Home >

news ヘルプ

論文・著書情報


タイトル
和文:Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at $\sqrt{s_{\mathrm {NN}}}=2.76$  TeV with the ATLAS detector 
英文:Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at $\sqrt{s_{\mathrm {NN}}}=2.76$  TeV with the ATLAS detector 
著者
和文: 山口洋平.  
英文: Youhei Yamaguchi.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ Vol. "C74"    No. "11"    pp. "3157"
出版年月 2014年8月 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク http://inspirehep.net/record/1311487
 
DOI https://doi.org/10.1140/epjc/s10052-014-3157-z
アブストラクト ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at $\sqrt{s_{\mathrm {NN}}}=2.76$  TeV are shown using a dataset of approximately 7  $\upmu $ b$^{-1}$ collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta $0.5<p_{\mathrm {T}}<20$  GeV and in the pseudorapidity range $|\eta |<2.5$ . The anisotropy is characterized by the Fourier coefficients, $\mathrm {v}_n$ , of the charged-particle azimuthal angle distribution for $n = 2$ –4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the $\mathrm {v}_n$ coefficients are presented. The elliptic flow, $\mathrm {v}_2$ , is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, $\mathrm {v}_3$ and $\mathrm {v}_4$ , are determined with two- and four-particle cumulants. Flow harmonics $\mathrm {v}_n$ measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to $\mathrm {v}_n$ measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multi-particle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations

©2007 Institute of Science Tokyo All rights reserved.