Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Fluid UI for HIGH-dimensional Analysis of Social Networks 
著者
和文: 高野 陸, 脇田 建.  
英文: Riku Takano, Ken Wakita.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ        
出版年月 2018年3月 
出版者
和文: 
英文:ACM 
会議名称
和文: 
英文:Intelligent User Interface 2018 
開催地
和文: 
英文:Tokyo 
DOI https://doi.org/10.1145/3180308.3180336
アブストラクト Social Viewpoint Finder (SVF) is a visual analytics tool for social networks and complex networks. SVF lays out the input network data on a HIGH-dimensional (500-3,000 dimensional) Euclidean space, offers a simple, but unique dragging-based UI to trigger computation-intensive, high-dimensional rota- tion of the presented network, and let the user investigate the clustering structure of the network. This demonstration presents the effectiveness of SVF as well as the employed implementation techniques that enabled the fluid, complex user interaction. To achieve fluidness, SVF heavily relies on modern OpenGL technologies. It achieves massively parallel computing through the use of the compute shader, and graphic pipelines. A large volume of the network data and its layout information is stored in a shader storage buffer. A fragment shader-based, efficient object identification method is devised.

©2007 Institute of Science Tokyo All rights reserved.