Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Text-Guided Object Detector for Multi-modal Video Question Answering 
著者
和文: Ruoyue Shen, 井上 中順, 篠田 浩一.  
英文: Ruoyue Shen, Nakamasa Inoue, Koichi Shinoda.  
言語 English 
掲載誌/書名
和文: 
英文:Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023 
巻, 号, ページ         pp. 1032-1042
出版年月 2023年1月 
出版者
和文: 
英文:IEEE 
会議名称
和文: 
英文:IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2023 
開催地
和文:ハワイ 
英文:Hawaii 
ファイル
公式リンク https://wacv2023.thecvf.com/home
 
DOI https://doi.org/10.1109/WACV56688.2023.00109
アブストラクト Video Question Answering (Video QA) is a task to answer a text-format question based on the understanding of linguistic semantics, visual information, and also linguisticvisual alignment in the video. In Video QA, an object detector pre-trained with large-scale datasets, such as Faster RCNN, has been widely used to extract visual representations from video frames. However, it is not always able to precisely detect the objects needed to answer the question because of the domain gaps between the datasets for training the object detector and those for Video QA. In this paper, we propose a text-guided object detector (TGOD), which takes text question-answer pairs and video frames as inputs, detects the objects relevant to the given text, and thus provides intuitive visualization and interpretable results. Our experiments using the STAGE framework on the TVQA+ dataset show the effectiveness of our proposed detector. It achieves a 2.02 points improvement in accuracy of QA, 12.13 points improvement in object detection (mAP50), 1.1 points improvement in temporal location, and 2.52 points improvement in ASA over the STAGE original detector.

©2007 Institute of Science Tokyo All rights reserved.