Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:MONTHLY RESERVOIR INFLOW FORECASTING IN THAILAND: A COMPARISON OF ANN-BASED AND HISTORICAL ANALOUGE-BASED METHODS 
著者
和文: Somchit AMNATSAN, 井芹慶彦, 柳川亜季, 吉川沙耶花, 柿沼薫, 鼎信次郎.  
英文: Somchit AMNATSAN, Yoshihiko Iseri, Aki Yanagawa, Sayaka Yoshikawa, Kaoru Kakinuma, Shinjiro Kanae.  
言語 English 
掲載誌/書名
和文:土木学会論文集B1(水工学) 
英文: 
巻, 号, ページ 72    4    I7-I12
出版年月 2016年 
出版者
和文:公益社団法人 土木学会 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
DOI http://doi.org/10.2208/jscejhe.72.I_7
アブストラクト Accurate forecasting of reservoir inflow is essential for effective reservoir management. In this study, artificial neural network (ANN)-based models and forecasting methods based on historical inflow analogues were used to forecast the monthly reservoir inflows of Sirikit Dam in the Nan River Basin of Thailand. Incorporating sea surface temperatures and ocean indices in the ANN model significantly improved the forecasting result. The wavelet decomposition of inputs before they were fed into the ANN model also improved the forecasting result. The variation analogue forecast produced the best result among the forecasting methods investigated, based on historical analogues. It was also superior to other forecasting methods when forecasting extreme inflow values.

©2007 Institute of Science Tokyo All rights reserved.