Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Mean-periodicity and zeta functions 
著者
和文: Ivan Fesenko, Guillaume Ricotta, 鈴木 正俊.  
英文: Ivan Fesenko, Guillaume Ricotta, Masatoshi Suzuki.  
言語 English 
掲載誌/書名
和文: 
英文:Annales de L'Institut Fourier 
巻, 号, ページ vol. 62    no. 5    pp. 1819-1887
出版年月 2012年 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク http://aif.cedram.org/aif-bin/item?id=AIF_2012__62_5_1819_0
 
DOI https://doi.org/10.5802/aif.2737
アブストラクト This paper establishes new bridges between zeta functions in number theory and modern harmonic analysis, namely between the class of complex functions, which contains the zeta functions of arithmetic schemes and closed with respect to product and quotient, and the class of mean-periodic functions in several spaces of functions on the real line. In particular, the meromorphic continuation and functional equation of the zeta function of an arithmetic scheme with its expected analytic shape is shown to correspond to mean-periodicity of a certain explicitly defined function associated to the zeta function. The case of elliptic curves over number fields and their regular models is treated in more details, and many other examples are included as well.

©2007 Institute of Science Tokyo All rights reserved.