Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Feature normalization based on non-extensive statistics for speech recognition 
著者
和文: Hilman F. Pardede, 岩野 公司, 篠田 浩一.  
英文: Hilman F. Pardede, Koji Iwano, Koichi Shinoda.  
言語 English 
掲載誌/書名
和文: 
英文:Speech Communication 
巻, 号, ページ vol. 55        pp. 587-599
出版年月 2013年3月 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
ファイル
DOI http://dx.doi.org/10.1016/j.specom.2013.02.004
アブストラクト Most compensation methods to improve the robustness of speech recognition systems in noisy environments such as spectral subtraction, CMN, and MVN, rely on the fact that noise and speech spectra are independent. However, the use of limited window in signal processing may introduce a cross-term between them, which deteriorates the speech recognition accuracy. To tackle this problem, we introduce the q-logarithmic (q-log) spectral domain of non-extensive statistics and propose q-log spectral mean normalization (q-LSMN) which is an extension of log spectral mean normalization (LSMN) to this domain. The recognition experiments on a synthesized noisy speech database, the Aurora-2 database, showed that q-LSMN was consistently better than the conventional normalization methods, CMN, LSMN, and MVN. Furthermore, q-LSMN was even more effective when applied to a real noisy environment in the CENSREC- 2 database. It significantly outperformed ETSI AFE front-end. 2013 Elsevier B.V. All rights reserved

©2007 Institute of Science Tokyo All rights reserved.