Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids 
著者
和文: 袁 洪涛, 下谷 秀和, 塚崎 敦, 大友 明, 川崎 雅司, 岩佐 義宏.  
英文: H. T. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Y. Iwasa.  
言語 English 
掲載誌/書名
和文: 
英文:Advanced Functional Materials 
巻, 号, ページ Vol. 19    No. 7    pp. 1046-1053
出版年月 2009年4月 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク <Go to ISI>://000265394900008
 
DOI https://doi.org/10.1002/adfm.200801633
アブストラクト Very recently, electric-field-induced superconductivity in an insulator was realized by tuning charge carrier to a high density level (1 x 1014) cm-2). To increase the maximum attainable carrier density for electrostatic tuning of electronic states in semiconductor field-effect transistors is a hot issue but a big challenge. Here, ultrahigh density carrier accumulation is reported, in particular at low temperature, in a ZnO field-effect transistor gated by electric double layers of ionic liquid (IL). This transistor, called an electric double layer transistor (EDLT), is found to exhibit very high transconductance and an ultrahigh carrier density in a fast, reversible, and reproducible manner. The room temperature capacitance of EDLTs is found to be as large as 34 mu F cm-2, deduced from Hall-effect measurements, and is mainly responsible for the carrier density modulation in a very wide range. Importantly, the IL dielectric, with a supercooling property, is found to have charge-accumulation capability even at low temperatures, reaching an ultrahigh carrier density of 8 x 1014 cm-2 at 220 K and maintaining a density of 5.5 x 1014 cm-2 at 1.8 K. This high carrier density of EDLTs is of great importance not only in practical device applications but also in fundamental research; for example, in the search for novel electronic phenomena, such as superconductivity, in oxide systems.

©2007 Institute of Science Tokyo All rights reserved.