Crystal Engineering, Electron Conduction, Molecular Recognition and Reactivity by Chalcogen Bonds in Tetracyanoquinodimethanes Fused with [1,2,5]Chalcogenadiazoles
著者
和文:
T. Shimajiri,
H.-P. J. De Rouville,
V. Heitz,
芥川 智行,
福島 孝典,
Y. Ishigaki,
T. Suzuki.
英文:
T. Shimajiri,
H.-P. J. De Rouville,
V. Heitz,
T. Akutagawa,
T. Fukushima,
Y. Ishigaki,
T. Suzuki.
Studies on a series of tetracyanoquinodimethanes (TCNQs) fused with [1,2,5]chalcogenadiazole rings reveals that chalcogen bonds (ChBs), through E•••N≡C (E = S or Se) contacts, are a decisive factor in determining their crystal structures, with the formation of one- or two-dimensional networks in a lateral direction. For anion-radical salts generated by one-electron reduction, electron conduction occurs in the direction of the network due to intermolecular electronic interactions involving ChBs. Based on the reliable synthon E•••N≡C for crystal engineering, molecular recognition occurs so that solid-state molecular complexes are selectively formed with certain donors, such as xylenes, among their isomers by charge-transfer-type clathrate formation. The inclusion cavity of the clathrate might provide a reaction environment for photoinduced electron transfer in the solid state. The accommodation of multiple conformers of overcrowded ethylene exhibiting thermo/mechanochromism is another example of a novel function that can be realized by ChBs through E•••N≡C contacts. Therefore, these chalcogenadiazolo-TCNQs endowed with the ability to form ChBs are promising materials for the development of novel solid-state functions.