Home >

news ヘルプ

論文・著書情報


タイトル
和文:深層学習による桜島噴火予測 
英文: 
著者
和文: 村田剛志.  
英文: Tsuyoshi MURATA.  
言語 Japanese 
掲載誌/書名
和文:人工知能学会研究会資料 
英文: 
巻, 号, ページ SIG-KBS-B802        pp. 26-27
出版年月 2018年11月23日 
出版者
和文:人工知能学会 
英文: 
会議名称
和文:第115回人工知能学会知識ベースシステム研究会 
英文: 
開催地
和文:神奈川 
英文: 
公式リンク https://jsai.ixsq.nii.ac.jp/ej/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=9542&item_no=1&page_id=13&block_id=23
 
アブストラクト In this research, we take advantages of deep learning into time series data and apply this technique to sensor data acquired from volcanic monitors. We focus on two problems: (1) volcanic eruption classification and (2) early prediction of volcanic eruption. The goal of (1) is to recognize the current status of the volcano, while the goal of (2) is to predict the future eruption by detecting the time series prior to the eruption which is the early signal of the upcoming eruption. For (1), the proposed method VolNet based on convolutional neural network achieves an average F-score of 90%. For (2), the proposed method based on Stacked 2-Layer LSTM achieves promising results of 66% accuracy. And the accuracy of 4-stage warning system is 51% in the critical stage. We demonstrate the effectiveness of our methods with the largest and the most comprehensive set of volcano sensor time series data.

©2007 Institute of Science Tokyo All rights reserved.