Home >

news ヘルプ

論文・著書情報


タイトル
和文:暗黙的なニューラル表現を用いた可変長な人間動作の生成 
英文:Implicit neural representations for variable length human motion generation 
著者
和文: CERVANTES BAQUE Pablo Alberto, Yusuke Sekikawa, 佐藤 育郎, 篠田 浩一.  
英文: Pablo Cervantes, Yusuke Sekikawa, Ikuro Sato, Koichi Shinoda.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ        
出版年月 2023年9月 
出版者
和文: 
英文: 
会議名称
和文:第22回情報科学技術フォーラム(FIT2023) 
英文: 
開催地
和文:大阪府堺市 
英文: 
公式リンク https://www.ipsj.or.jp/event/fit/fit2023/
https://onsite.gakkai-web.net/fit2023/abstract/data/html/event/event_TCS7-3.html
 
アブストラクト We propose an action-conditional human motion generation method using variational implicit neural representations (INR). The variational formalism enables action-conditional distributions of INRs, from which one can easily sample representations to generate novel human motion sequences. Our method offers variable-length sequence generation by construction because a part of INR is optimized for a whole sequence of arbitrary length with temporal embeddings. In contrast, previous works reported difficulties with modeling variable-length sequences. We confirm that our method with a Transformer decoder outperforms all relevant methods on HumanAct12, NTU-RGBD, and UESTC datasets in terms of realism and diversity of generated motions. Surprisingly, even our method with an MLP decoder consistently outperforms the state-of-the-art Transformer-based auto-encoder. In particular, we show that variable-length motions generated by our method are better than fixed-length motions generated by the state-of-the-art method in terms of realism and diversity.

©2007 Institute of Science Tokyo All rights reserved.