Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:An Item Influence-Centric Algorithm for Recommender Systems 
著者
和文: 常 娜, イルバン エムハデ, 寺野 隆雄.  
英文: Na Chang, Mhd Irvan, Takao Terano.  
言語 English 
掲載誌/書名
和文: 
英文:Advances in Intelligent Systems and Computing 
巻, 号, ページ Volume 290       
出版年月 2014年6月4日 
出版者
和文: 
英文:Springer International Publishing 
会議名称
和文: 
英文:11th International Conference on Distributed Computing and Artificial Intelligence 
開催地
和文: 
英文: 
公式リンク http://link.springer.com/chapter/10.1007%2F978-3-319-07593-8_64
 
DOI https://doi.org/10.1007/978-3-319-07593-8_64
アブストラクト Collaborative filtering recommendation algorithms are the most popular approaches in the area of recommender systems and have been extensively discussed by researchers. In this paper, we focus on the analysis of items influence received from neighborhood and the corresponding iterative preference prediction based on the influence. Specifically speaking, the proposed approach uses influence coefficient to measure an item’s ability to influence neighbors’ acceptance by users, and predicts a user’s preference for an item based on the user’s ratings on these items which have influence on the target item. In the meanwhile, the proposed approach distinguishes influence into persuasive influence and supportive influence, and takes into account the combined effect of the two types of influence. Under this methodology, we verified that the proposed algorithm obviously outperforms standard collaborative filtering methods through 5-fold cross validation.

©2007 Institute of Science Tokyo All rights reserved.