amplitude depends on 

both the diffraction order (𝑙, 𝑚) and the source position (𝑙𝑠, 𝑚𝑠) (Fig. 1). Following our previous work,18 we divide the 

thick mask diffraction amplitude 𝑨(𝑙,𝑚; 𝑙𝑠, 𝑚𝑠) into the thin mask amplitude  𝑨FT(𝑙, 𝑚 ) (FT of the mask pattern) and the 

residual M3D amplitude 𝑨3D(𝑙, 𝑚; 𝑙𝑠 , 𝑚𝑠) as follows. 

 

                    𝑨(𝑙,𝑚; 𝑙𝑠, 𝑚𝑠) = 𝑨FT(𝑙, 𝑚 ) + 𝑨3D(𝑙, 𝑚; 𝑙𝑠, 𝑚𝑠) .                                                                                              (1) 

 

The M3D amplitude for each diffraction order (𝑙,𝑚) smoothly depends on the source position (𝑙𝑠, 𝑚𝑠). We approximate 

the M3D amplitude by a linear function of the source position as follows. 

 

𝐴𝑥
3D(𝑙, 𝑚; 𝑙𝑠, 𝑚𝑠) ≅ 𝑎0(𝑙, 𝑚)+𝑎𝑥(𝑙, 𝑚) (𝑙𝑠 + 𝑙 2⁄ )+𝑎𝑦(𝑙, 𝑚) (𝑚𝑠 +𝑚 2)⁄  ,                                   (2) 

 

where a0 is the average of the amplitude and ax and ay are the slopes of the amplitude in x and y directions on the source 

plane, respectively. We call these three numbers as M3D parameters. 

M3D parameters are determined by the mask pattern. We construct CNN which predict M3D parameters from an input 

mask pattern (Fig. 2). There are six CNNs depending on the targets: Real(a0), Imag(a0), Real(ax), Imag(ax), Real(ay), and 

Imag(ay). The accuracy of CNN depends on the training dataset. We examine the accuracy of CNN in the next sections.  

3. PRE-TRAINING CNN BY BASIC DATASET 

In this section we train CNN by using one million data (basic dataset). Figure 3 shows examples of mask patterns in the 

basic dataset. These are test patterns of metal layers. Type A, B, C, D, E include random L/S patterns, 14 nm V lines, 14 

nm H lines, 14 nm V lines with OPC, 14 nm H lines with OPC, respectively. Both the bright field (BF) patterns and the 

dark field (DF) patterns are included. The size of the mask pattern is 512 nm X 512 nm on the wafer. We generate 2,000 

original mask patterns for each mask type. Then we use the data augmentation technique19 to increase the number of the 

data by a factor of 50. In the basic dataset there are 100 thousand data for each mask type and one million data in total. 
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Fig. 3 Examples of the mask patterns included in the basic dataset. 

Figure 4 shows the training and validation losses of six CNNs during the training. The number of targets for each CNN 

depend on the diffraction orders which pass the pupil of the projection optics. When the mask size is 512 nm X 512 nm, 

the number of the targets for Re(a0) and Im(a0) is 1,901 and the number of the targets for Re(ax), Re(ay), Im(ax), Im(ay) is 

1,749. Both the training and validation losses become small after the training. The CNN successfully recognize the 

characteristics of metal layers. 

Figure 5 shows the image intensities of a type A mask using EM simulation, FT, and CNN prediction. In the calculations 

we use NA 0.33, the wavelength  13.5 nm, and the dipole illumination DX90  0.9/0.55 (X direction dipoles, open angle 

90 degrees). The absorber material is Ta with 60 nm thickness. The difference between EM and CNN is much smaller than 

the difference between EM and FT. M3D effects of the mask are successfully reproduced by CNN. 

Figure 6 shows the maximum intensity errors of type A~E mask patterns. The image intensity error of CNN is much 

smaller than that of FT. The difference between EM and FT is larger for horizontal patterns (C and E). This suggests larger 

M3D effects for horizontal patterns because the chief-ray of the incident light is tilted 6 degrees in Y direction.  

                             

Fig. 4 Training and validation losses of CNNs for M3D parameters. 

      

Fig. 5 Image intensities of EM, FT, and CNN models.                     Fig. 6 Maximum intensity errors of mask patterns.  
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4. FINE TUNING CNN WITH NEW DATASET 

In the previous section we constructed CNN that recognized the various test patterns of metal layers. In this section we 

evaluate the accuracy of the CNN using new mask data that mimic device patterns. Figure 7 is examples of the mask 

patterns included in the new dataset. We use 12 types of new mask patterns (A’~F’, BF & DF).  

First, we apply the CNN to this new dataset. Figure 8 shows the image intensities of a type A’ mask. Lithography conditions 

are the same as in Fig. 5. We see that the difference between EM and CNN is small. The CNN successfully predict the 

M3D effects of the mask.  

Figure 9 shows the maximum intensity errors of type A’~F’ mask patterns. The image intensity error of CNN is much 

smaller than that of FT. The image intensities of CNN predictions are much better than those of the thin mask model. 

However, if we look more closely, the average image intensity error of CNN is 2.0%. The number is slightly larger than 

the value for the basic dataset, 1.4% in Fig. 6.  

 

 

Fig. 7 Examples of mask patterns included in the new dataset.  

 

 

 

Fig. 8 Image intensities of EM, FT, and CNN models, and their differences. 

 

 

Fig. 9 Maximum intensity errors of type A’~F’ mask patterns.  
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Fig. 10 Training and validation losses of pre-training and fine-tuning.  

 

 

Fig. 11 Maximum intensity errors after pre-training and after fine-tuning.  

In order to improve the accuracy, we fine-tune the CNN. The CNN constructed in Sec. 3 is used as the pre-trained CNN. 

We select 18 mask clips from each mask pattern (A’~F’, BF & DF). The number of the original mask clips is 216. Data 

augmentation technique is used to increase the number of the data to 100 thousand. After the pre-training with one million 

basic data, we add 100 thousand new data for fine-tuning. In total 1.1 million data are used for fine-tuning. Figure 10 

shows the training and validation losses of a M3D parameter a0 during the pre-training (epochs 0~49) and the fine-tuning 

(epochs 50~74). The losses temporary increase after adding new data at epoch 50, but they decrease during the fine-tuning. 

Figure 11 shows the results of the fine-tuning. The image intensity error of the basic dataset is almost unchanged after the 

fine-tuning. On the other hand, the image intensity error of the new dataset has been slightly reduced by the fine tuning. 

The average of the errors decreases from 2.0% to 1.8% by the fine-tuning.  

5. SUMMARY 

We trained CNN by using one million test mask data with various characteristic of metal layers. The targets of CNN 

are M3D parameters. The validation loss became very small after the training. The CNN successfully recognized the 

characteristics of metal layers. The image intensity error of CNN model was much smaller than that of FT. 

The accuracy of the pre-trained CNN was validated using new mask data that mimicked device patterns. The 

accuracy was good, and the image intensity error of CNN model was much smaller than that of FT. Pre-trained CNN 

successfully predicted the M3D effects of the new masks. 

However, when pre-trained CNN was applied, the image intensity error of the new dataset was slightly larger than that of 

the basic dataset. In order to reduce the image intensity errors, we fine-tuned the CNN. After the pre-training with one 

million basic data, we added 100 thousand new mask data for the fine-tuning. The fine tuning slightly reduced the image 

intensity error of the new dataset. 
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