Home >

news Help

Publication Information


Title
Japanese:Generation of sub-100 fs electron pulses for time-resolved electron diffraction using a direct synchronization method 
English:Generation of sub-100 fs electron pulses for time-resolved electron diffraction using a direct synchronization method 
Author
Japanese: 田久保耕, BANUSamiran, JINSICHEN, 金子水咲, Wataru Yajima, Makoto Kuwahara, Yasuhiko Hayashi, 石川忠彦, 沖本洋一, Masaki Hada, 腰原伸也.  
English: Kou Takubo, Samiran Banu, Sichen Jin, Misaki Kaneko, Wataru Yajima, Makoto Kuwahara, Yasuhiko Hayashi, Tadahiko Ishikawa, Yoichi Okimoto, Masaki Hada, Shin-ya Koshihara.  
Language English 
Journal/Book name
Japanese:Review of Scientific Instruments 
English:Review of Scientific Instruments 
Volume, Number, Page Vol. 93    No. 5    pp. 053005
Published date May 2022 
Publisher
Japanese: 
English: 
Conference name
Japanese: 
English: 
Conference site
Japanese: 
English: 
Official URL https://doi.org/10.1063/5.0086008
 
DOI https://doi.org/10.1063/5.0086008
Abstract <jats:p> To investigate photoinduced phenomena in various materials and molecules, ultrashort pulsed x-ray and electron sources with high brightness and high repetition rates are required. The x-ray and electron’s typical and de Broglie wavelengths are shorter than lattice constants of materials and molecules. Therefore, photoinduced structural dynamics on the femtosecond to picosecond timescales can be directly observed in a diffraction manner by using these pulses. This research created a tabletop ultrashort pulsed electron diffraction setup that used a femtosecond laser and electron pulse compression cavity that was directly synchronized to the microwave master oscillator (∼3 GHz). A compressed electron pulse with a 1 kHz repetition rate contained 228 000 electrons. The electron pulse duration was estimated to be less than 100 fs at the sample position by using photoinduced immediate lattice changes in an ultrathin silicon film (50 nm). The newly developed time-resolved electron diffraction setup has a pulse duration that is comparable to femtosecond laser pulse widths (35–100 fs). The pulse duration, in particular, fits within the timescale of photoinduced phenomena in quantum materials. Our developed ultrafast time-resolved electron diffraction setup with a sub-100 fs temporal resolution would be a powerful tool in material science with a combination of optical pump–probe, time-resolved photoemission spectroscopic, and pulsed x-ray measurements. </jats:p>

©2007 Tokyo Institute of Technology All rights reserved.