Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Semismall perturbations, semi-intrinsic ultracontractivity, and integral representations of nonnegative solutions for parabolic equations 
著者
和文: 村田實.  
英文: Pedro J. Mendez-Hernandez, Minoru Murata.  
言語 English 
掲載誌/書名
和文: 
英文:Journal of Functional Analysis 
巻, 号, ページ Vol. 257        pp. 1799–1827
出版年月 2009年7月 
出版者
和文: 
英文:Elsevier Inc. 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
ファイル
DOI http://dx.doi.org/10.1016/j.jfa.2009.05.028
アブストラクト We consider nonnegative solutions of a parabolic equation in a cylinder D×I, where D is a noncompact domain of a Riemannian manifold and I = (0,T ) with 0<T ∞or I = (−∞, 0). Under the assumption [SSP] (i.e., the constant function 1 is a semismall perturbation of the associated elliptic operator on D), we establish an integral representation theorem of nonnegative solutions: In the case I = (0,T ), any nonnegative solution is represented uniquely by an integral on (D × {0}) ∪ (∂MD × [0,T )), where ∂MD is the Martin boundary of D for the elliptic operator; and in the case I = (−∞, 0), any nonnegative solution is represented uniquely by the sum of an integral on ∂MD × (−∞, 0) and a constant multiple of a particular solution. We also show that [SSP] implies the condition [SIU] (i.e., the associated heat kernel is semi-intrinsically ultracontractive).

©2007 Institute of Science Tokyo All rights reserved.