Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Predictability of Seasonal Precipitation Intensities Associated with Tropical Cyclones and Disturbances in Indo-China Region 
著者
和文: RevelNilanka Menaka Tisho Kumar, 内海 信幸, 吉川沙耶花, 鼎信次郎.  
英文: Menaka Revel, Utsumi Nobuyuki, Sayaka Yoshikawa, Shinjiro Kanae.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ        
出版年月 2016年12月14日 
出版者
和文: 
英文: 
会議名称
和文: 
英文:American Geophysical Union 2016 Fall meeting 
開催地
和文:サンフランシスコ 
英文:San Francisco 
公式リンク https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/197732
 
アブストラクト Summer Monsoon precipitation provide support for the livelihood of the people of Southeast Asia where the population density is very high. Monsoon precipitation shows high variation in seasonal and yearly time scales affecting daily life of the people in the regions such Indo-China peninsula where most of the countries depend on agricultural economy. Predictability of seasonal extreme events such as flooding and droughts by different climatic conditions will enhance the ability to mitigate the risk of natural disasters in Indo-China peninsula. In addition lower tropospheric (850hPa) wind flow pattern is very useful in understanding the seasonal variability of Southeastern Asian Summer Monsoon. Furthermore summer monsoon in the Indo-China peninsula is strongly influenced by the local wind-terrain-precipitation interaction. Recently a set of Monsoon Indices has been developed by several researches, Indo China Monsoon Indices (ICMIs) as a representation of lower tropospheric wind flow patterns around Southeast Asian. On the other hand different precipitation providing weather systems vary according to the global position and local weather system. Responses of ICMIs to different precipitation providing weather systems may vary in temporal and spatial scales. Hence the seasonal responses of differentiated precipitation with ICMIs in Indo-China peninsula are being investigated. Objective detection methods are been adopted in order to identify the locations of tropical cyclones (TCs), and westward propagating disturbances (WDs) using a Japanese 25-year ReAnalysis data and the Global Precipitation Climatology Project One-Degree Daily data is differentiated into TCs, and WDs related precipitation. TCs contribute highly over the east coast of Indo China peninsula where WDs contributed all over land area of Indo-China peninsula but more towards Bay of Bengal. Correlations and regressions suggest that the indices which is calculated using the wind patterns, situated west of Indo-China peninsula tend to increase the moisture production to precipitation which is produced by seasonal winds and local convections. The increment of indices in the east of the peninsula tends withdraw the moisture of TCs and WDs related precipitation in Indo-China peninsula, as those originate from east of the peninsula.

©2007 Tokyo Institute of Technology All rights reserved.