Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:LDMSE: Low Computational Cost Generative Diffusion Model for Speech Enhancement 
著者
和文: 西 悠希, 篠田 浩一, 岩野 公司.  
英文: Yuki Nishi, Koichi Shinoda, Koji Iwano.  
言語 English 
掲載誌/書名
和文: 
英文:2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 
巻, 号, ページ         pp. 1-6
出版年月 2025年1月27日 
出版者
和文: 
英文:IEEE 
会議名称
和文: 
英文:2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 
開催地
和文: 
英文:Macau 
ファイル
DOI https://doi.org/10.1109/APSIPAASC63619.2025.10849051
アブストラクト Recently, a generative model called diffusion model has attracted attention. Compared to GANs, it can be trained stably but has a high computational cost in the generation stage. This paper proposes a method called Low computational cost Generative Diffusion Model for Speech Enhancement (LDMSE). It reduces its computational cost with comparable quality by compressing speech signals to a latent space using an autoencoder and removing noise in the latent space using the diffusion model. In our evaluation using VOICBANK-DEMAND and WSJ0- CHiME3 datasets, the proposed method reduced the generation time by more than 35% without any degradation in speech quality.

©2007 Institute of Science Tokyo All rights reserved.