Home >

news Help

Publication Information


Title
Japanese: 
English:An Element-Substituted Cyclobutadiene Exhibiting High-Energy Blue Phosphorescence 
Author
Japanese: 庄子 良晃, Y. Ikabata, I. Ryzhii, R. Ayub, O. El Bakouri, T. Sato, Q. Wang, T. Miura, B. S. B. Karunathilaka, Y. Tsuchiya, C. Adachi, H. Ottosson, H. Nakai, T. Ikoma, 福島 孝典.  
English: Y. Shoji, Y. Ikabata, I. Ryzhii, R. Ayub, O. El Bakouri, T. Sato, Q. Wang, T. Miura, B. S. B. Karunathilaka, Y. Tsuchiya, C. Adachi, H. Ottosson, H. Nakai, T. Ikoma, T. Fukushima.  
Language English 
Journal/Book name
Japanese: 
English:Angewandte Chemie International Edition 
Volume, Number, Page Volume 60    Issue 40    p. 21817-21823
Published date June 7, 2021 
Publisher
Japanese: 
English: 
Conference name
Japanese: 
English: 
Conference site
Japanese: 
English: 
Official URL https://onlinelibrary.wiley.com/doi/10.1002/anie.202106490
 
DOI https://doi.org/10.1002/anie.202106490
Abstract 1,3,2,4-Diazadiboretidine, an isoelectronic heteroanalogue of cyclobutadiene, is an interesting chemical species in terms of comparison with the carbon system, whereas its properties have never been investigated experimentally. According to Baird's rule, Hückel antiaromatic cyclobutadiene acquires aromaticity in the lowest triplet state. Here we report experimental and theoretical studies on the ground- and excited-state antiaromaticity/aromaticity as well as the photophysical properties of an isolable 1,3,2,4-diazadiboretidine derivative. The crystal structure of the diazadiboretidine derivative revealed that the B2N2 ring adopts a planar rhombic geometry in the ground state. Yet, theoretical calculations showed that the B2N2 ring turns to a square geometry with a nonaromatic character in the lowest triplet state. Notably, the diazadiboretidine derivative has the lowest singlet and triplet states lying at close energy levels and displays blue phosphorescence.
Award Selected as "Very Important Paper (VIP)" and Inside Cover

©2007 Tokyo Institute of Technology All rights reserved.