Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Semi-supervised hyperspectral manifold learning for regression 
著者
和文: 宇都 有昭, 小杉 幸夫, 齋藤 元也.  
英文: Kuniaki Uto, Yukio Kosugi, Genya Saito.  
言語 English 
掲載誌/書名
和文: 
英文:Proc. IGARSS 2015 
巻, 号, ページ         pp. 9-12
出版年月 2015年7月 
出版者
和文: 
英文: 
会議名称
和文: 
英文:2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 
開催地
和文: 
英文:Milan 
公式リンク http://ieeexplore.ieee.org/ielx7/7303999/7325670/07325684.pdf?tp=&arnumber=7325684&isnumber=7325670
 
DOI https://doi.org/10.1109/IGARSS.2015.7325684
アブストラクト Regression based on hyperspectral remote sensing data con- tains two-fold complications, i.e., lack of labeled data and dif- ficulty in collecting quantitative ground-truth. In this paper, we propose semi-supervised subspace learning methods for regression based on a generalized eigenvalue problem. The methods exploit abundant unlabeled data for low-dimensional subspace learning. Quantitative target values are replaced by ordinal values that can be easily acquired in comparison with accurate quantitative ground-truth. The subspace learning methods are further expanded into nonlinear manifold learn- ing methods by the kernel trick. The methods are applied to estimation problems of growth-state-related properties of rice based on hyprspectral remote sensing data of rice paddies.

©2007 Institute of Science Tokyo All rights reserved.